Modern Bayesian Statistics Part II: Bayesian inference and computation

HEDIBERT FREITAS LOPES¹ hedibert.org

13^a aMostra de Estatística IME-USP, October 2018

¹Professor of Statistics and Econometrics at Insper, São Paulo.

Outline

Bayesian paradigm

Example 1: Is Diego ill?

Example 2: Gaussian measurement error

Bayesian computation: MC and MCMC methods

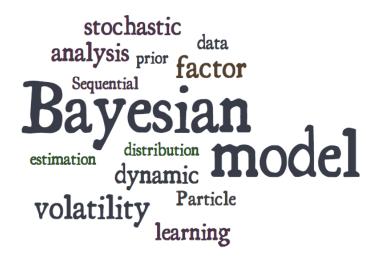
Monte Carlo integration

Monte Carlo simulation

Gibbs sampler

Metropolis-Hastings algorithm

Let us talk about Bayesian statistics?



Bayesian paradigm

- Combination of different sources/levels of information
- Sequential update of beliefs
- A single, coherent framework for
 - Statistical inference/learning
 - ► Model comparison/selection/criticism
 - Predictive analysis and decision making
- Drawback: Computationally challenging

Example 1: Is Diego ill?

Diego claims some discomfort and goes to his doctor.

- His doctor believes he might be ill (he may have the flu).
- $\theta = 1$: Diego is ill.
- $\theta = 0$: Diego is not ill.
- lacktriangledown heta is the "state of nature" or "proposition"

Adding some modeling

The doctor can take a binary and imperfect "test" X in order to learn about θ :

$$\begin{cases} P(X=1|\theta=0) = 0.40, & \text{false positive} \\ P(X=0|\theta=1) = 0.05, & \text{false negative} \end{cases}$$

These numbers might be based, say, on observed frequencies over the years and over several hospital in a given region.

X = 1 is observed

Data collection

The doctor performs the test and observes X = 1.

X = 1 is observed

Data collection

The doctor performs the test and observes X = 1.

Decision making

How should the doctor proceed?

X=1 is observed

Data collection

The doctor performs the test and observes X = 1.

Decision making

How should the doctor proceed?

Maximum likelihood argument

X = 1 is more likely from a ill patient than from a healthy one

$$\frac{P(X=1|\theta=1)}{P(X=1|\theta=0)} = \frac{0.95}{0.40} = 2.375$$

X=1 is observed

Data collection

The doctor performs the test and observes X = 1.

Decision making

How should the doctor proceed?

Maximum likelihood argument

X = 1 is more likely from a ill patient than from a healthy one

$$\frac{P(X=1|\theta=1)}{P(X=1|\theta=0)} = \frac{0.95}{0.40} = 2.375$$

The maximum likelihood estimator of θ is $\hat{\theta}_{MLF} = 1$.

Bayesian learning

Suppose the doctor claims that

$$P(\theta = 1) = 0.70$$

Bayesian learning

Suppose the doctor claims that

$$P(\theta = 1) = 0.70$$

This information can be based on the doctor's sole experience or based on existing health department summaries or any other piece of existing historical information.

Bayesian learning

Suppose the doctor claims that

$$P(\theta = 1) = 0.70$$

This information can be based on the doctor's sole experience or based on existing health department summaries or any other piece of existing historical information.

Overall rate of positives

The doctor can anticipate the overall rate of positive tests:

$$P(X = 1) = P(X = 1|\theta = 0)P(\theta = 0)$$

+ $P(X = 1|\theta = 1)P(\theta = 1)$
= $(0.4)(0.3) + (0.95)(0.7) = 0.785$

Once X=1 is observed, i.e. once Diego is submitted to the test X and the outcome is X=1, what is the probability that Diego is ill?

Once X=1 is observed, i.e. once Diego is submitted to the test X and the outcome is X=1, what is the probability that Diego is ill?

