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Simplest linear regression model

We already studied the homoskedastic linear regression model

yi = β0 + β1xi + εi ,

where {εi}ni=1 are i.i.d. and, for all i ,

E (εi ) = 0

V (εi ) = σ2

COV (xi , εi ) = 0

The estimates of β0 and β1 are obtained via ordinary least square (OLS):

β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
and β̂0 = ȳ − β̂1x̄ ,

where nx̄ =
∑n

i=1 xi , nȳ =
∑n

i=1 yi , ŷi = β̂0 − β̂1xi and nσ̂2 =
∑n

i=1(yi − ŷi )
2.
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Centering and standardizing y ’s and x ’s

When yi and xi are replaced, respectively, by

ỹi =
yi − ȳ

sy
and x̃i =

xi − x̄

sx
,

where

s2
y =

1

n

n∑
i=1

(yi − ȳ)2 and s2
x =

1

n

n∑
i=1

(xi − x̄)2,

it is easy to see that the intercept vanishes, i.e.

β̂0 = 0,

and that

β̂1 =

∑n
i=1 ỹi x̃i∑n
i=1 x̃

2
i

=
x̃ ′ỹ

x̃ ′x̃
= (x̃ ′x̃)−1x̃ ′ỹ

where ỹ = (ỹ1, . . . , ỹn)′ and x̃ = (x̃1, . . . , x̃n)′.
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Gaussian errors and other issues

I OLS estimates and maximum likelihood estimates (MLE) are the same.

I ML is usually more suitable for formal inference.

I The paid price is more modeling assumptions.

We also discussed other departures from the above model, such as

I nonlinearities

I heteroskedasticity

I spurious regression

I endogeneity

I Simpson’s paradox
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houseprice dataset

128 observations and 7 variables
5 quantitative variables (2 continuous and 3 counts)
2 qualitative variables

Nbhd Offers SqFt Brick Bedrooms Bathrooms Price

2 2 1790 No 2 2 114300

2 3 2030 No 4 2 114200

2 1 1740 No 3 2 114800

2 3 1980 No 3 2 94700

2 3 2130 No 3 3 119800

1 2 1780 No 3 2 114600

3 3 1830 Yes 3 3 151600

3 2 2160 No 4 2 150700

2 3 2110 No 4 2 119200

2 3 1730 No 3 3 104000
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price by covariates
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price by size
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price by size (and type or neighborhood)
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Linear regressions
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Multiple linear regression

Instead of “explaining” y via a single covariate (explanatory or predictor) x , we
gain a lot of modeling flexibility by considering several predictors simultaneously:

yi = β0 + β1xi1 + · · ·βpxip + εi

for i = 1, . . . , n and i.i.d. error terms with mean zero and variance σ2.

houseprice: Here n = 128 and a potencial model is

Price = β0 + β1Size + β2Bathrooms + β3Offers + ε

OLS: One estimates β0, β1, . . . , βp by minimizing the sum of squared residuals

RSS =
n∑

i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − β̂0 − β̂1xi1 − · · · − β̂pxip)2
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Matrix notation

By stacking the yi ’s into the vector y and the xijs into the matrix X :

y = Xβ + ε,

where

I q = p + 1

I y : n-dimensional vector of continuous responses,

I X is a (n × q) design matrix with each column representing a covariate,

I β: q-dimensional vector of regression coefficients,

I ε ∼ (0, σ2I ).

Useful constraints:

I E(Xj) = 0 and Var(Xj) = 1, for each column Xj of X .

I Replaced yi by yi − ȳ , where ȳ =
∑n

i=1 yi/n, and ignore the intercept β0.
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OLS estimates

Therefore, finding β that minimizes the RSS translates into

β̂ = arg min
β∈<p

(y − Xβ)′(y − Xβ)

= arg min
β∈<p

βX ′Xβ − 2β′X ′y .

Simple matrix algebra leads to

β̂ols = (X ′X )−1X ′y

so
ŷ = X β̂ols = X (X ′X )−1X ′y ,

which corresponds to an orthogonal projection of y onto the column space of X .

Hat matrix: P = X (X ′X )−1X ′
residuals: ε = y − X (X ′X )−1X ′y = (I − P)y
RSS: ε′ε = y ′(I − P)′(I − P)y = y ′(I − P)y
Variance of the errors: σ̂2 = ε′ε/n − p
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R2 and R2
adj

Since the total sume of squares, TSS = y ′y , is the same regardless of which
multiple linear regression model is being fit, it follows that

R2 = 1− RSS

TSS
= 1− y ′(I − P)y

y ′y

R2 is the proportion of the variance of y explained by a set of predictors.

Since R2 always increase with model complexity, an adjusted R2 is commonly
used to avoid (or, at least, diminish) such distortions:

R2
adj = 1− y ′(I − P)y

y ′y

(
n

n − p

)

houseprice: With n = 128 and p = 6, it follows that n/(n − 6) = 1.049.
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Cp, AIC and BIC

Other techniques commonly used to adjust for model complexity are:

I Mallow’s Cp

Cp =
1

n
(RSS + 2d σ̂2)

I Akaike information criterion (AIC)

AIC =
1

nσ̂2
(RSS + 2d σ̂2)

I Bayesian information criterion (BIC)

BIC =
1

n
(RSS + log(n)d σ̂2)
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houseprice data

26 = 64 models

install.packages("leaps")

library("leaps")

file = "http://hedibert.org/wp-content/uploads/2013/11/houseprice.txt"

house = read.table(file,header=TRUE)

house[,4] = house[,4]*0.092903

house[,8] = house[,8]*3.2/1000

house = house[,2:8]

