1 Weight and height dataset

We collected data from 15 volunteers (my students and myself).

n    = 15
data = matrix(c(178,70,175,80,184,82,200,89,183,80,173,65,185,70,162,70,
190,85,174,80,180,87,165,74,176,72,174,63,196,113),n,2,byrow=TRUE)
height = scale(data[,1])
weight = scale(data[,2])
par(mfrow=c(1,1))
plot(height,weight,xlab="Height (standardized)",ylab="Weight (standardized)")
points(height[n],weight[n],col=2,pch=16,cex=2)
abline(v=0,lty=2)
abline(h=0,lty=2)

2 Maximum likelihood estimation (MLE)

Below we use the lm (linear model) function from R to run the OLS estimation for the regression \[ y_i = \beta \ x_i + \varepsilon_i \qquad\qquad \varepsilon_i \ \ \mbox{iid} \ \ N(0,\sigma^2), \] where \(x_i=\mbox{height}_i\) and \(y_i=\mbox{weight}_i\), for \(i=1,\ldots,n\). From the frequentist/Fisherian approach, we have learned that the MLEs of \(\beta\) and \(\sigma^2\) are, respectively, \[ {\widehat \beta} = \frac{\sum_{i=1}^n y_i x_i}{\sum_{i=1}^n x^2_i} \qquad \mbox{and} \qquad {\widehat \sigma}^2 = \frac{\sum_{i=1}^n (y_i-{\widehat y}_i)^2}{n}. \] We also know the sampling distribution of these estimators: \[ {\widehat \beta}|{\widehat \sigma}^2 \sim t_{n-1}\left(\beta,\frac{{\widehat \sigma}^2}{\sum_{i=1}^n x_i^2}\right) \qquad and \qquad {\widehat \sigma}^2|\sigma^2 \sim IG\left(\frac{n-1}{2},\frac{(n-1)\sigma^2}{2}\right), \] from which confidence intervals and hypothesis testing can be derived. An unbiased estimator of \(\sigma^2\) is \(s^2 = n{\widehat \sigma}^2/(n-1)\).

bhat  = sum(height*weight)/sum(height^2)
sighat = sqrt(sum((weight-bhat*height)^2)/n)
s = sqrt(n*sighat^2/(n-1))
se = s/sqrt(sum(height^2))
round(c(bhat,se),4)
## [1] 0.6875 0.1941
round(c(sighat,s),4)
## [1] 0.7016 0.7262
# The -1 is to inform the lm function that the regression has no intercept
summary(lm(weight~height-1))
## 
## Call:
## lm(formula = weight ~ height - 1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0537 -0.5485 -0.1120  0.4731  1.7021 
## 
## Coefficients:
##        Estimate Std. Error t value Pr(>|t|)   
## height   0.6875     0.1941   3.542  0.00325 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7262 on 14 degrees of freedom
## Multiple R-squared:  0.4727, Adjusted R-squared:  0.435 
## F-statistic: 12.55 on 1 and 14 DF,  p-value: 0.003249

2.1 OLS fit with and without the (red) outlier

par(mfrow=c(1,1))
plot(height,weight,xlab="Height (standardized)",ylab="Weight (standardized)")
points(height[n],weight[n],col=2,pch=16,cex=2)
abline(lm(weight~height-1),col=2,lwd=2)
abline(lm(weight[1:(n-1)]~height[1:(n-1)]-1),lwd=2)
legend("topleft",legend=c("With outlier","Without outlier"),col=2:1,lwd=2,lty=1,bty="n")
abline(v=0,lty=2)
abline(h=0,lty=2)

3 Bayesian inference

Let us assume the following independent prior for \(\beta\) and \(\sigma^2\) \[ p(\beta,\sigma^2) = p(\beta|\sigma^2)p(\sigma^2), \] with \(\beta \sim N(b_0,\sigma^2B_0)\) and \(\sigma^2 \sim IG(c_0,d_0)\), with hyperparameters \(b_0=0\), \(B_0=1\), \(c_0=2\) and \(d0=1\). Notice that this is a conjugate prior for \((\beta,\sigma^2)\), so closed-form posterior inference is readily available.

