Weight and height
dataset
We collected data from 15 volunteers (my students and myself).
n = 15
data = matrix(c(178,70,175,80,184,82,200,89,183,80,173,65,185,70,162,70,
190,85,174,80,180,87,165,74,176,72,174,63,196,113),n,2,byrow=TRUE)
height = scale(data[,1])
weight = scale(data[,2])
par(mfrow=c(1,1))
plot(height,weight,xlab="Height (standardized)",ylab="Weight (standardized)")
points(height[n],weight[n],col=2,pch=16,cex=2)
abline(v=0,lty=2)
abline(h=0,lty=2)

Maximum likelihood
estimation (MLE)
Below we use the lm (linear model) function from R to run
the OLS estimation for the regression \[
y_i = \beta \ x_i + \varepsilon_i \qquad\qquad \varepsilon_i \ \
\mbox{iid} \ \ N(0,\sigma^2),
\] where \(x_i=\mbox{height}_i\)
and \(y_i=\mbox{weight}_i\), for \(i=1,\ldots,n\). From the
frequentist/Fisherian approach, we have learned that the MLEs of \(\beta\) and \(\sigma^2\) are, respectively, \[
{\widehat \beta} = \frac{\sum_{i=1}^n y_i x_i}{\sum_{i=1}^n x^2_i}
\qquad \mbox{and} \qquad
{\widehat \sigma}^2 = \frac{\sum_{i=1}^n (y_i-{\widehat y}_i)^2}{n}.
\] We also know the sampling distribution of these estimators:
\[
{\widehat \beta}|{\widehat \sigma}^2 \sim
t_{n-1}\left(\beta,\frac{{\widehat \sigma}^2}{\sum_{i=1}^n x_i^2}\right)
\qquad and \qquad {\widehat \sigma}^2|\sigma^2 \sim
IG\left(\frac{n-1}{2},\frac{(n-1)\sigma^2}{2}\right),
\] from which confidence intervals and hypothesis testing can be
derived. An unbiased estimator of \(\sigma^2\) is \(s^2 = n{\widehat \sigma}^2/(n-1)\).
bhat = sum(height*weight)/sum(height^2)
sighat = sqrt(sum((weight-bhat*height)^2)/n)
s = sqrt(n*sighat^2/(n-1))
se = s/sqrt(sum(height^2))
round(c(bhat,se),4)
## [1] 0.6875 0.1941
round(c(sighat,s),4)
## [1] 0.7016 0.7262
# The -1 is to inform the lm function that the regression has no intercept
summary(lm(weight~height-1))
##
## Call:
## lm(formula = weight ~ height - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0537 -0.5485 -0.1120 0.4731 1.7021
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## height 0.6875 0.1941 3.542 0.00325 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7262 on 14 degrees of freedom
## Multiple R-squared: 0.4727, Adjusted R-squared: 0.435
## F-statistic: 12.55 on 1 and 14 DF, p-value: 0.003249
OLS fit with and
without the (red) outlier
par(mfrow=c(1,1))
plot(height,weight,xlab="Height (standardized)",ylab="Weight (standardized)")
points(height[n],weight[n],col=2,pch=16,cex=2)
abline(lm(weight~height-1),col=2,lwd=2)
abline(lm(weight[1:(n-1)]~height[1:(n-1)]-1),lwd=2)
legend("topleft",legend=c("With outlier","Without outlier"),col=2:1,lwd=2,lty=1,bty="n")
abline(v=0,lty=2)
abline(h=0,lty=2)

Bayesian inference
Let us assume the following independent prior for \(\beta\) and \(\sigma^2\) \[
p(\beta,\sigma^2) = p(\beta|\sigma^2)p(\sigma^2),
\] with \(\beta \sim
N(b_0,\sigma^2B_0)\) and \(\sigma^2
\sim IG(c_0,d_0)\), with hyperparameters \(b_0=0\), \(B_0=1\), \(c_0=2\) and \(d0=1\). Notice that this is a conjugate
prior for \((\beta,\sigma^2)\), so
closed-form posterior inference is readily available.
