Workshop on Bayesian learning &
computation
Programa Avançado de Data Science (PADS)
Hedibert Freitas Lopes
Professor of Statistics and Econometrics
Head of the Center of Statistics, Data and Decision
Sciences
November 2020
1. Bayesian ingredients and computation
http://hedibert.org/wp-content/uploads/2018/09/modernbayesianstatistics-13-aMostra-part-II.pdf
1.1 Divergent
priors, convergent posteriors
https://tiagomendonca.shinyapps.io/bayes/
1.2 Bernoulli iid, logit
regression or probit regression?
http://hedibert.org/wp-content/uploads/2020/02/bernoulli-regression.html
http://hedibert.org/wp-content/uploads/2020/02/bernoulli-regression-Rmd.txt
2. Multiple linear regression
http://hedibert.org/wp-content/uploads/2018/05/multiplelinearregression.pdf
2.1 Boston housing
data
http://hedibert.org/wp-content/uploads/2020/02/myfirst-gibbssampler-multiplelinearregression.html
3. Time-varying
variance modeling
3.1 GARCH
modeling
http://hedibert.org/wp-content/uploads/2018/09/modernbayesianstatistics-13-aMostra-part-III-a.pdf
3.2 Stochastic
volatility modeling
http://hedibert.org/wp-content/uploads/2015/04/EconometriaAvancada-aula9.pdf
3.3 Factor
stochastic volatility modeling
http://hedibert.org/wp-content/uploads/2018/09/modernbayesianstatistics-13-aMostra-part-III-d.pdf