Common (and wrong!) answer: $P(X = 1 | \theta = 1) = 0.95$

Once X=1 is observed, i.e. once Diego is submitted to the test X and the outcome is X=1, what is the probability that Diego is ill?

Common (and wrong!) answer: $P(X = 1 | \theta = 1) = 0.95$

Correct answer: $P(\theta = 1|X = 1)$

Once X=1 is observed, i.e. once Diego is submitted to the test X and the outcome is X=1, what is the probability that Diego is ill?

Common (and wrong!) answer: $P(X = 1 | \theta = 1) = 0.95$

Correct answer:
$$P(\theta = 1|X = 1)$$

Simple probability identity (Bayes' rule):

$$P(\theta = 1|X = 1) = P(\theta = 1) \left\{ \frac{P(X = 1|\theta = 1)}{P(X = 1)} \right\}$$

$$= 0.70 \times \frac{0.95}{0.785}$$

$$= 0.70 \times 1.210191$$

$$= 0.8471338$$

Combining both pieces of information

```
By combining  {\sf existing\ information\ (prior)} \ + \ {\sf model/data\ (likelihood)}         the updated (posterior) probability that Diego is ill is 85%.
```

Combining both pieces of information

By combining

```
existing information (prior) + model/data (likelihood) the updated (posterior) probability that Diego is ill is 85%.
```

More generally,

$$\mathtt{posterior} = \frac{\mathtt{prior} \times \mathtt{likelihood}}{\mathtt{predictive}}$$

What if instead X = 0?

Maximum likelihood:

X = 0 is more likely from a healthy patient than from an ill one

$$\frac{P(X=0|\theta=0)}{Pr(X=0|\theta=1)} = \frac{0.60}{0.05} = 12,$$

so MLE of θ is $\hat{\theta}_{MLE} = 0$.

Bayes:

Similarly, it is easy to see that

$$P(\theta = 0|X = 0) = P(\theta = 0) \left\{ \frac{P(X = 0|\theta = 0)}{P(X = 0)} \right\}$$

$$= 0.3 \times \frac{0.60}{0.215}$$

$$= 0.3 \times 2.790698$$

$$= 0.8373093$$

Sequential learning

The doctor is still not convinced and decides to perform a second more reliable test (Y):

$$P(Y = 0|\theta = 1) = 0.01$$
 versus $P(X = 0|\theta = 1) = 0.05$
 $P(Y = 1|\theta = 0) = 0.04$ versus $P(X = 1|\theta = 0) = 0.40$

Sequential learning

The doctor is still not convinced and decides to perform a second more reliable test (Y):

$$P(Y = 0|\theta = 1) = 0.01$$
 versus $P(X = 0|\theta = 1) = 0.05$ $P(Y = 1|\theta = 0) = 0.04$ versus $P(X = 1|\theta = 0) = 0.40$

Overall rate of positives

Once again, the doctor can anticipate the overall rate of positive tests, but now conditioning on X=1:

$$P(Y = 1|X = 1) = P(Y = 1|\theta = 0)P(\theta = 0|X = 1) + P(Y = 1|\theta = 1)P(\theta = 1|X = 1)$$

$$= (0.04)(0.1528662) + (0.99)(0.8471338)$$

$$= 0.8447771$$

Y = 1 is observed

Once again, Bayes rule leads to

$$P(\theta = 1|X = 1, Y = 1) = P(\theta = 1|X = 1) \left\{ \frac{P(Y = 1|\theta = 1)}{P(Y = 1|X = 1)} \right\}$$

$$= 0.8471338 \times \frac{0.99}{0.8447771}$$

$$= 0.8471338 \times 1.171907$$

$$= 0.992762$$

Y=1 is observed

Once again, Bayes rule leads to

$$P(\theta = 1|X = 1, Y = 1) = P(\theta = 1|X = 1) \left\{ \frac{P(Y = 1|\theta = 1)}{P(Y = 1|X = 1)} \right\}$$

$$= 0.8471338 \times \frac{0.99}{0.8447771}$$

$$= 0.8471338 \times 1.171907$$

$$= 0.992762$$

Bayesian sequential learning:

$$P(\theta=1|H) = \left\{ \begin{array}{ll} 70\% & , H \text{: before } X \text{ and } Y \\ 85\% & , H \text{: after } X=1 \text{ and before } Y \\ 99\% & , H \text{: after } X=1 \text{ and } Y=1 \end{array} \right.$$