Nbhd Offers SqFt Brick Bedrooms Bathrooms Price

1 2 2 166.2964 No 2 2 365.76

2 2 3 188.5931 No 4 2 365.44

3 2 1 161.6512 No 3 2 367.36

4 2 3 183.9479 No 3 2 303.04

5 2 3 197.8834 No 3 3 383.36
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R package regsubsets
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Modeling price

install.packages("leaps")

library("leaps")

house = read.table("houseprice.txt",header=TRUE)

house[,4] = house[,4]*0.092903

house[,8] = house[,8]*3.2/1000

attach(house)

N1 = rep(0,n)

N2 = rep(0,n)

N1[nbhd==1]=1

N2[nbhd==2]=1

data = cbind(house[,3:8],N1,N2)

regs = regsubsets(Price~.,data=data)

regs.summary = summary(regs)
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Modeling price

regs.summary

Subset selection object

Call: regsubsets.formula(Price ~ ., data = data)

7 Variables (and intercept)

Forced in Forced out

Offers FALSE FALSE

SqFt FALSE FALSE

BrickYes FALSE FALSE

Bedrooms FALSE FALSE

Bathrooms FALSE FALSE

N1 FALSE FALSE

N2 FALSE FALSE

1 subsets of each size up to 7

Selection Algorithm: exhaustive

Offers SqFt BrickYes Bedrooms Bathrooms N1 N2

1 ( 1 ) " " "*" " " " " " " " " " "

2 ( 1 ) "*" "*" " " " " " " " " " "

3 ( 1 ) "*" "*" "*" " " " " " " " "

4 ( 1 ) " " "*" "*" " " " " "*" "*"

5 ( 1 ) "*" "*" "*" " " " " "*" "*"

6 ( 1 ) "*" "*" "*" " " "*" "*" "*"

7 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
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R2 and R2
adj

plot(regs.summary$rsq,pch=16,xlab="Number of predictors",ylab="Quality of fit")

points(regs.summary$adjr2,col=2,pch=16)

legend("topleft",legend=c("R2","R2adj"),col=1:2,pch=16)
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R2
adj , Cp and BIC

par(mfrow=c(1,3))

plot(regs.summary$adjr2,pch=16,xlab="Number of predictors",ylab="Adjusted Rsq")

plot(regs.summary$cp,pch=16,xlab="Number of predictors",ylab="Cp")

plot(regs.summary$bic,pch=16,xlab="Number of predictors",ylab="BIC")
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Best models
par(mfrow=c(1,3))

plot(regs,scale="adjr2")

plot(regs,scale="Cp")

plot(regs,scale="bic")
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Best model

coef(regs,6)

P̂rice = 90.54 − 24.68Offers + 1.93SqFt + 54.27BrickYes

+ 27.78Bathrooms− 77.52N1 − 79.05N2
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Regressing Price on 16 covariates

I offers, size, bed bath, brick, N1, N2

I sizeN1, sizeN2, sizebrick

I bedN1, bedN2, bedbrick

I bathN1, bathN2, bathbrick

A total of 216 = 65536 models.
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R code

file = "http://hedibert.org/wp-content/uploads/2013/11/houseprice.txt"

house = read.table(file,header=TRUE)

house[,4] = house[,4]*0.092903

house[,8] = house[,8]*3.2/1000

house = house[,2:8]

attach(house)

n = nrow(house)

brickdum = rep(0,n)

brickdum[house[,4]=="Yes"]=1

N1 = rep(0,n)

N2 = rep(0,n)

N1[house[,1]==1]=1

N2[house[,1]==2]=1

data = cbind(house[,c(2,3,5,6,7)],brickdum,N1,N2,SqFt*N1,SqFt*N2,

SqFt*brickdum,Bedrooms*N1,Bedrooms*N2,Bedrooms*brickdum,

Bathrooms*N1,Bathrooms*N2,Bathrooms*brickdum)

colnames(data) = c("offers","size","bed","bath","Price","brick","N1","N2",

"sizeN1","sizeN2","sizebrick","bedN1","bedN2","bedbrick","bathN1",

"bathN2","bathbrick")

regs = regsubsets(Price~.,data=data,nvmax=16)
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R2 and R2
adj
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Cp and BIC
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Top models
> coef(regs,6)

(Intercept) offers size bath N1 N2 bedbrick

113.130607 -25.539469 1.886008 22.117475 -75.686575 -76.119398 18.037888

> coef(regs,7)

(Intercept) offers size bed bath sizeN2 sizebrick bathN1

36.9663548 -27.7386190 1.9374668 12.4249439 32.7888754 -0.3614412 0.2907379 -26.0702239
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Subset Selection1

If we just “throw in a ton of x ’s” our model may be too complex, we may overfit.

Often, we try to start with a “ton of x ’s” and then see how many we can throw
out and still have good fit.

yi = β0 + β1 xi1 + β2 xi2 + . . .+ βp xip + εi

Throwing out an x is equivalent to setting its coefficient to 0.

1This and the following 5 slides are taken from Rob McCulloch’s personal notes.
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The bias variance trade-off

Which coefficients do we set to 0?

The key idea is the bias variance trade-off !!!

If we set too many coefficients to 0, we may be throwing out some variables that
do important work in explaining y ⇒ bias.

If we keep too many variables, it may be difficult to get good estimates of all the
corresponding coefficients ⇒ variability.
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Which subset to pick?

Our basic problem is that there are a lot of possible way to pick a subset of
variables to keep!!

Let k denote the number of variables kept.

How many ways can you choose k from p:

(
p
k

)
= p!

k! (p−k)! .

And, summing over possible k = 0, 1, 2, . . . , p, there are 2p possible regression
models.