Draws from the
prior
b0=0
B0=1
c0=2
d0=1
M = 1000
sig2 = 1/rgamma(M,c0,d0)
beta = rnorm(M,b0,sqrt(sig2*B0))
par(mfrow=c(1,1))
boxplot(cbind(beta,sqrt(sig2)),names=c(expression(beta),expression(sigma)),outline=F,xlab="",horizontal=TRUE)
points(bhat,1,col=2,pch=16,cex=2)
points(s,2,col=2,pch=16,cex=2)
title("Prior draws (MLE in red)")

Your homework is listed
below
Derive the closed form posterior distribution \(p(\beta,\sigma^2|\mbox{data})\), where
\(\mbox{data}=\{(x_1,y_1),\ldots,(x_n,y_n)\}\).
Implement the sampling importance resampling (SIR) algorithm to
obtain draws from the posterior \(p(\beta,\sigma^2|\mbox{data})\). You can
either use the prior for \((beta,\sigma^2)\) as proposal density or
you can use the following proposal: \(q(\beta)
\equiv N(0.7,0.25)\) and \(q(\sigma^2)
\equiv IG(7,5)\).
- Note: These proposal densities are inspired by the sampling
distributions of the corresponding estimators. Recall that the proposal
distributions can be anything with or without the use of the data since
it is not altering the prior in any way.
Implement the Gibbs sampler to obtain draws from the posterior
\(p(\beta,\sigma^2|\mbox{data})\).
Check the mixing of the Markov chains and the convergence of the draws
to the posterior.
Repeat 2) but replace the Gibbs sampler by a Metropolis algorithm
with proposals \(q(\beta) \equiv
N(0.7,0.25)\) and \(q(\sigma^2) \equiv
IG(7,5)\), which already appear in 1).
If the three algorithms are running properly, the results should
be the same up to small Monte Carlo errors.
LS0tCnRpdGxlOiAiU2ltcGxlIGxpbmVhciByZWdyZXNzaW9uIHdpdGggR2F1c3NpYW4gZXJyb3JzIgphdXRob3I6ICJTSVIsIEdpYmJzIHNhbXBsZXIgYW5kIE1ldHJvcG9saXMtSGFzdGluZ3MgYWxnb3JpdGhtcyIKZGF0ZTogIjEwLzA2LzIwMjUiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZGVwdGg6IDMKICAgIHRvY19jb2xsYXBzZWQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHllcwogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCi0tLQoKIyBXZWlnaHQgYW5kIGhlaWdodCBkYXRhc2V0CgpXZSBjb2xsZWN0ZWQgZGF0YSBmcm9tIDE1IHZvbHVudGVlcnMgKG15IHN0dWRlbnRzIGFuZCBteXNlbGYpLgoKYGBge3IgZmlnLndpZHRoPTYsIGZpZy5oZWlnaHQ9NiwgZmlnLmFsaWduPSdjZW50ZXInfQpuICAgID0gMTUKZGF0YSA9IG1hdHJpeChjKDE3OCw3MCwxNzUsODAsMTg0LDgyLDIwMCw4OSwxODMsODAsMTczLDY1LDE4NSw3MCwxNjIsNzAsCjE5MCw4NSwxNzQsODAsMTgwLDg3LDE2NSw3NCwxNzYsNzIsMTc0LDYzLDE5NiwxMTMpLG4sMixieXJvdz1UUlVFKQpoZWlnaHQgPSBzY2FsZShkYXRhWywxXSkKd2VpZ2h0ID0gc2NhbGUoZGF0YVssMl0pCnBhcihtZnJvdz1jKDEsMSkpCnBsb3QoaGVpZ2h0LHdlaWdodCx4bGFiPSJIZWlnaHQgKHN0YW5kYXJkaXplZCkiLHlsYWI9IldlaWdodCAoc3RhbmRhcmRpemVkKSIpCnBvaW50cyhoZWlnaHRbbl0sd2VpZ2h0W25dLGNvbD0yLHBjaD0xNixjZXg9MikKYWJsaW5lKHY9MCxsdHk9MikKYWJsaW5lKGg9MCxsdHk9MikKYGBgCgojIE1heGltdW0gbGlrZWxpaG9vZCBlc3RpbWF0aW9uIChNTEUpCgpCZWxvdyB3ZSB1c2UgdGhlICpsbSogKGxpbmVhciBtb2RlbCkgZnVuY3Rpb24gZnJvbSBSIHRvIHJ1biB0aGUgT0xTIGVzdGltYXRpb24gZm9yIHRoZSByZWdyZXNzaW9uCiQkCnlfaSA9IFxiZXRhIFwgeF9pICsgXHZhcmVwc2lsb25faSBccXF1YWRccXF1YWQgXHZhcmVwc2lsb25faSBcIFwgXG1ib3h7aWlkfSBcIFwgTigwLFxzaWdtYV4yKSwKJCQKd2hlcmUgJHhfaT1cbWJveHtoZWlnaHR9X2kkIGFuZCAkeV9pPVxtYm94e3dlaWdodH1faSQsIGZvciAkaT0xLFxsZG90cyxuJC4gIEZyb20gdGhlIGZyZXF1ZW50aXN0L0Zpc2hlcmlhbiBhcHByb2FjaCwgd2UgaGF2ZSBsZWFybmVkIHRoYXQgdGhlIE1MRXMgb2YgJFxiZXRhJCBhbmQgJFxzaWdtYV4yJCBhcmUsIHJlc3BlY3RpdmVseSwKJCQKe1x3aWRlaGF0IFxiZXRhfSA9IFxmcmFje1xzdW1fe2k9MX1ebiB5X2kgeF9pfXtcc3VtX3tpPTF9Xm4geF4yX2l9IFxxcXVhZCBcbWJveHthbmR9IFxxcXVhZAp7XHdpZGVoYXQgXHNpZ21hfV4yID0gXGZyYWN7XHN1bV97aT0xfV5uICh5X2kte1x3aWRlaGF0IHl9X2kpXjJ9e259LgokJApXZSBhbHNvIGtub3cgdGhlIHNhbXBsaW5nIGRpc3RyaWJ1dGlvbiBvZiB0aGVzZSBlc3RpbWF0b3JzOgokJAp7XHdpZGVoYXQgXGJldGF9fHtcd2lkZWhhdCBcc2lnbWF9XjIgXHNpbSB0X3tuLTF9XGxlZnQoXGJldGEsXGZyYWN7e1x3aWRlaGF0IFxzaWdtYX1eMn17XHN1bV97aT0xfV5uIHhfaV4yfVxyaWdodCkgXHFxdWFkIGFuZCBccXF1YWQge1x3aWRlaGF0IFxzaWdtYX1eMnxcc2lnbWFeMiBcc2ltIElHXGxlZnQoXGZyYWN7bi0xfXsyfSxcZnJhY3sobi0xKVxzaWdtYV4yfXsyfVxyaWdodCksCiQkCmZyb20gd2hpY2ggY29uZmlkZW5jZSBpbnRlcnZhbHMgYW5kIGh5cG90aGVzaXMgdGVzdGluZyBjYW4gYmUgZGVyaXZlZC4gIEFuIHVuYmlhc2VkIGVzdGltYXRvciBvZiAkXHNpZ21hXjIkIGlzICRzXjIgPSBue1x3aWRlaGF0IFxzaWdtYX1eMi8obi0xKSQuCgpgYGB7ciBmaWcud2lkdGg9NiwgZmlnLmhlaWdodD02LCBmaWcuYWxpZ249J2NlbnRlcid9CmJoYXQgID0gc3VtKGhlaWdodCp3ZWlnaHQpL3N1bShoZWlnaHReMikKc2lnaGF0ID0gc3FydChzdW0oKHdlaWdodC1iaGF0KmhlaWdodCleMikvbikKcyA9IHNxcnQobipzaWdoYXReMi8obi0xKSkKc2UgPSBzL3NxcnQoc3VtKGhlaWdodF4yKSkKcm91bmQoYyhiaGF0LHNlKSw0KQpyb3VuZChjKHNpZ2hhdCxzKSw0KQoKIyBUaGUgLTEgaXMgdG8gaW5mb3JtIHRoZSBsbSBmdW5jdGlvbiB0aGF0IHRoZSByZWdyZXNzaW9uIGhhcyBubyBpbnRlcmNlcHQKc3VtbWFyeShsbSh3ZWlnaHR+aGVpZ2h0LTEpKQpgYGAKCiMjIE9MUyBmaXQgd2l0aCBhbmQgd2l0aG91dCB0aGUgKHJlZCkgb3V0bGllcgoKYGBge3IgZmlnLndpZHRoPTYsIGZpZy5oZWlnaHQ9NiwgZmlnLmFsaWduPSdjZW50ZXInfQpwYXIobWZyb3c9YygxLDEpKQpwbG90KGhlaWdodCx3ZWlnaHQseGxhYj0iSGVpZ2h0IChzdGFuZGFyZGl6ZWQpIix5bGFiPSJXZWlnaHQgKHN0YW5kYXJkaXplZCkiKQpwb2ludHMoaGVpZ2h0W25dLHdlaWdodFtuXSxjb2w9MixwY2g9MTYsY2V4PTIpCmFibGluZShsbSh3ZWlnaHR+aGVpZ2h0LTEpLGNvbD0yLGx3ZD0yKQphYmxpbmUobG0od2VpZ2h0WzE6KG4tMSldfmhlaWdodFsxOihuLTEpXS0xKSxsd2Q9MikKbGVnZW5kKCJ0b3BsZWZ0IixsZWdlbmQ9YygiV2l0aCBvdXRsaWVyIiwiV2l0aG91dCBvdXRsaWVyIiksY29sPTI6MSxsd2Q9MixsdHk9MSxidHk9Im4iKQphYmxpbmUodj0wLGx0eT0yKQphYmxpbmUoaD0wLGx0eT0yKQpgYGAKCiMgQmF5ZXNpYW4gaW5mZXJlbmNlCgpMZXQgdXMgYXNzdW1lIHRoZSBmb2xsb3dpbmcgaW5kZXBlbmRlbnQgcHJpb3IgZm9yICRcYmV0YSQgYW5kICRcc2lnbWFeMiQKJCQKcChcYmV0YSxcc2lnbWFeMikgPSBwKFxiZXRhfFxzaWdtYV4yKXAoXHNpZ21hXjIpLAokJAp3aXRoICRcYmV0YSBcc2ltIE4oYl8wLFxzaWdtYV4yQl8wKSQgYW5kICRcc2lnbWFeMiBcc2ltIElHKGNfMCxkXzApJCwgd2l0aCBoeXBlcnBhcmFtZXRlcnMgJGJfMD0wJCwgJEJfMD0xJCwgJGNfMD0yJCBhbmQgJGQwPTEkLiAgTm90aWNlIHRoYXQgdGhpcyBpcyBhIGNvbmp1Z2F0ZSBwcmlvciBmb3IgJChcYmV0YSxcc2lnbWFeMikkLCBzbyBjbG9zZWQtZm9ybSBwb3N0ZXJpb3IgaW5mZXJlbmNlIGlzIHJlYWRpbHkgYXZhaWxhYmxlLgoKIyMgRHJhd3MgZnJvbSB0aGUgcHJpb3IKYGBge3IgZmlnLndpZHRoPTgsIGZpZy5oZWlnaHQ9NCwgZmlnLmFsaWduPSdjZW50ZXInfQpiMD0wCkIwPTEKYzA9MgpkMD0xCk0gICAgPSAxMDAwCnNpZzIgPSAxL3JnYW1tYShNLGMwLGQwKQpiZXRhID0gcm5vcm0oTSxiMCxzcXJ0KHNpZzIqQjApKQpwYXIobWZyb3c9YygxLDEpKQpib3hwbG90KGNiaW5kKGJldGEsc3FydChzaWcyKSksbmFtZXM9YyhleHByZXNzaW9uKGJldGEpLGV4cHJlc3Npb24oc2lnbWEpKSxvdXRsaW5lPUYseGxhYj0iIixob3Jpem9udGFsPVRSVUUpCnBvaW50cyhiaGF0LDEsY29sPTIscGNoPTE2LGNleD0yKQpwb2ludHMocywyLGNvbD0yLHBjaD0xNixjZXg9MikKdGl0bGUoIlByaW9yIGRyYXdzIChNTEUgaW4gcmVkKSIpCmBgYAoKIyBZb3VyIGhvbWV3b3JrIGlzIGxpc3RlZCBiZWxvdwoKMCkgRGVyaXZlIHRoZSBjbG9zZWQgZm9ybSBwb3N0ZXJpb3IgZGlzdHJpYnV0aW9uICRwKFxiZXRhLFxzaWdtYV4yfFxtYm94e2RhdGF9KSQsIHdoZXJlICRcbWJveHtkYXRhfT1ceyh4XzEseV8xKSxcbGRvdHMsKHhfbix5X24pXH0kLiAgCgoxKSBJbXBsZW1lbnQgdGhlIHNhbXBsaW5nIGltcG9ydGFuY2UgcmVzYW1wbGluZyAoU0lSKSBhbGdvcml0aG0gdG8gb2J0YWluIGRyYXdzIGZyb20gdGhlIHBvc3RlcmlvciAkcChcYmV0YSxcc2lnbWFeMnxcbWJveHtkYXRhfSkkLiAgWW91IGNhbiBlaXRoZXIgdXNlIHRoZSBwcmlvciBmb3IgJChiZXRhLFxzaWdtYV4yKSQgYXMgcHJvcG9zYWwgZGVuc2l0eSBvciB5b3UgY2FuIHVzZSB0aGUgZm9sbG93aW5nIHByb3Bvc2FsOiAkcShcYmV0YSkgXGVxdWl2IE4oMC43LDAuMjUpJCBhbmQgJHEoXHNpZ21hXjIpIFxlcXVpdiBJRyg3LDUpJC4KCiogTm90ZTogVGhlc2UgcHJvcG9zYWwgZGVuc2l0aWVzIGFyZSBpbnNwaXJlZCBieSB0aGUgc2FtcGxpbmcgZGlzdHJpYnV0aW9ucyBvZiB0aGUgY29ycmVzcG9uZGluZyBlc3RpbWF0b3JzLiAgUmVjYWxsIHRoYXQgdGhlIHByb3Bvc2FsIGRpc3RyaWJ1dGlvbnMgY2FuIGJlIGFueXRoaW5nIHdpdGggb3Igd2l0aG91dCB0aGUgdXNlIG9mIHRoZSBkYXRhIHNpbmNlIGl0IGlzIG5vdCBhbHRlcmluZyB0aGUgcHJpb3IgaW4gYW55IHdheS4KCjIpIEltcGxlbWVudCB0aGUgR2liYnMgc2FtcGxlciB0byBvYnRhaW4gZHJhd3MgZnJvbSB0aGUgcG9zdGVyaW9yICRwKFxiZXRhLFxzaWdtYV4yfFxtYm94e2RhdGF9KSQuIENoZWNrIHRoZSBtaXhpbmcgb2YgdGhlIE1hcmtvdiBjaGFpbnMgYW5kIHRoZSBjb252ZXJnZW5jZSBvZiB0aGUgZHJhd3MgdG8gdGhlIHBvc3Rlcmlvci4KCjMpIFJlcGVhdCAyKSBidXQgcmVwbGFjZSB0aGUgR2liYnMgc2FtcGxlciBieSBhIE1ldHJvcG9saXMgYWxnb3JpdGhtIHdpdGggcHJvcG9zYWxzCiRxKFxiZXRhKSBcZXF1aXYgTigwLjcsMC4yNSkkIGFuZCAkcShcc2lnbWFeMikgXGVxdWl2IElHKDcsNSkkLCB3aGljaCBhbHJlYWR5IGFwcGVhciBpbiAxKS4gCgo0KSBJZiB0aGUgdGhyZWUgYWxnb3JpdGhtcyBhcmUgcnVubmluZyBwcm9wZXJseSwgdGhlIHJlc3VsdHMgc2hvdWxkIGJlIHRoZSBzYW1lIHVwIHRvIHNtYWxsIE1vbnRlIENhcmxvIGVycm9ycy4KCgo=