Y = 1 is observed

Once again, Bayes rule leads to

$$P(\theta = 1|X = 1, Y = 1) = P(\theta = 1|X = 1) \left\{ \frac{P(Y = 1|\theta = 1)}{P(Y = 1|X = 1)} \right\}$$

$$= 0.8471338 \times \frac{0.99}{0.8447771}$$

$$= 0.8471338 \times 1.171907$$

$$= 0.992762$$

Bayesian sequential learning:

$$P(\theta=1|H) = \left\{ \begin{array}{ll} 70\% & , H \text{: before } X \text{ and } Y \\ 85\% & , H \text{: after } X=1 \text{ and before } Y \\ 99\% & , H \text{: after } X=1 \text{ and } Y=1 \end{array} \right.$$

Note: It is easy to see that $Pr(\theta = 1|Y = 1) = 98.2979\%$.

Y = 1 is observed

Once again, Bayes rule leads to

$$P(\theta = 1|X = 1, Y = 1) = P(\theta = 1|X = 1) \left\{ \frac{P(Y = 1|\theta = 1)}{P(Y = 1|X = 1)} \right\}$$

$$= 0.8471338 \times \frac{0.99}{0.8447771}$$

$$= 0.8471338 \times 1.171907$$

$$= 0.992762$$

Bayesian sequential learning:

$$P(\theta=1|H) = \left\{ \begin{array}{ll} 70\% & , H : \text{ before } X \text{ and } Y \\ 85\% & , H : \text{ after } X=1 \text{ and before } Y \\ 99\% & , H : \text{ after } X=1 \text{ and } Y=1 \end{array} \right.$$

Note: It is easy to see that $Pr(\theta = 1|Y = 1) = 98.2979\%$. Conclusion: Don't consider test X, unless it is "cost" free.

Goal: Learn θ , a physical quantity.

Goal: Learn θ , a physical quantity.

Measurement: X

Goal: Learn θ , a physical quantity.

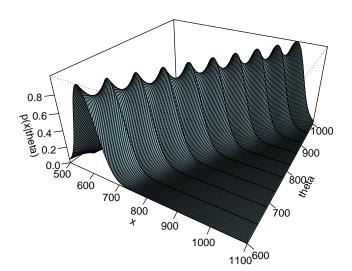
Measurement: X

Model: $(X|\theta) \sim N(\theta, (40)^2)$

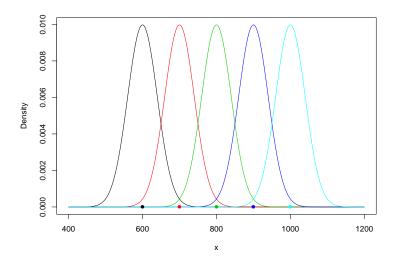
Goal: Learn θ , a physical quantity.

Measurement: X

Model: $(X|\theta) \sim N(\theta, (40)^2)$



$p(x|\theta)$ for $\theta \in \{600, 700, \dots, 1000\}$



Large and small prior experience

Prior A: Physicist A (large experience): $\theta \sim N(900, (20)^2)$

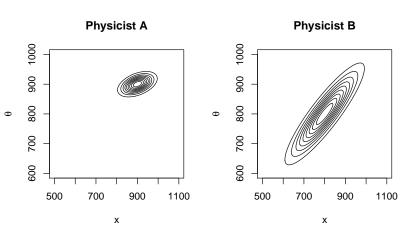
Large and small prior experience

Prior A: Physicist A (large experience): $\theta \sim N(900, (20)^2)$ Prior B: Physicist B (not so experienced): $\theta \sim N(800, (80)^2)$