Example, p = 40 and k = 10

240 = 1, 099, 511, 627, 776(
40
10

)
= 847, 660, 528
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Way too many models!
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What we need is a simple way to move from simpler models to more complex
models.

In subset selection we will let k denote the number of variables used, so that k
goes from 0 to p.

For each k we will choose a single regression model from the

(
p
k

)
possible

models.
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All subsets versus stepwise selection
Two possible ways of choosing a subset (a model) given k are:

small p: All subsets

For p less than about 40, it is possible to run all the possible regressions.
Given the number of variables k , we will pick the subset of variables of size k
with the highest R2.

big p: Forward Stepwise Selection

I Start with k = 0, no variables selected.
I Given a current k and corresponding subset, add in the new variable which

gives you the biggest increase in R2.
I Stop at k = p.

This is a greedy forward search

A simple validation set approach simply splits the data into train and validate,
and sees which value of k gives the best prediction.
Or, we could use cross validation.
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Training versus testing

For α ∈ (0, 1)

I Randomly split y into
I y1 - 100α% for training
I y2 - 100(1 − α)% for testing

I Split similarly X into X1 and X2

For k = 1, . . . , p

I Use (y1,X1) to find best model with k predictors by minimizing RSS

I Let β̂k be the estimated coefficients of the best model

I Compute the RSSk based on the testing set

RSSk = (y2 − X2k β̂k)′(y2 − X2k β̂k)

I Select k∗ that minimizes RSSk

Repeat the above two-step scheme N times
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Training versus testing
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R code

set.seed(31415)
alpha = 0.5
N = 1000
pbests = rep(0,N)

for (j in 1:N){
train = sample(c(TRUE,FALSE),size=n,rep=TRUE,prob=c(alpha,1-alpha))
test = !train
reg.test = regsubsets(Price~.,data=data[train,],nvmax=16)
test.mat = model.matrix(Price~.,data=data[test,])
val.errors = rep(0,p)
for (i in 1:p){

coefi = coef(reg.test,id=i)
pred = test.mat[,names(coefi)]%*%coefi
val.errors[i] = mean((data$Price[test]-pred)^2)

}
pbests[j] = which.min(val.errors)
}

nmodel = rep(0,p)
for (i in 1:N)

nmodel[pbests[i]] = nmodel[pbests[i]] +1

plot(1:p,nmodel/N,type="h",xlab="Number of predictors",ylab="Relative frequency",axes=FALSE)
axis(2);box()
axis(1,at=1:p)
title(paste("Training = ",100*alpha,"%",sep=""))
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Credit data
See Figure 3.5, page 83, of An Introduction to Statistical Learning
http://www-bcf.usc.edu/∼gareth/ISL/Credit.csv
Sample size: n = 400 individuals
Covariates:

I balance: average credit card debt
I cards: number of credit cards
I education: years of education
I income: income in thousands of dollars
I limit: credit limit
I rating: credit rating
I age: Age in years
I gender: Male, Female
I student: Yes, No
I married: Yes, No
I ethnicity: Caucasian, African American, Asian

> credit[1:10,2:12]
Income Limit Rating Cards Age Education Gender Student Married Ethnicity Balance

1 14.891 3606 283 2 34 11 Male No Yes Caucasian 333
2 106.025 6645 483 3 82 15 Female Yes Yes Asian 903
3 104.593 7075 514 4 71 11 Male No No Asian 580
4 148.924 9504 681 3 36 11 Female No No Asian 964
5 55.882 4897 357 2 68 16 Male No Yes Caucasian 331
6 80.180 8047 569 4 77 10 Male No No Caucasian 1151
7 20.996 3388 259 2 37 12 Female No No African American 203
8 71.408 7114 512 2 87 9 Male No No Asian 872
9 15.125 3300 266 5 66 13 Female No No Caucasian 279
10 71.061 6819 491 3 41 19 Female Yes Yes African American 1350
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Summary statistics

> summary(credit[,2:6])
Income Limit Rating Cards Age

Min. : 10.35 Min. : 855 Min. : 93.0 Min. :1.000 Min. :23.00
1st Qu.: 21.01 1st Qu.: 3088 1st Qu.:247.2 1st Qu.:2.000 1st Qu.:41.75
Median : 33.12 Median : 4622 Median :344.0 Median :3.000 Median :56.00
Mean : 45.22 Mean : 4736 Mean :354.9 Mean :2.958 Mean :55.67
3rd Qu.: 57.47 3rd Qu.: 5873 3rd Qu.:437.2 3rd Qu.:4.000 3rd Qu.:70.00
Max. :186.63 Max. :13913 Max. :982.0 Max. :9.000 Max. :98.00

> summary(credit[,7:12])
Education Gender Student Married Ethnicity Balance

Min. : 5.00 Male :193 No :360 No :155 African American: 99 Min. : 0.00
1st Qu.:11.00 Female:207 Yes: 40 Yes:245 Asian :102 1st Qu.: 68.75
Median :14.00 Caucasian :199 Median : 459.50
Mean :13.45 Mean : 520.01
3rd Qu.:16.00 3rd Qu.: 863.00
Max. :20.00 Max. :1999.00
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Selecting via BIC
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Selecting via BIC
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Selected covariates
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Best model

Balance = −499.7− 7.84Income + 0.267Limit + 23.18Cards + 429.6Student

> bestmodel = lm(Balance~Income+Limit+Cards+Student,data=credit)
>
> summary(bestmodel)

Call:
lm(formula = Balance ~ Income + Limit + Cards + Student, data = credit)

