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CHAPTER 3

Approximate methods of inference

3.1 Introduction

This chapter presents some of the methods proposed for Bayesian inference
when the necessary calculations cannot be performed analytically. Some of
these techniques are based on deterministic concepts while others are based
on non-iterative simulation in opposition to the methods based on iterative
simulation that form the core of this text. Therefore, only an introduction
to the subject is presented. A more thorough treatment of the subject with
comparisons and illustrations of the different techniques is given by Evans
and Swartz (1995). The books by Carlin and Louis (2000), Gelman et al.
(2004) and O’Hagan and Forster (2004) also provide nice reviews of the
area with the first one also providing a summary of software available.

The main techniques presented in this chapter are normal and Laplace
approximations based on asymptotics in Section 3.2, quadrature approx-
imations in Section 3.3, Monte Carlo integration in Section 3.4 and re-
sampling techniques in Section 3.5. The last two sections present solutions
based on stochastic simulation. They generally involve sampling from an
auxiliary distribution that serves different purposes in the context of each
approximation.



The deterministic techniques rely upon approximate normality and
asymptotic results in the sense of the sample size growing to infinity. These
techniques were mostly developed during the 1980s when the computational
explosion that enabled computer-intensive methods to be performed was
only starting. As will be seen, the complexity of the techniques increases
substantially with the dimension of the parametric space. Similar com-
ments are valid for the simulation techniques presented in this chapter. In
particular, finding a suitable auxiliary distribution becomes an extremely
difficult task. As a consequence, their application to a complete Bayesian
analysis in complex models such as those presented at the last sections
of the previous chapter is limited. Hierarchical, dynamic and spatial mod-
els have in common highly dimensional parameter spaces that are difficult
to approach for complete inference with the techniques presented in this
chapter.

The last sections are more in the spirit of the book with the use of
stochastic simulation for inference from the posterior distribution. The non-
iterative form of the simulation used restricts its application in complex
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models with large numbers of parameters. For these cases, the use of iter-
ative techniques based on Markov chains and described in all subsequent
chapters of this book.

Before going into the details of the techniques, it is important to recall
that most summarization operations are provided by integration of the
form

I = /t(@)w(@)dﬁ. (3.1)

The above expression provides the posterior mean of any transformation
Y» = t(#). When evaluating the posterior mean of €, t(6) = 6. When eval-
uating the posterior median ¢ of a scalar 6, t(#) = I(# < c¢), I = 1/2 and
(3.1) is solved for c. Similarly, credibility regions are obtained by solving
(3.1) for C with t(f) = I(# € C') and I = 1 — . The posterior variance
matrix may be obtained by taking ¢(#) = #6" and previously evaluating the
posterior mean. Finally, for § = (64,...,64)" with components 6#; of any
dimension, the marginal density of 6; is given by (2.7). It can be rewritten
as

and again an integration over a posterior density is required with #(6_;) =
7(0;]0_;). As mentioned in Section 2.2, another important integral that
regularly appears associated with Bayesian model choice and prediction
procedures is the posterior predictive density

f(ylz) = / £(y]0)7(6)do

which can be easily rewritten as the integral in (3.1) with #(6) = f(y|0).



In very broad terms, experience gathered from previous work suggests
that deterministic techniques provide good results for low dimensional (say
single digit) models. Beyond that, they become very complex to handle
and Monte Carlo techniques have to be used. When the dimension of the
model becomes increasingly large, then only Markov chain simulation seems
to provide an adequate solution. Whenever possible, analytical integration
should be performed. This will reduce the dimension of the model where
approximate methods are applied. Finally, it 1s important to mention that
there 1s plenty of room for experimentation with combinations of these
techniques.



3.4 Monte Carlo integration

Consider as before the problem of solving Equation (3.1). If a sample
f1,...,0, from 7 1s available then a natural estimator for I, commonly

i

called the simple Monte Carlo (MC) estimator, is

) 1
I = ;;tiﬂj)-

One important application of this result is the derivation of the marginal
density of 6; given by Equation (3.2). A simple MC estimator of this
density is obtained by sampling ¢, _;,...,0, —; from 7(0_;) and setting
t(0_;) = m(0;]0_;). Quite often, sampling from 7(6) (or w(6_;)) is either
computationally inefficient or costly. Simple Monte Carlo methods must be
extended by the use of draws from auxiliary (importance) densities. More
specifically, let ¢(#) be another density for # with the same support of 7.