Large and small prior experience

Prior A: Physicist A (large experience): $\theta \sim N(900, (20)^2)$ Prior B: Physicist B (not so experienced): $\theta \sim N(800, (80)^2)$

Joint density: $p(x, \theta) = p(x|\theta)p(\theta)$



Bayesian computation: predictive

Prior:
$$\theta \sim N(\theta_0, \tau_0^2)$$
 (Physicist A: $\theta_0 = 900$, $\tau_0 = 20$) Model: $x|\theta \sim N(\theta, \sigma^2)$

Predictive:

$$p(x) = \int_{-\infty}^{\infty} p(x|\theta)p(\theta)d\theta$$

Bayesian computation: predictive

Prior:
$$\theta \sim N(\theta_0, \tau_0^2)$$
 (Physicist A: $\theta_0 = 900$, $\tau_0 = 20$)
Model: $x|\theta \sim N(\theta, \sigma^2)$

Predictive:

$$p(x) = \int_{-\infty}^{\infty} p(x|\theta)p(\theta)d\theta$$

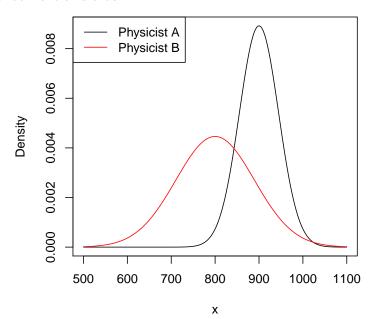
Therefore,

$$p(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\theta)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi\tau_0^2}} e^{-\frac{(\theta-\theta_0)^2}{2\tau_0^2}} d\theta$$
$$= \frac{1}{\sqrt{2\pi(\sigma^2 + \tau_0^2)}} e^{-\frac{(x-\theta)^2}{2(\sigma^2 + \tau_0^2)}}$$

or

$$x \sim N(\theta_0, \sigma^2 + \tau_0^2)$$

Predictive densities



Bayesian computation: posterior

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)} \propto p(x|\theta)p(\theta)$$

such that

$$\begin{array}{ll} p(\theta|x) & \propto & (2\pi\sigma^2)^{-1/2} \mathrm{e}^{-\frac{(x-\theta)^2}{2\sigma^2}} (2\pi\tau_0^2)^{-1/2} \mathrm{e}^{-\frac{(\theta-\theta_0)^2}{2\tau_0^2}} \\ & \propto & \exp\left\{-\frac{1}{2} \left[(\theta^2 - 2\theta x)/\sigma^2 + (\theta^2 - 2\theta\theta_0)/\tau_0^2) \right] \right\} \\ & \propto & \exp\left\{-\frac{1}{2\tau_1^2} (\theta - \theta_1)^2\right\}. \end{array}$$

Therefore,

$$\theta | x \sim N(\theta_1, \tau_1^2)$$

where

$$\theta_1 = \left(\frac{\sigma^2}{\sigma^2 + \tau_0^2}\right)\theta_0 + \left(\frac{\tau_0^2}{\sigma^2 + \tau_0^2}\right)x \quad \text{and} \quad \tau_1^2 = \tau_0^2 \left(\frac{\sigma^2}{\sigma^2 + \tau_0^2}\right)_{38}$$

Combination of information

Let

$$\pi = \frac{\sigma^2}{\sigma^2 + \tau_0^2} \in (0,1)$$

Therefore,

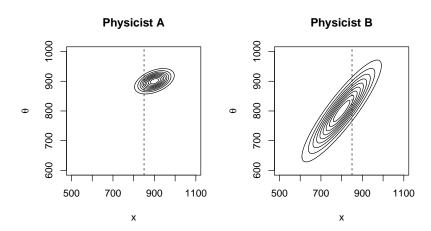
$$E(\theta|x) = \pi E(\theta) + (1 - \pi)x$$

and

$$V(\theta|x) = \pi V(\theta)$$

When τ_0^2 is much larger than σ^2 , $\pi\approx 0$ and the posterior collapses at the observed value x!