Residuals:
Min 1Q Median 3Q Max

-202.04 -80.41 -10.51 53.98 334.10

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.997e+02 1.589e+01 -31.449 < 2e-16 ***
Income -7.839e+00 2.321e-01 -33.780 < 2e-16 ***
Limit 2.666e-01 3.542e-03 75.271 < 2e-16 ***
Cards 2.318e+01 3.639e+00 6.368 5.32e-10 ***
StudentYes 4.296e+02 1.661e+01 25.862 < 2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 99.56 on 395 degrees of freedom
Multiple R-squared: 0.9536,Adjusted R-squared: 0.9531
F-statistic: 2029 on 4 and 395 DF, p-value: < 2.2e-16
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Training and testing
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Outline
Multiple linear regression

Simplest linear regression model
houseprice dataset
R2, R2

adj , Cp, AIC and BIC
R package regsubsets

Credit dataset

Shrinkage-L2, Ridge Regression
Hitters dataset
Constrained minimization
Karush Kuhn Tucker (KKT) conditions

Shrinkage-L1: The LASSO
Soft threshholding function
Cyclic Coordinate Descent
R package glmnet

More on regularization
Elastic net
Normal-gamma prior
Horseshoe prior
R package bayeslm

Simulation exercise
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Shrinkage-L2, Ridge Regression

Our variable selection approach set some of the coefficients in a multiple
regression to 0.

This helped keep our model simple so that we do not overfit.

Another way to keep our model “simple” is to push or shrink the coefficient
towards 0.

This way a coefficient will only be large if the data demands it!
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Ridge Regression:

Recall that least squares works by picking the coefficients to minimize

RSS =
n∑

i=1

(yi − β0 −
p∑

j=1

βj xij)
2.

Ridge regression works by mimimizing:

n∑
i=1

(yi − β0 −
p∑

j=1

βj xij)
2 + λ

p∑
j=1

β2
j .

For large λ you pay a price to make a coefficient large !!
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Minimize:

n∑
i=1

(yi − β0 −
p∑

j=1

βj xij)
2 + λ

p∑
j=1

β2
j .

λ will be our “walk the bias-variance trade-off” parameter.

small λ: can have big coefficient ⇒ complex model.

big λ: can’t have many big coefficients ⇒ simple model.
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So, for every λ, you will get a different optimizing β:

λ⇒ β̂R
λ .

For example β̂R
0 is just the least squares estimator.

How do you choose λ ?

cross-validation, or another out-of-sample criterion!!.
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Note:

We are minimizing

fit:
∑n

i=1 (yi − β0 −
∑p

j=1 βj xij)
2

+

penalty: λ
∑p

j=1 β
2
j .

Since the penalty treats all the βj the same you have to be thinking about all the
x ’s the same. What are the units of βj?

Usually people standardize the x ’s before the do this kind of shrinkage.
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Hitters dataset

Let’s look at the “Hitters” example used in the Lab in the ISLR book.

Major League Baseball Data from the 1986 and 1987 seasons.

A data frame with 322 observations of major league players on 20 variables.

Each observation corresponds to a baseball player.

52/111



Variables
Salary: 1987 annual salary on opening day in thousands of dollars

AtBat: Number of times at bat in 1986
Hits: Number of hits in 1986
HmRun: Number of home runs in 1986
Runs: Number of runs in 1986
RBI: Number of runs batted in 1986
Walks: Number of walks in 1986

CAtBat: Number of times at bat during his career
CHits: Number of hits during his career
CHmRun: Number of home runs during his career
CRuns: Number of runs during his career
CRBI: Number of runs batted in during his career
CWalks: Number of walks during his career
Years: Number of years in the major leagues

League: A factor with levels A and N indicating player’s league at the end of 1986
Division: A factor with levels E and W indicating player’s division at the end of 1986
PutOuts: Number of put outs in 1986
Assists: Number of assists in 1986
Errors: Number of errors in 1986
NewLeague: A factor with levels A and N indicating player’s league at the beginning of 1987
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Let’s try Ridge regression with the Hitters data.
I standardized all the x ’s.

Here we plot log(1/λ) vs. β̂R
λ .
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A complex model is one where the coefficients are allowed to be big.
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Here is the cross-validation estimate of the out of sample loss.
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Here we plot the coefficients from linear regression against those we get using
ridge regression with the optimal λ.
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They are not too different in this case.
You can see some of the bigger coefficients are shrunk a bit.
A lot of the coeficients are close to 0, (we standardized the x ’s).
The x ’s with absolute values bigger than 100 are ”AtBat” ”Hits” ”Walks”
”CAtBat” ”CHits” ”CRuns” ”CRBI” ”CWalks”
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Here we compare the in-sample fits from regression and ridge.
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What is the ridge regression β̂R
λ ?

Using a basic Lagrange multiplier argument, β̂R
λ is the solution of

min
β

Lλ(β)

where

Lλ(β) =
n∑

i=1

(yi − x ′i β)2 + λ

p∑
j=1

β2
j .

Taking derivatives and equating to zero (1st order conditions) leads to

λβ = X ′(y − Xβ)

or
β̂R
λ = (X ′X + λIp)X ′y .
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Constrained minimization
It is also useful to view the problem as a constrained fit:

min
β

n∑
i=1

(yi − x ′i β)2 such that

p∑
j=1

β2
j ≤ κ.

If OLS leads to
∑p

j=1 β̂
2
j ≤ κ, then there is no problem. Otherwise, the

constraint is “active”.

If f (β) =
∑n

i=1(yi − x ′i β)2 and g(β) =
∑p

j=1 β̂
2
j , then the problem of

min
β

f (β) such that g(β) = κ,

is simpler.

At the minimum, β̂R
λ ,

∇f + λ∇g = 0, for λ > 0.
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We can easily solve the first order conditions:

−∇f ′ = 2X ′(y − Xβ)

∇g ′ = 2β

so
2λβ = 2X ′(y − Xβ)

and
β̂R
λ = (X ′X + λIp)−1X ′y

We would then solve (the easy problem) of finding the λ such that ||β̂R
λ ||2 = κ.
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Karush Kuhn Tucker (KKT) conditions2

Note that this is an example of the Karush-Kuhn-Tucker approach.

To minimize f (β) subject to g(β) ≤ 0, form

L(β, λ) = f (β) + λg(β)

and then solve

min
β

maxλ≥0 L(β, λ).

With λ ≥ 0 we must have g(β) ≤ 0, since otherwise we could get a max of
infinity.

2Allowing inequality constraints, the KKT approach to nonlinear programming generalizes
the method of Lagrange multipliers, which allows only equality constraints.
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Also note that at the solution:

λ∗ g(β∗) = 0.

This captures the fact that there are two possibilities:

I If the constraint is binding then g(β∗) = 0.

I If the constraint is not binding so that g(β) < 0 then the max over
non-negative λ is clearly obtained at λ = 0.
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The general form of the KKT theorem

Minimize f (β) such that

{hi (β) = 0} and {gj(β) ≤ 0}

or
min
β

max
γ

max
λ≥0

L(β, γ, λ)

where
L(β, γ, λ) = f (β) +

∑
γihi (β) +

∑
λjgj(β)

Just notice that with equality constraints you don’t know the sign of the
constraint coefficient.
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Outline
Multiple linear regression

Simplest linear regression model
houseprice dataset
R2, R2

adj , Cp, AIC and BIC
R package regsubsets

Credit dataset

Shrinkage-L2, Ridge Regression
Hitters dataset
Constrained minimization
Karush Kuhn Tucker (KKT) conditions

Shrinkage-L1: The LASSO
Soft threshholding function
Cyclic Coordinate Descent
R package glmnet

More on regularization
Elastic net
Normal-gamma prior
Horseshoe prior
R package bayeslm

Simulation exercise
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Shrinkage: The LASSO

The LASSO (least absolute shrinkage and selection operator) changes the form
of the penalty.

Now, we minimize:

n∑
i=1

(yi − β0 − β1xi1 − · · · − βpxip)2 + λ

p∑
j=1

|βj |.

This may not seem like a big deal, but it turns out the solution to this problem
can set a βj exactly to 0, so that you get variable selection.

In the LASSO there is shrinkage as well as selection and the shrinkage takes on a
different form than in L2 regularization.

Also, with the LASSO, variables can to out as λ decreases, whereas with
forward, once you are in, your are always in.
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Why do people like the LASSO?

I Simple way to walk the bias variance trade-off.

I Zero coefficients give variable selection, can get more interpretable models.

I Computationally fast.
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Stepwise compared to LASSO

LASSO is a quadratic (and hence convex and differentiable) loss function
optimized under a convex constraint.

Hence, the LASSO problem has a guaranteed global optimum and we have very
efficient algorithms for finding that optimum.

The stepwise algorithms are greedy searches so there is no guarantee the global
optimum has been found.

But, since they do not shrink, the step wise methods can find more parsimonious
solutions (use fewer x ’s) faster!!

In our Hitters example, the all subsets method ended up using just 6 x ’s but
the LASSO only set two coefficients to 0!!
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Understanding the LASSO Solution
Why does the LASSO give solutions with coeficients at 0?

How is Ridge different from LASSO?

To get a good simple intuition, it is helpful to consider the constained
optimization view of LASSO and Ridge.

RIDGE

minimize
β0,β

n∑
i=1

(yi − β0 − β1xi1 − · · · − βpxip)2

subject to

p∑
j=1

β2
j ≤ t2

LASSO

minimize
β0,β

n∑
i=1

(yi − β0 − β1xi1 − · · · − βpxip)2

subject to

p∑
j=1

|βj | ≤ t
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This is a very famous picture

Left: LASSO problem, where the constraint set looks like a diamond.

Right: Ridge problem, where the constraint set looks like a circle.

The diamond constraint can give solutions at an axis.
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The simplest version

Let’s consider the simplest possible version of our problems back in the
“Lagrangian” formulation:

Ridge:
minimize

β
(y − β)2 + λ β2

LASSO:
minimize

β

1
2 (y − β)2 + λ |β|

Adding the 1/2 for the LASSO changes nothing and makes the expressions look
nicer.
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For the Ridge version we are minimizing a quadatric so we can easily find the
global miniumum by setting the derivative equal to 0:

2(y − β)(−1) + 2λβ = 0

such that
β̂R =

y

1 + λ
.

Of course the unconstrained solution is

β̂ = y

so we can very nicely see how a choice of λ shrinks the estimate towards 0.
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For the LASSO problem, we suddenly have a basic technical problem:

f (β) = |β| is not differentiable at 0.

Our function is convex, so there is a global minimum, but can we find it in a
simple way?

We can, and the solution will shed light on the LASSO and on how to solve the
general regression problem.
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Before we derive the LASSO solution, let’s see how it works out in practice.

Let’s say y = 1.
We plot y with the solid ma-
genta line.

λ decreases as we go down
the plots.

At left we have the Ridge
criterion plotted with the
minimizing β indicated by
the solid blue line.

At right we have the LASSO
criterion plotted with the
minimizing β indicated by
the solid red line.

Each estimate moves from 0
to 1, but the LASSO esti-
mates sticks at 0 for a while
and then moves faster to 1.
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To derive the LASSO solution, suppose the optimal β is greater than 0.

Then locally our differential first order conditions apply and our criterion is
differentiable since we know |β| = β.

(y − β)(−1) + λ = 0⇒ β̂L = y − λ.

Similarly, if the optimal is less than 0, then |β| = −β so,

(y − β)(−1)− λ = 0⇒ β̂L = y + λ.

