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Abstract

BART (Bayesian additive regression trees) has been established as a leading supervised learn-
ing method, particularly in the field of causal inference. This paper explores the use of BART
models for learning conditional average treatment effects (CATE) from regression discontinuity
designs, where treatment assignment is based on whether an observed covariate (called the run-
ning variable) exceeds a pre-specified threshold. A purpose-built version of BART that uses linear
regression leaf models (of the running variable and treatment assignment dummy) is shown to out-
perform off-the-shelf BART implementations as well as a local polynomial regression approach and
a CART-based approach. The new method is evaluated in thorough simulation studies as well as
an empirical application looking at the effect of academic probation on student performance.
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1 Introduction

Regression discontinuity designs (RDD), originally proposed by Thistlethwaite and Campbell (1960),
are widely used in economics and other social sciences to estimate treatment effects from observational
data. Such designs arise when treatment assignment is based on whether a particular covariate —
referred to as the running variable — lies above or below a known value, referred to as the cutoff
value. Because treatment is deterministically assigned as a known function of the running variable,
RDDs are trivially deconfounded: treatment assignment is independent of the outcome variable, given
the running variable (because treatment is conditionally constant).

However, estimation of treatment effects in RDDs is more complicated than simply controlling for
the running variable, because doing so introduces a complete lack of overlap, which is the other key
condition needed to justify regression adjustment for causal inference. Nonetheless, treatment effects
at the cutoff may still be identified. Specifically, it is well-known that treatment effects at the cutoff
can be estimated from RDDs as the magnitude of a discontinuity in the conditional mean response
function at that point (Hahn et al., 2001).

This paper investigates the use of Bayesian additive regression tree models (Chipman et al., 2010;
Hahn et al., 2020) for the purpose of estimating conditional average treatments effects (CATE) at
the cutoff, conditional on observed covariates other than the running variable. To the best of our
knowledge, such data-driven CATE estimation has not been a focus of the existing RDD literature
and we are the first to propose BART for this purpose.

1.1 Previous work

The inclusion of covariates in RDD models has been studied by a great number of authors, but largely
from the perspective of obtaining precision gains for average treatment effect (ATE) estimation (at
the cutoff), mostly in the context of linear models, and mostly from a frequentist perspective. To our
knowledge, only two previous works look at nonlinear data-driven CATE estimation. Becker et al.
(2013) extend the traditional local regression to include interaction terms between the treatment
dummy and smooth basis functions of additional covariates — a direct extension of traditional RDD
methods for the ATE. Reguly (2021) propose a modified CART (classification and regression tree)
algorithm in which the tree is split using all features available except for the running variable; then,
within each leaf the algorithm performs a separate regression for treated and untreated units, and the
leaf-specific ATE parameter is obtained as the difference between the intercepts of the two regressions.
The many ways that the approach developed in this paper differs from Reguly (2021) will be revisited
after the new approach has been spelled out in detail.

Prominent examples of Bayesian estimators for RDDs include Chib et al. (2023), who estimate
the response curves with global splines where observations are weighted by their distance to the
cutoff; Karabatsos and Walker (2015), who propose approximating the conditional expectations by
an infinite mixture of normals; and Branson et al. (2019), who propose a Gaussian process prior for
the expectations, in which observations are also weighted by their distance to the cutoff. All of these
methods consist of global approximations of the outcome curves, while in some cases emphasizing
units near the cutoff to obtain better predictions in that region. Although in principle these methods
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could perform CATE estimation, none of these papers evaluate performance that way. Moreover, the
steep computational demands of these approaches make thorough comparisons infeasible.

Our work is also a contribution to the burgeoning field of extensions to BART. BART models
have been greatly extended in the years since 2010, to include heteroskedastic variants (Pratola et al.,
2020; Murray, 2021), classification (Murray, 2021), conditional density estimation (Orlandi et al.,
2021), causal inference (Hill, 2011; Hahn et al., 2020), variable selection (Linero, 2018), monotonicity
constraints (Chipman et al., 2022; Papakostas et al., 2023), survival analysis (Sparapani et al., 2016),
partial identification (Hahn et al., 2016) among others.

2 Background

To keep the paper relatively self-contained, we briefly review the basics of regression discontinuity
designs and BART, and cast the RDD problem from a functional causal model perspective that is
convenient for BART modeling.

2.1 Regression Discontinuity Designs

We conceptualize the treatment effect estimation problem via a quartet of random variables (Y,X,Z, U).
The variable Y is the outcome variable; the variable X is the running variable; the variable Z is the
treatment assignment indicator variable; and the variable U represents additional, possibly unob-
served, causal factors. What specifically makes this correspond to an RDD is that we stipulate that
Z = I(X > c), for cutoff c. For the remainder of this paper we assume c = 0 without loss of generality.

Figure 1 depicts a causal diagram representing the assumed causal relationships between these
variables. Two key features of this diagram are one, that X blocks the impact of U on Z: in other
words, X satisfies the back-door criterion for learning causal effects of Z on Y (more about this
shortly; for details about the back-door criterion in causal graphs, see section 3.3 in Pearl (2009)).
And two, X and U are not descendants of Z.

Using this causal diagram, we may express Y as some function of its graph parents, the random
variables (X,Z,U):

Y = F (X,Z,U).