Observation: X = 850



Posterior (updated) densities

Physicist A

Prior: $\theta \sim N(900, (20)^2)$

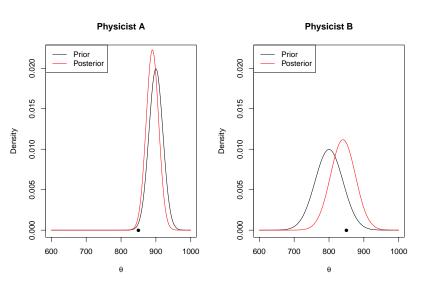
Posterior: $(\theta | X = 850) \sim N(890, (17.9)^2)$

Physicist B

Prior: $\theta \sim N(800, (40)^2)$

Posterior: $(\theta|X = 850) \sim N(840, (35.7)^2)$

Priors and posteriors



Summary

Deriving the posterior (via Bayes rule)

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$

and computing the predictive

$$p(x) = \int_{\Theta} p(x|\theta)p(\theta)d\theta$$

can become very challenging!

Summary

Deriving the posterior (via Bayes rule)

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$

and computing the predictive

$$p(x) = \int_{\Theta} p(x|\theta)p(\theta)d\theta$$

can become very challenging!

Bayesian computation was done on limited, unrealistic models until the Monte Carlo revolution (and the computing revolution) of the late 1980's and early 1990's.

A more conservative physicist

Prior A: Physicist A (large experience): $\theta \sim N(900, 400)$

Prior B: Physicist B (not so experienced): $\theta \sim N(800, 1600)$

A more conservative physicist

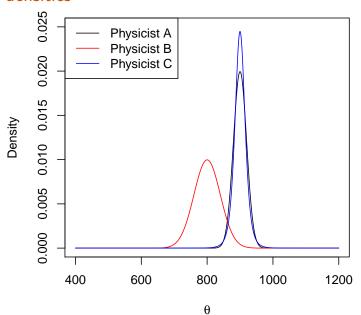
Prior A: Physicist A (large experience): $\theta \sim N(900, 400)$

Prior B: Physicist B (not so experienced): $\theta \sim N(800, 1600)$

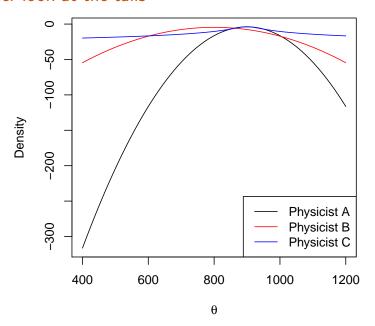
Prior C: Physicist C (largeR experience): $\theta \sim t_5(900, 240)$

$$V(Prior C) = \frac{5}{5-2}240 = 400 = V(Prior A)$$

Prior densities



Closer look at the tails



Predictive and posterior of physicist C

For model $x|\theta \sim N(\theta, \sigma^2)$ and prior of $\theta \sim t_{\nu}(\theta_0, \tau^2)$,

$$p(x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\theta)^2}{2\sigma^2}} \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu\tau_0^2}} \left(1 + \frac{1}{\nu} \left(\frac{\theta-\theta_0}{\tau_0}\right)^2\right)^{-\frac{\nu+1}{2}} d\theta$$

is not analytically available.

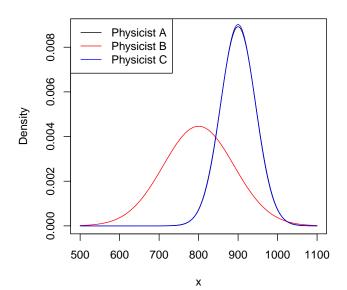
Similarly,

$$p(\theta|x) \propto \exp\left\{-\frac{(x-\theta)^2}{2\sigma^2}\right\} \left(1 + \frac{1}{\nu} \frac{(\theta-\theta_0)^2}{\tau_0^2}\right)^{-\frac{\nu+1}{2}}$$

is of no known form.