Shrink towards 0 by an amount λ !!
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Now we only have three posibilities for the optimal β and you can just check that
the minimum is obtained with

β̂L =


y − λ y > λ

0 |y | ≤ λ

y + λ y < −λ

For example, suppose 0 < y < λ.
Which is better, β = 0 or β = y − λ?.
At β = y − λ we have

(y − (y − λ))2 + λ|y − λ| = λ2 + λ|y − λ|
≥ (y − 0)2 + λ|0|.

Intuitively, if 0 < y < λ, there is no way I want negative estimate y − λ.
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Here is a plot of the LASSO and Ridge shinkage.
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Soft threshholding function

We can express these solutions succintly using the soft threshholding function Sλ.

β̂R =
y

1 + λ
.

β̂L = Sλ(y)

where

Sλ(y) = sign(y)(|y | − λ)+

with x+ = x if x is positive and 0 otherwise.
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Standardization

Ok, now let’s try LASSO with some x ’s !!

But first, we emphasize again that for this to make sense you have to put the x ’s
on the same scale by standarizing them.

The LASSO literature strongly favors standardization using the sample mean and
variance.

Since we are not trying to regularize (shrink) the intercept, it is usual to start by
demeaning y and x :

yi → yi − ȳ ; xij → xij − x̄j .

Recall that if you run a regression using the demeaned variables, you get the
same slope estimates.
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We then scale the x ’s:

xij →
xij
sj

where

s2
j =

∑
x2
ij

n

Note that after you do this standardization
∑

i x
2
ij = n for each j = 1, 2, . . . , p.
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LASSO with one x

Let’s now see what happens when we just have one x variable.

After standardizing we miminize:

1

2n

n∑
i=1

(yi − β xi )2 + λ |β|.

Dividing by 2n does not change the problem, but makes the formulas turn out
nicer.
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Again if the solution were positive, we must have

1

n

∑
(yi − βxi )(−xi ) + λ = 0→ β̂L =

1

n
x ′y − λ.

And if negative,

1

n

∑
(yi − βxi )(−xi )− λ = 0→ β̂L =

1

n
x ′y + λ.

So that,

β̂L = Sλ(
1

n
x ′y).
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The General Problem, p Variables

minimize
β

1

2n

n∑
i=1

(yi −
∑
j

βj xij)
2 + λ

∑
j

|βj |.

or,

minimize
β

1

2n
||y − Xβ||2 + λ ||β||1
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Cyclic Coordinate Descent

Given a choice of λ, suppose we knew all of the coefficients except βj .

We can write our objective as:

minimize
βj

1

2n

n∑
i=1

(yi −
∑
k 6=j

βk xik − βjxij)2 + λ|βj |+ λ
∑
k 6=j

|βk |.

Which is the same problem as

minimize
βj

1

2n

n∑
i=1

(r
(j)
i − βjxij)

2 + λ|βj |

with
r

(j)
i = yi −

∑
k 6=j

βk xik

The r
(j)
i are the partial residuals.
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We already know that

minimize
βj

1

2n

n∑
i=1

(r
(j)
i − βjxij)

2 + λ|βj |

has solution

β̂j = Sλ(
1

n
x ′j r

(j)).

This gives us a very simple cyclic coordinate descent algorithm

I Pick a fixed order for the coefficients (variables), e.g 1, 2, . . . , p.

I Cycle through the coefficient updating each with the soft thresholding
formula: β̂j = Sλ( 1

nx
′
j r

(j)).

I Repeat until covergence.

Simple !!!
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Note
We often want to do this for a set of λ values.

If we start with all the βj at 0, then our initial r (j) = y .

Thus we know that if we set

λmax = max
j
|1
n
x ′j y |

then for that λ, and all larger, no matter what coefficient we attempted to
update, we would get 0. So, there is no need to consider λ > λmax .

So, we can,

I Start at λ = λmax .

I Slowly decrease, λ.

I At each λ, find a solution using cyclic coordinate descent.

I warm start, each cyclic descent by starting at the solution from the previous
λ.
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Orthogonal x ’s

Suppose our x ’s are orthogonal:

x ′j xi = 0, i 6= j .

Since we have demeaned, this is equivalent to the x ’s being uncorrelated.

Then,
x ′j r

(j) = x ′j y

So our cyclic alorgithm converges immediately to

β̂j = Sλ(
1

n
x ′j y).

Just as in least squares regression, we can fit the model one x at a time if the x ’s
are uncorrelated.
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R package glmnet - ridge regression
’

install.packages("ISLR")

library(ISLR)

library(glmnet)

fix(Hitters)

names(Hitters)

dim(Hitters)

sum(is.na(Hitters$Salary))

Hitters = na.omit(Hitters)

x = model.matrix(Salary~.,Hitters)[,-1]

y = Hitters$Salary

grid=10^seq(10,-2,length=100)

ridge.mod = glmnet(x,y,alpha=0,lambda=grid)

plot(log(1/grid),coef(ridge.mod)[2,],type="l",ylim=range(coef(ridge.mod)[2:20,]),xlab="log(1/lambda)",ylab="Coefficients")

for (i in 3:20)

lines(log(1/grid),coef(ridge.mod)[i,])

set.seed(1)

train = sample(1:nrow(x),nrow(x)/2)

test = (-train)

y.test = y[test]

cv.out = cv.glmnet(x[train,],y[train],alpha=0)

plot(cv.out)

bestlam = cv.out$lambda.min

ridge.pred = predict(ridge.mod,s=bestlam,newx=x[test,])

mean((ridge.pred-y.test)^2)

out = glmnet(x,y,alpha=0)

ridge.coef = predict(out,type="coefficients",s=bestlam)[1:20,]
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R package glmnet - LASSO regression