3.1 Draws from the prior

b0=0
B0=1
c0=2
d0=1
M    = 1000
sig2 = 1/rgamma(M,c0,d0)
beta = rnorm(M,b0,sqrt(sig2*B0))
par(mfrow=c(1,1))
boxplot(cbind(beta,sqrt(sig2)),names=c(expression(beta),expression(sigma)),outline=F,xlab="",horizontal=TRUE)
points(bhat,1,col=2,pch=16,cex=2)
points(s,2,col=2,pch=16,cex=2)
title("Prior draws (MLE in red)")

4 Your homework is listed below

  1. Derive the closed form posterior distribution \(p(\beta,\sigma^2|\mbox{data})\), where \(\mbox{data}=\{(x_1,y_1),\ldots,(x_n,y_n)\}\).

  2. Implement the sampling importance resampling (SIR) algorithm to obtain draws from the posterior \(p(\beta,\sigma^2|\mbox{data})\). You can either use the prior for \((beta,\sigma^2)\) as proposal density or you can use the following proposal: \(q(\beta) \equiv N(0.7,0.25)\) and \(q(\sigma^2) \equiv IG(7,5)\).

  1. Implement the Gibbs sampler to obtain draws from the posterior \(p(\beta,\sigma^2|\mbox{data})\). Check the mixing of the Markov chains and the convergence of the draws to the posterior.

  2. Repeat 2) but replace the Gibbs sampler by a Metropolis algorithm with proposals \(q(\beta) \equiv N(0.7,0.25)\) and \(q(\sigma^2) \equiv IG(7,5)\), which already appear in 1).