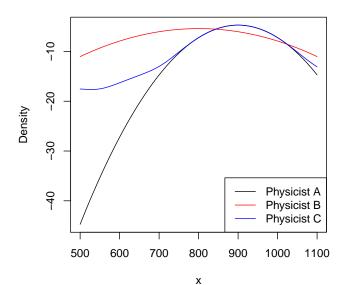
Predictives

Monte Carlo approximation to p(x) for physicist C.



Log predictives

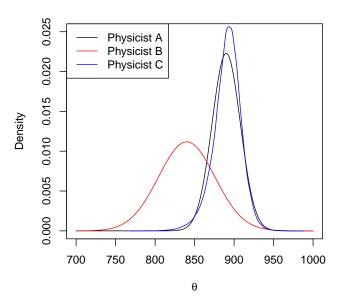
Physicist C has similar knowledge as physicist A, but does not rule out smaller values for x.



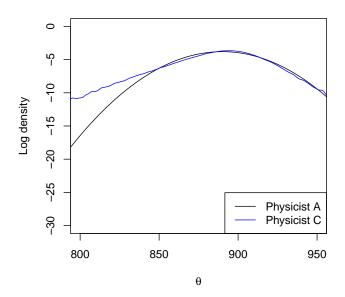
51

Posteriors for θ

Monte Carlo approximation to $p(\theta|x)$ for physicist C.



Log posteriors



Monte Carlo integration

The integral

$$p(x) = \int p(x|\theta)p(\theta)d\theta = E_{p(\theta)}\{p(x|\theta)\}$$

can be approximated by Monte Carlo as

$$\hat{p}_{MC}(x) = \frac{1}{M} \sum_{i=1}^{M} p(x|\theta^{(i)})$$

where

$$\{\theta^{(1)},\ldots,\theta^{(M)}\}\sim p(\theta)$$

We used M = 1,000,000 draws in the previous two plots.

Monte Carlo simulation via SIR

Sampling importance resampling (SIR) is a well-known MC tool that resamples draws from a candidate density $q(\cdot)$ to obtain draws from a target density $\pi(\cdot)$.

SIR Algorithm:

- 1. Draws $\{\theta^{(i)}\}_{i=1}^{M}$ from candidate density $q(\cdot)$
- 2. Compute resampling weights: $w^{(i)} \propto \pi(\theta^{(i)})/q(\theta^{(i)})$
- 3. Sample $\{\tilde{\theta}^{(j)}\}_{j=1}^N$ from $\{\theta^{(i)}\}_{i=1}^M$ with weights $\{w^{(i)}\}_{i=1}^M$.

Result: $\{\tilde{\theta}^{(1)}, \dots, \tilde{\theta}^{(N)}\} \sim \pi(\theta)$

Bayesian bootstrap

When ...

- ▶ the target density is the posterior $p(\theta|x)$, and
- ▶ the candidate density is the prior $p(\theta)$, then
- the weight is the likelihood $p(x|\theta)$:

$$w^{(i)} \propto \frac{p(\theta^{(i)})p(x|\theta^{(i)})}{p(\theta^{(i)})} = p(x|\theta^{(i)})$$

Note: We used $M = 10^6$ and N = 0.1M in the previous two plots.

MC is expensive!

Exact solution

$$I = \int_{-\infty}^{\infty} \exp\{-0.5\theta^2\} d\theta = \sqrt{2\pi} = 2.506628275$$

MC is expensive!

Exact solution

$$I = \int_{-\infty}^{\infty} \exp\{-0.5\theta^2\} d\theta = \sqrt{2\pi} = 2.506628275$$

Let us assume that

$$I = \int_{-\infty}^{\infty} \exp\{-0.5\theta^2\} d\theta = \int_{-5}^{5} \exp\{-0.5\theta^2\} d\theta$$

MC is expensive!

