Monty Hall A Simple Bayesian solution

Hedibert Freitas Lopes

Head of Data and Decision Sciences Unit INSPER Institute of Education and Research

April 24, 2025

The Monty Hall Problem¹

Game setup: The host of a game show, Monty Hall, invites you to the stage and shows you three doors. There is a brand new Ferrari behind one of the three doors. Goats are behind the other two doors.

¹Illustration taken from Wikipedia.

First step

Monty asks you to select a door and you choose, say, door A (doors are labeled A, B and C).

Second step: Monty opens one of the other doors, say B, with a goat.

Third step: Monty offers you one of two possible decisions:

- \mathcal{D}_A : Maintain door A as your selection.
- \mathcal{D}_C : Choose door C as your selection.

Which decision would you make? \mathcal{D}_A or \mathcal{D}_C ?

Bayesian approach

Prior: The Ferrari is behind one of the three doors with probability 1/3. That is the nature of the game, randomly selecting a door and placing a Ferrari behind it and goats behind the other two doors. Let Y be the random variable that states which door you selected, $Y \in \{A, B, C\}$. Therefore

$$Pr(Y = A) = Pr(Y = B) = Pr(Y = C) = \frac{1}{3}$$

Likelihood: Let X be the random variable that indicates which door Monty opens. Since we know that X = B, we can compute the likelihoods

$$Pr(X = B | Y = A) = \frac{1}{2}$$
 (When $Y = A$, Monty can pick B or C)

$$Pr(X = B | Y = B) = 0$$
 (When $Y = B$, Monty cannot pick B)

$$Pr(X = B | Y = C) = 1$$
 (When $Y = C$, Monty has to pick C)

Which decision?

Notice that P(Y = B | X = B) = 0, since there is zero chance of finding a Ferrari behind the door Monty opened.

Therefore, it is easy to see that you will make the decision \mathcal{D}_{C} over the decision \mathcal{D}_{A} if

$$Pr(Y = C|X = B) > Pr(Y = A|X = B).$$

These quantities (*Posterior*) are now easily obtained via Bayes Theorem,

$$Pr(Y = C|X = B) = \frac{Pr(X = B|Y = C)Pr(Y = C)}{Pr(X = B)} = \frac{1 \times 1/3}{Pr(X = B)} = \frac{1/3}{Pr(X = B)}$$
$$Pr(Y = A|X = B) = \frac{Pr(X = B|Y = A)Pr(Y = A)}{Pr(X = B)} = \frac{1/2 \times 1/3}{Pr(X = B)} = \frac{1/6}{Pr(X = B)}$$

 $P(Y = C|X = B) = 2Pr(Y = A|X = B) \Longrightarrow$ Swap to door C!