  3. If the three algorithms are running properly, the results should be the same up to small Monte Carlo errors.

LS0tCnRpdGxlOiAiU2ltcGxlIGxpbmVhciByZWdyZXNzaW9uIHdpdGggR2F1c3NpYW4gZXJyb3JzIgphdXRob3I6ICJTSVIsIEdpYmJzIHNhbXBsZXIgYW5kIE1ldHJvcG9saXMtSGFzdGluZ3MgYWxnb3JpdGhtcyIKZGF0ZTogIjEwLzA2LzIwMjUiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZGVwdGg6IDMKICAgIHRvY19jb2xsYXBzZWQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHllcwogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCi0tLQoKIyBXZWlnaHQgYW5kIGhlaWdodCBkYXRhc2V0CgpXZSBjb2xsZWN0ZWQgZGF0YSBmcm9tIDE1IHZvbHVudGVlcnMgKG15IHN0dWRlbnRzIGFuZCBteXNlbGYpLgoKYGBge3IgZmlnLndpZHRoPTYsIGZpZy5oZWlnaHQ9NiwgZmlnLmFsaWduPSdjZW50ZXInfQpuICAgID0gMTUKZGF0YSA9IG1hdHJpeChjKDE3OCw3MCwxNzUsODAsMTg0LDgyLDIwMCw4OSwxODMsODAsMTczLDY1LDE4NSw3MCwxNjIsNzAsCjE5MCw4NSwxNzQsODAsMTgwLDg3LDE2NSw3NCwxNzYsNzIsMTc0LDYzLDE5NiwxMTMpLG4sMixieXJvdz1UUlVFKQpoZWlnaHQgPSBzY2FsZShkYXRhWywxXSkKd2VpZ2h0ID0gc2NhbGUoZGF0YVssMl0pCnBhcihtZnJvdz1jKDEsMSkpCnBsb3QoaGVpZ2h0LHdlaWdodCx4bGFiPSJIZWlnaHQgKHN0YW5kYXJkaXplZCkiLHlsYWI9IldlaWdodCAoc3RhbmRhcmRpemVkKSIpCnBvaW50cyhoZWlnaHRbbl0sd2VpZ2h0W25dLGNvbD0yLHBjaD0xNixjZXg9MikKYWJsaW5lKHY9MCxsdHk9MikKYWJsaW5lKGg9MCxsdHk9MikKYGBgCgojIE1heGltdW0gbGlrZWxpaG9vZCBlc3RpbWF0aW9uIChNTEUpCgpCZWxvdyB3ZSB1c2UgdGhlICpsbSogKGxpbmVhciBtb2RlbCkgZnVuY3Rpb24gZnJvbSBSIHRvIHJ1biB0aGUgT0xTIGVzdGltYXRpb24gZm9yIHRoZSByZWdyZXNzaW9uCiQkCnlfaSA9IFxiZXRhIFwgeF9pICsgXHZhcmVwc2lsb25faSBccXF1YWRccXF1YWQgXHZhcmVwc2lsb25faSBcIFwgXG1ib3h7aWlkfSBcIFwgTigwLFxzaWdtYV4yKSwKJCQKd2hlcmUgJHhfaT1cbWJveHtoZWlnaHR9X2kkIGFuZCAkeV9pPVxtYm94e3dlaWdodH1faSQsIGZvciAkaT0xLFxsZG90cyxuJC4gIEZyb20gdGhlIGZyZXF1ZW50aXN0L0Zpc2hlcmlhbiBhcHByb2FjaCwgd2UgaGF2ZSBsZWFybmVkIHRoYXQgdGhlIE1MRXMgb2YgJFxiZXRhJCBhbmQgJFxzaWdtYV4yJCBhcmUsIHJlc3BlY3RpdmVseSwKJCQKe1x3aWRlaGF0IFxiZXRhfSA9IFxmcmFje1xzdW1fe2k9MX1ebiB5X2kgeF9pfXtcc3VtX3tpPTF9Xm4geF4yX2l9IFxxcXVhZCBcbWJveHthbmR9IFxxcXVhZAp7XHdpZGVoYXQgXHNpZ21hfV4yID0gXGZyYWN7XHN1bV97aT0xfV5uICh5X2kte1x3aWRlaGF0IHl9X2kpXjJ9e259LgokJApXZSBhbHNvIGtub3cgdGhlIHNhbXBsaW5nIGRpc3RyaWJ1dGlvbiBvZiB0aGVzZSBlc3RpbWF0b3JzOgokJAp7XHdpZGVoYXQgXGJldGF9fHtcd2lkZWhhdCBcc2lnbWF9XjIgXHNpbSB0X3tuLTF9XGxlZnQoXGJldGEsXGZyYWN7e1x3aWRlaGF0IFxzaWdtYX1eMn17XHN1bV97aT0xfV5uIHhfaV4yfVxyaWdodCkgXHFxdWFkIGFuZCBccXF1YWQge1x3aWRlaGF0IFxzaWdtYX1eMnxcc2lnbWFeMiBcc2ltIElHXGxlZnQoXGZyYWN7bi0xfXsyfSxcZnJhY3sobi0xKVxzaWdtYV4yfXsyfVxyaWdodCksCiQkCmZyb20gd2hpY2ggY29uZmlkZW5jZSBpbnRlcnZhbHMgYW5kIGh5cG90aGVzaXMgdGVzdGluZyBjYW4gYmUgZGVyaXZlZC4gIEFuIHVuYmlhc2VkIGVzdGltYXRvciBvZiAkXHNpZ21hXjIkIGlzICRzXjIgPSBue1x3aWRlaGF0IFxzaWdtYX1eMi8obi0xKSQuCgpgYGB7ciBmaWcud2lkdGg9NiwgZmlnLmhlaWdodD02LCBmaWcuYWxpZ249J2NlbnRlcid9CmJoYXQgID0gc3VtKGhlaWdodCp3ZWlnaHQpL3N1bShoZWlnaHReMikKc2lnaGF0ID0gc3FydChzdW0oKHdlaWdodC1iaGF0KmhlaWdodCleMikvbikKcyA9IHNxcnQobipzaWdoYXReMi8obi0xKSkKc2UgPSBzL3NxcnQoc3VtKGhlaWdodF4yKSkKcm91bmQoYyhiaGF0LHNlKSw0KQpyb3VuZChjKHNpZ2hhdCxzKSw0KQoKIyBUaGUgLTEgaXMgdG8gaW5mb3JtIHRoZSBsbSBmdW5jdGlvbiB0aGF0IHRoZSByZWdyZXNzaW9uIGhhcyBubyBpbnRlcmNlcHQKc3VtbWFyeShsbSh3ZWlnaHR+aGVpZ2h0LTEpKQpgYGAKCiMjIE9MUyBmaXQgd2l0aCBhbmQgd2l0aG91dCB0aGUgKHJlZCkgb3V0bGllcgoKYGBge3IgZmlnLndpZHRoPTYsIGZpZy5oZWlnaHQ9NiwgZmlnLmFsaWduPSdjZW50ZXInfQpwYXIobWZyb3c9YygxLDEpKQpwbG90KGhlaWdodCx3ZWlnaHQseGxhYj0iSGVpZ2h0IChzdGFuZGFyZGl6ZWQpIix5bGFiPSJXZWlnaHQgKHN0YW5kYXJkaXplZCkiKQpwb2ludHMoaGVpZ2h0W25dLHdlaWdodFtuXSxjb2w9MixwY2g9MTYsY2V4PTIpCmFibGluZShsbSh3ZWlnaHR+aGVpZ2h0LTEpLGNvbD0yLGx3ZD0yKQphYmxpbmUobG0od2VpZ2h0WzE6KG4tMSldfmhlaWdodFsxOihuLTEpXS0xKSxsd2Q9MikKbGVnZW5kKCJ0b3BsZWZ0IixsZWdlbmQ9YygiV2l0aCBvdXRsaWVyIiwiV2l0aG91dCBvdXRsaWVyIiksY29sPTI6MSxsd2Q9MixsdHk9MSxidHk9Im4iKQphYmxpbmUodj0wLGx0eT0yKQphYmxpbmUoaD0wLGx0eT0yKQpgYGAKCiMgQmF5ZXNpYW4gaW5mZXJlbmNlCgpMZXQgdXMgYXNzdW1lIHRoZSBmb2xsb3dpbmcgaW5kZXBlbmRlbnQgcHJpb3IgZm9yICRcYmV0YSQgYW5kICRcc2lnbWFeMiQKJCQKcChcYmV0YSxcc2lnbWFeMikgPSBwKFxiZXRhfFxzaWdtYV4yKXAoXHNpZ21hXjIpLAokJAp3aXRoICRcYmV0YSBcc2ltIE4oYl8wLFxzaWdtYV4yQl8wKSQgYW5kICRcc2lnbWFeMiBcc2ltIElHKGNfMCxkXzApJCwgd2l0aCBoeXBlcnBhcmFtZXRlcnMgJGJfMD0wJCwgJEJfMD0xJCwgJGNfMD0yJCBhbmQgJGQwPTEkLiAgTm90aWNlIHRoYXQgdGhpcyBpcyBhIGNvbmp1Z2F0ZSBwcmlvciBmb3IgJChcYmV0YSxcc2lnbWFeMikkLCBzbyBjbG9zZWQtZm9ybSBwb3N0ZXJpb3IgaW5mZXJlbmNlIGlzIHJlYWRpbHkgYXZhaWxhYmxlLgoKIyMgRHJhd3MgZnJvbSB0aGUgcHJpb3IKYGBge3IgZmlnLndpZHRoPTgsIGZpZy5oZWlnaHQ9NCwgZmlnLmFsaWduPSdjZW50ZXInfQpiMD0wCkIwPTEKYzA9MgpkMD0xCk0gICAgPSAxMDAwCnNpZzIgPSAxL3JnYW1tYShNLGMwLGQwKQpiZXRhID0gcm5vcm0oTSxiMCxzcXJ0KHNpZzIqQjApKQpwYXIobWZyb3c9YygxLDEpKQpib3hwbG90KGNiaW5kKGJldGEsc3FydChzaWcyKSksbmFtZXM9YyhleHByZXNzaW9uKGJldGEpLGV4cHJlc3Npb24oc2lnbWEpKSxvdXRsaW5lPUYseGxhYj0iIixob3Jpem9udGFsPVRSVUUpCnBvaW50cyhiaGF0LDEsY29sPTIscGNoPTE2LGNleD0yKQpwb2ludHMocywyLGNvbD0yLHBjaD0xNixjZXg9MikKdGl0bGUoIlByaW9yIGRyYXdzIChNTEUgaW4gcmVkKSIpCmBgYAoKIyBZb3VyIGhvbWV3b3JrIGlzIGxpc3RlZCBiZWxvdwoKMCkgRGVyaXZlIHRoZSBjbG9zZWQgZm9ybSBwb3N0ZXJpb3IgZGlzdHJpYnV0aW9uICRwKFxiZXRhLFxzaWdtYV4yfFxtYm94e2RhdGF9KSQsIHdoZXJlICRcbWJveHtkYXRhfT1ceyh4XzEseV8xKSxcbGRvdHMsKHhfbix5X24pXH0kLiAgCgoxKSBJbXBsZW1lbnQgdGhlIHNhbXBsaW5nIGltcG9ydGFuY2UgcmVzYW1wbGluZyAoU0lSKSBhbGdvcml0aG0gdG8gb2J0YWluIGRyYXdzIGZyb20gdGhlIHBvc3RlcmlvciAkcChcYmV0YSxcc2lnbWFeMnxcbWJveHtkYXRhfSkkLiAgWW91IGNhbiBlaXRoZXIgdXNlIHRoZSBwcmlvciBmb3IgJChiZXRhLFxzaWdtYV4yKSQgYXMgcHJvcG9zYWwgZGVuc2l0eSBvciB5b3UgY2FuIHVzZSB0aGUgZm9sbG93aW5nIHByb3Bvc2FsOiAkcShcYmV0YSkgXGVxdWl2IE4oMC43LDAuMjUpJCBhbmQgJHEoXHNpZ21hXjIpIFxlcXVpdiBJRyg3LDUpJC4KCiogTm90ZTogVGhlc2UgcHJvcG9zYWwgZGVuc2l0aWVzIGFyZSBpbnNwaXJlZCBieSB0aGUgc2FtcGxpbmcgZGlzdHJpYnV0aW9ucyBvZiB0aGUgY29ycmVzcG9uZGluZyBlc3RpbWF0b3JzLiAgUmVjYWxsIHRoYXQgdGhlIHByb3Bvc2FsIGRpc3RyaWJ1dGlvbnMgY2FuIGJlIGFueXRoaW5nIHdpdGggb3Igd2l0aG91dCB0aGUgdXNlIG9mIHRoZSBkYXRhIHNpbmNlIGl0IGlzIG5vdCBhbHRlcmluZyB0aGUgcHJpb3IgaW4gYW55IHdheS4KCjIpIEltcGxlbWVudCB0aGUgR2liYnMgc2FtcGxlciB0byBvYnRhaW4gZHJhd3MgZnJvbSB0aGUgcG9zdGVyaW9yICRwKFxiZXRhLFxzaWdtYV4yfFxtYm94e2RhdGF9KSQuIENoZWNrIHRoZSBtaXhpbmcgb2YgdGhlIE1hcmtvdiBjaGFpbnMgYW5kIHRoZSBjb252ZXJnZW5jZSBvZiB0aGUgZHJhd3MgdG8gdGhlIHBvc3Rlcmlvci4KCjMpIFJlcGVhdCAyKSBidXQgcmVwbGFjZSB0aGUgR2liYnMgc2FtcGxlciBieSBhIE1ldHJvcG9saXMgYWxnb3JpdGhtIHdpdGggcHJvcG9zYWxzCiRxKFxiZXRhKSBcZXF1aXYgTigwLjcsMC4yNSkkIGFuZCAkcShcc2lnbWFeMikgXGVxdWl2IElHKDcsNSkkLCB3aGljaCBhbHJlYWR5IGFwcGVhciBpbiAxKS4gCgo0KSBJZiB0aGUgdGhyZWUgYWxnb3JpdGhtcyBhcmUgcnVubmluZyBwcm9wZXJseSwgdGhlIHJlc3VsdHMgc2hvdWxkIGJlIHRoZSBzYW1lIHVwIHRvIHNtYWxsIE1vbnRlIENhcmxvIGVycm9ycy4KCgo=