LASSO.mod = glmnet(x,y,alpha=1,lambda=grid)

par(mfrow=c(1,1))

plot(log(1/grid),coef(ridge.mod)[2,],type="l",ylim=range(coef(ridge.mod)[2:20,]),

xlab="log(1/lambda)",ylab="Coefficients")

for (i in 2:20){

lines(log(1/grid),coef(ridge.mod)[i,])

lines(log(1/grid),coef(LASSO.mod)[i,],col=2)

}

legend("topleft",legend=c("Ridge","LASSO"),col=1:2,lwd=2)

set.seed(1)

cv.out = cv.glmnet(x[train,],y[train],alpha=1)

plot(cv.out)

bestlam = cv.out$lambda.min

LASSO.pred = predict(LASSO.mod,s=bestlam,newx=x[test,])

mean((LASSO.pred-y.test)^2)

out=glmnet(x,y,alpha=1,lambda=grid)

LASSO.coef = predict(out,type="coefficients",s=bestlam)[1:20,]

cbind(ridge.coef,LASSO.coef)
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Hitters data
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Hitters data
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Ridge regression: 10-fold cross validation
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LASSO regression: 10-fold cross validation
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Hitters data

OLS’s MSE: 125,154

RIDGE’s MSE: 87,150

LASSO’s MSE: 77,426
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Comparing Ridge and LASSO regressions
ridge.coef LASSO.coef

(Intercept) 47.92183564 18.5394844

AtBat 0.11044921 0.0000000

Hits 0.67662342 1.8735390

HmRun 1.13312348 0.0000000

Runs 0.95450953 0.0000000

RBI 0.85450060 0.0000000

Walks 1.35472462 2.2178444

Years 2.50554472 0.0000000

CAtBat 0.01094280 0.0000000

CHits 0.04790211 0.0000000

CHmRun 0.34549715 0.0000000

CRuns 0.09585853 0.2071252

CRBI 0.10027471 0.4130132

CWalks 0.07096837 0.0000000

LeagueN 14.58789771 3.2666677

DivisionW -57.39269817 -103.4845458

PutOuts 0.12384683 0.2204284

Assists 0.01709043 0.0000000

Errors -0.76600546 0.0000000

NewLeagueN 8.86825574 0.0000000
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Outline
Multiple linear regression

Simplest linear regression model
houseprice dataset
R2, R2

adj , Cp, AIC and BIC
R package regsubsets

Credit dataset

Shrinkage-L2, Ridge Regression
Hitters dataset
Constrained minimization
Karush Kuhn Tucker (KKT) conditions

Shrinkage-L1: The LASSO
Soft threshholding function
Cyclic Coordinate Descent
R package glmnet

More on regularization
Elastic net
Normal-gamma prior
Horseshoe prior
R package bayeslm

Simulation exercise
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More on regularization
Consider again the Gaussian linear model

y = Xβ + ε, ε ∼ N (0, σ2In),

where β is p-dimensional.

Ridge Regression: `2 penalty on β:

β̂R = arg min
β
{‖y − Xβ‖2 + λ ‖β‖2

2}, λ ≥ 0,

leading to β̂ridge = (X ′X + λI )−1X ′y .

LASSO Regression: `1 penalty on β:

β̂L = arg min
β
{‖y − Xβ‖2 + λ ‖β‖1}, λ ≥ 0,

which can be solved by using quadratic programming techniques such as a
coordinate gradient descent algorithm.
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Elastic net

The Elastic net combines the Ridge and the LASSO approaches:

β̂EN = arg min
β
{‖y − Xβ‖2 + λ1 ‖β‖1 + λ2 ‖β‖2

2}, λ1 ≥ 0, λ2 ≥ 0,

The `1 part of the penalty generates a sparse model.

The `2 part of the penalty

I Removes the limitation on the number of selected variables;

I Encourages grouping effect;

I Stabilizes the `1 regularization path.

R package elasticnet
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Two dimension contour plots of the three penalty functions

Ridge (dot-dashed), LASSO (dashed) and Elastic net (solid) 98/111



Bayesian regularization
I Regularization and variable selection are done by assuming independent

prior distributions from a scale mixture of normals (SMN) class:

β|ψ ∼ N (0,ψ) and ψ ∼ p(ψ),

I The posterior mode or the maximum a posteriori (MAP) is

arg max
β
{log p(y |β) + log p(β|ψ)}

which is equivalent to penalizing the log-likelihood

log p(y |β)

with penalty equal to the log prior

log p(β|ψ)

when ψ is held fixed.
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Bayesian regularization in linear regression problems
The marginal prior distribution of β

p(β) =

∫
p(β|ψ)p(ψ)dψ

can assume many forms depending on the mixing distribution p(ψ):

Distribution of ψ Distribution of β

Bayesian LASSO E(λ2/2) Laplace
Ridge IG(α, δ) Scaled Student’s t
NG prior G(λ, 1/(2γ2)) below

The Normal-Gamma prior

p(β) =
1√

π2λ−1/2γλ+1/2Γ(λ)
|β|λ−1/2Kλ−1/2(|β|/γ),

where K is the modified Bessel function of the 3rd kind,

Var(β|λ, γ2) = 2λγ2 and excess kurtosis = 3/λ.
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Horseshoe prior

The horseshoe prior assumes that

β|λ ∼ N(0, λ2)

where
λ ∼ C+(0, 1),

a truncated Cauchy distribution.

The log-density is approximately

log

(
1 +

4

β2

)
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Comparing shrinkage priors
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Comparing shrinkage priors
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R package bayeslm

This package implements an efficient sampler for Gaussian Bayesian linear regression.