Then
t(6)m(6) t(0)m(6)
= [ WWEQ[ 0) ]

where E'r denotes expectation with respect to density f. If asample 61, ...,6,

#
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from ¢ 1s available then

fz _ i i t(gj)ﬂ(gj) (3.7)

ni= ;)

is a another estimator of I. I is a special case of I> obtained when q=T.

Notice that both /; and I, are method of moments estimators of /. These

estimators enjoy good frequentist properties such as:

e they are unbiased estimators since Ej (f k) =1, for k =1,2;

e their variances are in the form Vj (I) = o /n, for k = 1,2, where o =
f[tz({?)fr(é)]dé? —I? and 03 = f[tz(ﬁ)wz(ﬁ)/q(ﬂ)]dﬁ — I?

e they have central limit theorems stating that

I —1

Ok

vn L N(0,1) as n — oo, (3.8)

for k=1,2; and
e they are strongly consistent estimators of I in that
I; “5 T as n — o, (3.9)

for k =1,2.



The classical nature of the above results leads to objections by Bayesians
(O'Hagan, 1987). These results provide important messages, however, and
in practice they are widely used. Strong consistency follows directly from
the strong law of large numbers (Feller, 1968). So increasing the size n
of the sample from ¢ will lead to a virtually error-free estimation at rate
O(-n._lf 2). Unlike asymptotic results, this value of n is under the control of
the researcher and can be increased by drawing more values from g. The
constant o2 depends on ¢ and can also be estimated by the method of
moments.

The generating density ¢ is usually called the importance density and
sampling from ¢ is called importance sampling. There are no restrictions on
q and the simplest choice is the uniform distribution when the support of 6
1s compact. It can be shown that the optimal choice in terms of minimizing
o2 and hence the estimation error is to take ¢ o t x 7. Unfortunately, for
most cases where (3.1) cannot be evaluated analytically, it will be very
difficult to draw samples from 7. The above results however suggest that ¢
should be taken as close as possible to m but still available for easy sampling.
In any case, the importance density ¢ can be chosen to approximate ¢t x w
for each required expectation of #(#) or can be chosen to be the same for all
integrations of interest. Kloek and van Dijk (1978) recommend the latter
with the importance density ¢ chosen to approximate .

Geweke (1989) provides a formal proof of the central limit theorem. It
may be used to assess coverage probabilities by confidence intervals thus
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providing error bounds for the estimates unlike the previous estimates pro-
posed. Carlin and Louis (2000) and Evans and Swartz (1995) consider this
ability as one of the main strengths of approximations based on Monte
Carlo techniques.

A problem that usually arises in Bayesian applications is that 7 is only
known up to a proportionality constant. Posterior expectations are really
a problem involving a ratio of two integrals as pointed out in (3.5). The
resulting approximation is based on the ratio of two Monte Carlo estimators
of integrals. Using the same importance density g as recommended above,
the numerator and the denominator are approximated by (3.7) with 7
replaced by 7* = [ X p and in the case of the denominator ¢ = 1. The form
of the estimator is then

7 - Xy HO) (6 /a(6)
Yy (6:)/a(6)

where the 6;s are the same on numerator and denominator and are sampled
from ¢. The above estimator is only asymptotically unbiased but is still a
strongly consistent estimator of I.

Monte Carlo integration has been connected to Bayesian inference after
its introduction in applied Econometrics by Kloek and van Dijk (1978).
Medium sized models have been commonly used in this area and their
paper showed it is a viable technique. Much effort has been devoted since
then to the specification of suitable importance density functions. It is
important that it matches 7 as close as possible and that it blankets
in the tails. Otherwise, the very few points sampled in the tails may have
large contributions to I and estimates will be unstable. This suggests that
normal distributions should be avoided if possible.




In the multivariate setting, natural choices for importance density are
the Student’s 7 distributions with low degrees of freedom. These are easy to
sample, have thick tails and support over R%. They may therefore require
transformation of some of the components of # to the real line. Geweke
(1989) suggested the use of split-t distributions which are obtained by
rescaling each component of # differently for positive and negative val-
ues to accommodate skewness. Oh and Berger (1993) suggested the use of
mixtures of ¢-distributions to accommodate posterior multimodality.

These functions require specification of mean and variance which them-
selves are obtained by integration. This suggests an iterative scheme where
means and variances are evaluated for a given importance function and
used to update mean and variance specifications of a new importance func-
tion. The process is repeated until the successive values of means and vari-
ances do not change. Then, integrations of interest are performed. Adaptive
strategies have been suggested by Kloek and van Dijk (1978) and Smith et
al. (1987). Oh and Berger (1992) established convergence results of these
iterative strategies. Examples in Evans and Swartz (1995) suggested that
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