Exact solution

$$I = \int_{-\infty}^{\infty} \exp\{-0.5\theta^2\} d\theta = \sqrt{2\pi} = 2.506628275$$

Let us assume that

$$I = \int_{-\infty}^{\infty} \exp\{-0.5\theta^2\} d\theta = \int_{-5}^{5} \exp\{-0.5\theta^2\} d\theta$$

Grid approximation (less than 0.01 seconds to run)

For
$$\theta_1=-5$$
 $\theta_2=-5+\Delta,$ $\ldots,\theta_{1001}=5$ and $\Delta=0.01$,

$$\hat{I}_{hist} = \sum_{i=1}^{1001} \exp\{-0.5\theta_i^2\} \Delta = 2.506626875$$

MC integration

It is easy to see that

$$\int_{-5}^{5} \exp\{-0.5\theta^{2}\} d\theta = \int_{-5}^{5} 10 \exp\{-0.5\theta^{2}\} \frac{1}{10} d\theta$$
$$= E_{U(-5,5)} \left[10 \exp\{-0.5\theta^{2}\}\right]$$

MC integration

It is easy to see that

$$\int_{-5}^{5} \exp\{-0.5\theta^{2}\} d\theta = \int_{-5}^{5} 10 \exp\{-0.5\theta^{2}\} \frac{1}{10} d\theta$$
$$= E_{U(-5,5)} \left[10 \exp\{-0.5\theta^{2}\}\right]$$

Therefore, for $\{\theta^{(i)}\}_{i=1}^{M} \sim U(-5,5)$,

$$\hat{I}_{MC} = \frac{1}{M} \sum_{i=1}^{M} 10 \exp\{-0.5\theta^{(i)2}\}$$

М	Î _{MC}	MC error
1,000	2.505392026	0.10640840352
10,000	2.507470696	0.03380205878
100,000	2.506948869	0.01067906810

To improve on digital point, one needs M^2 draws!

Monte Carlo methods

- ► They are expensive.
- ► They are scalable.
- Readily available MC error bounds.

Why not simply use deterministic approximations?

Let us consider the bidimensional integral, for $\theta = (\theta_1, \theta_2, \theta_3)$,

$$I = \int \exp\{-0.5\theta'\theta\}d\theta = (2\pi)^{3/2} = 15.74960995$$

Grid approximation (20 seconds)

$$\hat{I}_{hist} = \sum_{i=1}^{1001} \sum_{j=1}^{1001} \sum_{k=1}^{1001} \exp\{-0.5(\theta_{1i}^2 + \theta_{2j}^2 + \theta_{3k}^2)\} \Delta^3 = 15.74958355$$

Monte Carlo approximation (0.02 seconds)

M	\hat{l}_{MC}	MC error
1,000	15.75223328	2.2768286659
10,000	15.72907660	0.7515860214
100,000	15.75368350	0.2236006764

Gibbs sampler

The Gibbs sampler is the most famous of the Markov chain Monte Carlo methods.

Roughly speaking, one can sample from the joint posterior of $(\theta_1, \theta_2, \theta_3)$

$$p(\theta_1, \theta_2, \theta_3|y)$$

by iteratively sampling from the full conditional distributions

$$p(\theta_1|\theta_2, \theta_3, y)$$

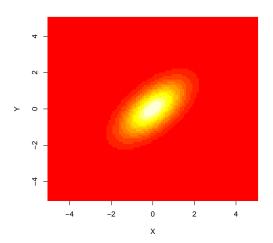
$$p(\theta_2|\theta_1, \theta_3, y)$$

$$p(\theta_3|\theta_1, \theta_1, y)$$

After a *warm up* phase, the draws will behave as coming from posterior distribution.