The package uses elliptical slice sampler instead of regular Gibbs sampler.

The function has several built-in priors and users can also provide their own priors.

Source: Hahn, He and Lopes (2017) Efficient sampling for Gaussian linear regression
with arbitrary priors. Journal of Computational and Graphical Statistics (to appear).
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R package bayeslm

## Default S3 method:
bayeslm(Y, X = FALSE, prior = "horseshoe", penalize = NULL, block_vec = NULL, sigma = NULL,
s2 = 1, kap2 = 1, N = 20000L, burnin = 0L, thinning = 1L, vglobal = 1, verb = FALSE,
icept = TRUE, standardize = TRUE, singular = FALSE, prior_mean = NULL, prob_vec=NULL,cc,...)

Arguments

Y - data.frame, matrix, or vector of inputs Y. Response variable.

X - data.frame, matrix, or vector of inputs X. Regressors.

prior - Indicating shrinkage prior to use. "horseshoe" for approximate horseshoe
prior (default), "laplace" for laplace prior, "ridge" for ridge prior,...

penalize - A vector indicating shrink regressors or not. It’s length should be the same as
number of regressors. 1 indicates shrink corresponding coefficient, 0 indicates no shrinkage.
The default value is rep(1, p), shrink all coefficients

N - Number of posterior samples (after burn-in).

burnin - Number of burn-in samples. If burnin > 0, the function will draw N + burnin samples
and return the last N samples only.

thinning - Number of thinnings. thinning = 1 means no thinning.

icept - Bool, if TRUE, add an intercept. Default value is TRUE.

standardize - Bool, if TRUE, standardize X and Y before sampling.
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Simulation exercise

Sample size: n = 100

Predictors: p = 20

Coefficients: β = (2, 3, 4, 0p−3)′

Variance of error: σ2 = κ
√
β′β = 1.25

Design matrix X : xij are i.i.d. N(0, 1)

Error term: ε ∼ N(0, σ2In)

Dependent variable: y = Xβ + ε

106/111



Posterior means

------------------------------------------
true ols ridge laplace hshoe

------------------------------------------
x1 2.000 2.841 2.673 2.515 2.433
x2 3.000 3.194 2.620 2.518 2.442
x3 4.000 3.594 3.654 3.426 3.057
x4 0.016 0.449 0.275 0.346 0.482
x5 -0.011 -0.638 -0.240 -0.322 -0.391
x6 -0.015 1.710 1.093 1.145 1.255
x7 -0.007 -1.375 -0.970 -1.091 -1.292
x8 0.015 -0.321 -0.123 -0.156 -0.170
x9 -0.011 0.080 0.122 0.120 0.083
x10 0.008 0.716 0.356 0.422 0.508
x11 0.009 1.674 0.767 0.902 1.100
x12 -0.011 -0.513 -0.327 -0.407 -0.533
x13 0.012 0.085 0.078 0.084 0.028
x14 -0.007 0.786 0.504 0.639 0.892
x15 -0.001 0.277 0.194 0.241 0.283
x16 0.013 -0.052 -0.082 -0.084 -0.059
x17 0.022 0.026 0.098 0.117 0.136
x18 -0.006 0.169 0.136 0.215 0.361
x19 -0.013 0.461 0.060 0.101 0.176
x20 -0.018 -0.335 -0.123 -0.210 -0.345
------------------------------------------
RMSE 3.325 2.820 2.307 2.044
------------------------------------------
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Comparing posteriors
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R code

install.packages("bayeslm")

library(bayeslm)

set.seed(31415)

p = 20

n = 100

kappa = 1.25

beta_true = c(c(2,3,4),rnorm(p-3,0,0.01))

sig_true = kappa*sqrt(sum(beta_true^2))

x = matrix(rnorm(p*n),n,p)

y = x %*% beta_true + sig_true * rnorm(n)

x = as.matrix(x)

y = as.matrix(y)

data = data.frame(x = x, y = y)

# OLS fit

fitOLS = lm(y~x-1)

se = sqrt(diag(solve(t(x)%*%x)))*summary(fitOLS)$sigma

qols = cbind(fitOLS$coef-2*se,fitOLS$coef,fitOLS$coef+2*se)

# Bayesian regularization

fit1 = bayeslm(y,x,prior = ’horseshoe’, icept = FALSE, N = 10000, burnin=2000)

fit2 = bayeslm(y,x,prior = ’laplace’, icept = FALSE, N = 10000, burnin=2000)

fit3 = bayeslm(y,x,prior = ’ridge’, icept = FALSE, N = 10000, burnin=2000)

round(cbind(beta_true,fitOLS$coef,apply(fit1$beta,2,mean),apply(fit2$beta,2,mean),apply(fit3$beta,2,mean)),3)

rmseOLS = sqrt(sum((fitOLS$coef-beta_true)^2))

rmse1 = sqrt(sum((beta_est1-beta_true)^2))

rmse2 = sqrt(sum((beta_est2-beta_true)^2))

rmse3 = sqrt(sum((beta_est3-beta_true)^2))

print(cbind(ols = rmseOLS, ridge = rmse3, laplace = rmse2, horseshoe = rmse1))
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Let us revisit what we covered
Multiple linear regression

Simplest linear regression model
houseprice dataset
R2, R2

adj , Cp, AIC and BIC
R package regsubsets

Credit dataset

Shrinkage-L2, Ridge Regression
Hitters dataset
Constrained minimization
Karush Kuhn Tucker (KKT) conditions

Shrinkage-L1: The LASSO
Soft threshholding function
Cyclic Coordinate Descent
R package glmnet

More on regularization
Elastic net
Normal-gamma prior
Horseshoe prior
R package bayeslm

Simulation exercise
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