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1. Goal: Sampling from a Target Distribution
In Bayesian inference, we often need to sample from a posterior distribution p(#), which may have a complex

shape and be high-dimensional. Traditional MCMC methods (e.g., Metropolis-Hastings) can be inefficient
due to their random walk behavior.

Hamiltonian Monte Carlo (HMC) is a more efficient sampling method that borrows ideas from classical
physics to propose distant moves in parameter space with higher acceptance rates.

2. Hamiltonian Mechanics Basics
In classical mechanics, a system’s state is described by:

e Position: # (parameters to sample)

e Momentum: r (auxiliary variable)
The total energy of the system is given by the Hamiltonian:
H,r)=U(9) + K(r)
e U(0) is the potential energy, defined as:
U(0) = —logp(0)
e K(r) is the kinetic energy, typically:
K(r)= %rTM_lr
where 7 ~ N(0, M) and M is a mass matrix (often the identity).



3. Hamilton’s Equations

The evolution of the system is governed by Hamilton’s equations:
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These equations describe how position and momentum evolve over time in a frictionless system.

4. Leapfrog Integration

Since Hamilton’s equations cannot be solved analytically in most cases, we simulate the dynamics numerically
using the leapfrog integrator, which preserves volume and is reversible:

1. Half-step update of momentum:
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2. Full-step update of position:
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3. Another half-step update of momentum:
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Here, € is the step size.

5. Metropolis Correction
After simulating the dynamics:
e Compute the Hamiltonian before and after the simulation:
Hoa =U(0) + K(r), Huew =U(0') + K(r')

e Accept the proposed state #” with probability:

min (1, exp(Hold — Huew))

This step corrects for numerical error and ensures samples are from the correct distribution.



6. Summary Table

Concept Meaning

0 Parameter (position)

r Momentum

U(9) Potential energy (log-probability)

K(r) Kinetic energy

H(0,7r) Total energy

Leapfrog integrator | Numerical method to simulate dynamics
Metropolis step Accept/reject mechanism

7. Why HMC Works

HMC makes use of gradient information to propose efficient transitions across the parameter space. This
reduces the random walk behavior common in traditional MCMC and makes HMC especially effective in
high-dimensional problems.

7 Simple HMC Demo in R - Drawing 6s from N (0, 1)

# Potential energy (negative log-probability)
U <- function(theta) {

return(0.5 * theta~2)
}

# Gradient of potential energy

grad_U <- function(theta) {
return(theta)

}

# Kinetic energy
K <- function(r) {
return(0.5 * r~2)

}

# Leapfrog integrator
leapfrog <- function(theta, r, epsilon, L) {
r <-r - 0.5 * epsilon * grad_U(theta)
for (4 in 1:L) {
theta <- theta + epsilon * r
if G '=1L) {
r <- r - epsilon * grad_U(theta)
}
}
r <- r - 0.5 * epsilon * grad_U(theta)
return(list (theta = theta, r = r))



# HMC sampler

hmc <- function(thetaO, epsilon, L, n_samples) {
samples <- numeric(n_samples)
theta <- thetal

for (i in 1:n_samples) {
r0 <- rnorm(1) # sample momentum
current_H <- U(theta) + K(r0)

# Simulate Hamiltonian dynamics

1f <- leapfrog(theta, r0O, epsilon, L)
theta_prop <- lf$theta

r_prop <- 1f$r

proposed_H <- U(theta_prop) + K(r_prop)

# Metropolis acceptance
accept_prob <- exp(current_H - proposed_H)
if (runif(l) < accept_prob) {

theta <- theta_prop # accept

+
samples[i] <- theta

return(samples)

}

# Run the HMC sampler
set.seed(42)
samples <- hmc(thetaO = 0, epsilon = 0.1, L = 10, n_samples = 5000)

# Plot the results
hist(samples, probability = TRUE, breaks = 40, col = "skyblue",
main = "HMC Samples from N(O, 1)", xlab = "theta")
curve(dnorm(x), col = "red", lwd = 2, add = TRUE)
legend("topright", legend = c("True density", "HMC samples"),
col = c("red", "skyblue"), 1ty = 1, lwd = 2, bty = "n")