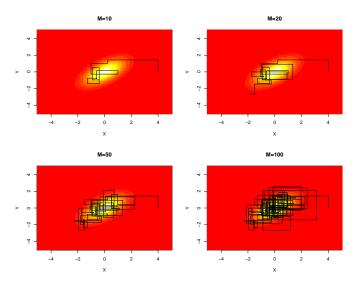
Taget distribution: bivariate normal with $\rho = 0.6$

$$p(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{x^2 - 2\rho xy - y^2}{2(1-\rho^2)}\right\}$$



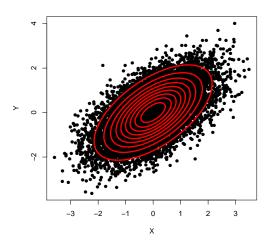
Full conditional distributions

Easy to see that $x|y \sim N(\rho y, 1-\rho^2)$ and $y|x \sim N(\rho x, 1-\rho^2)$. Initial value: $x^{(0)}=4$

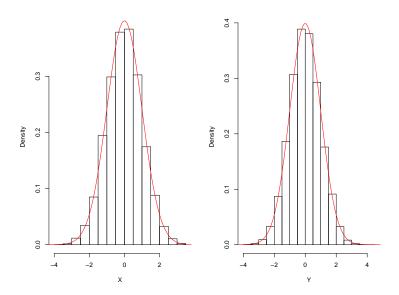


Posterior draws

Running the Gibbs sampler for 11,000 iterations and discarding the first 1,000 draws.



Marginal posterior distributions



Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is, in fact, more general than the Gibbs sampler and older (1950's).

One can sample from the joint posterior $p(\theta_1, \theta_2, \theta_3|y)$ by iteratively sampling θ_1^* from a proposal density $q_1(\cdot)$ and accepting the draw with probability

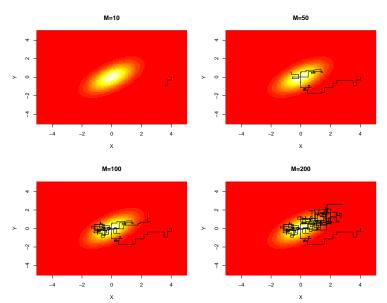
$$\min\left\{1,\frac{p(\theta_1^*,\theta_2,\theta_3|y)}{p(\theta_1,\theta_2,\theta_3|y)}\frac{q_1(\theta_1)}{q_1(\theta_1^*)}\right\},$$

with θ_2 and θ_3 fixed at the final draws from the previous iteration. The steps are repeated for θ_2^* and θ_3^* .

After a *warm up* phase, the draws will behave as coming from posterior distribution.

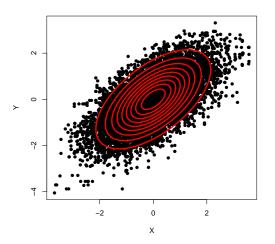
Random-walk Metropolis algorithm

The proposals are $x^* \sim \textit{N}(x^{old}, 0.25)$ and $y^* \sim \textit{N}(y^{old}, 0.25)$

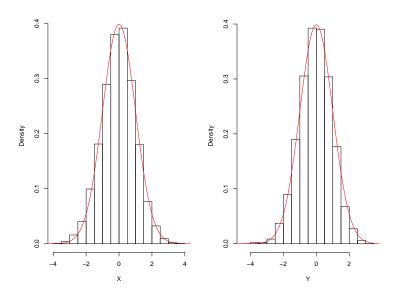


Posterior draws

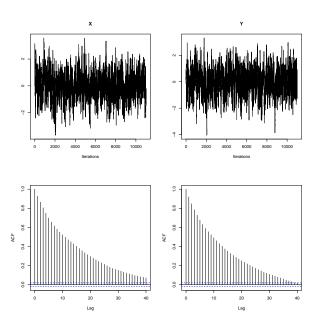
Running the Metropolis-Hastings algorithm for 11,000 iterations and discarding the first 1,000 draws.



Marginal posterior distributions



Markov chains and autocorrelation



Want to learn more?

hedibert.org has a link to book webpage.