In principle, we may obtain draws of Y by first drawing (X,Z,U) according to their joint distribution
and then applying the function F . Similarly, we may relate this formulation to the potential outcomes
framework straightforwardly:

Y 1 = F (X, 1, U),

Y 0 = F (X, 0, U).
(1)

Here, draws of (Y 1, Y 0) may be obtained (in principle) by drawing (X,Z,U) from their joint distri-
bution and using only the (X,U) elements as arguments in the above two equations, “discarding” the
drawn value of Z. Note that this construction implies the consistency condition: Y = Y 1Z+Y 0(1−Z).
Likewise, this construction implies the no interference condition because each Yi is considered to be
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Figure 1: A causal directed acyclic graph representing the general structure of a regression discon-
tinuity design problem, where Z = I(X > 0). Here U = (U1, U2, U3) is depicted in terms of three
distinct components, exhaustively illustrating the various relationships that could obtain between X,
Y , Z, and U while still preserving acyclicity and the necessary conditional independence relationships
for causal identification.

produced with arguments (Xi, Zi, Ui) and not those from other units j; in particular, in constructing
Yi, F does not take Zj for j ̸= i as an argument.

Next, we define the following conditional expectations

µ1(x) = E[F (x, 1, U) | X = x],

µ0(x) = E[F (x, 0, U) | X = x],
(2)

with which we can define the treatment effect function

τ(x) = µ1(x)− µ0(x).

Because X satisfies the back-door criterion, µ1 and µ0 are estimable from the data, meaning that

µ1(x) = E[F (x, 1, U) | X = x] = E[Y | X = x, Z = 1],

µ0(x) = E[F (x, 0, U) | X = x] = E[Y | X = x, Z = 0],
(3)

the right-hand-sides of which can be estimated from sample data, which we supposed to be independent
and identically distributed realizations of (Yi, Xi, Zi) for i = 1, . . . , n. However, because Z = I(X > 0)

we can in fact only learn µ1(x) for X > 0 and µ0(x) for X < 0. In potential outcomes terminology,
conditioning on X satisfies ignorability,

(Y 1, Y 0) ⊥⊥ Z | X,

but not strong ignorability, because overlap is violated. Overlap would require that

0 < P(Z = 1 | X = x) < 1 ∀x,
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which is clearly violated by the RDD assumption that Z = I(X > 0). Consequently, the overall ATE,
τ̄ = E(τ(X)), is unidentified, and we must content ourselves with estimating τ(0), the conditional
average effect at the point x = 0, which we estimate as the difference between µ1(0)− µ0(0). This is
possible for continuous X so long as one is willing to assume that µ1(x) and µ0(x) are both suitably
smooth functions of x: any inferred discontinuity at x = 0 must therefore be attributable to treatment
effect. See Hahn et al. (2001) for the seminal exposition of continuity-based identification in RDD
from the potential outcomes perspective.

2.1.1 Conditional average treatment effects in RDD

In this paper, we are concerned with learning not only τ(0), the “RDD ATE” (e.g. the CATE at x = 0),
but also RDD CATEs, τ(0,w) for some covariate vector w. Incorporating additional covariates in the
above framework turns out to be straightforward, simply by defining W = φ(U) to be an observable
function of the (possibly unobservable) causal factors U . We may then define our potential outcome
means as

µ1(x,w) = E[F (x, 1, U) | X = x,W = w] = E[Y | X = x,W = w, Z = 1],

µ0(x,w) = E[F (x, 0, U) | X = x,W = w] = E[Y | X = x,W = w, Z = 0],
(4)

and our treatment effect function as

τ(x,w) = µ1(x,w)− µ0(x,w).

We consider our data to be independent and identically distributed realizations (Yi, Xi, Zi,Wi) for
i = 1, . . . , n. Furthermore, we must assume that µ1(x,w) and µ0(x,w) are suitably smooth functions of
x, for every w; in other words, for each value of w the usual continuity-based identification assumptions
must hold.

With this framework and notation established, CATE estimation in RDDs boils down to estimation
of condition expectation functions E[Y | X = x,W = w, Z = z], for which we turn to BART models.

2.2 Bayesian Additive Regression Trees

The Bayesian Additive Regression Trees model (Chipman et al., 2010), or BART, represents an
unknown mean function as a sum of regression trees, where each regression tree is assigned the prior
described in Chipman et al. (1998). In this section we describe the model in terms of generic predictor
vector X, to match earlier work, but in subsequent sections we will specialize our notation to include
(X,W,Z) as in the RDD notation of the previous section.

Letting f(x) = E(Y | X = x) denote the unknown mean function of a covariate vector X, a
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BART model with J trees is traditionally written

Y = f(x) + ε,

=

J∑
j=1

g(x;Tj ,mj) + ε,

=
J∑

j=1

gj(x) + ε,

(5)

where ε ∼ N(0, σ2) is a normally distributed additive error term. Here, g(x;Tj ,mj) denotes a piecewise
constant function of x defined by a set of splitting rules Tj that partition the domain X into Bj disjoint
regions, and a vector, mj = (mj,1, . . . ,mj,Bj ), which records the values taken by g(·) on each of those
regions. That is, let bj(x) : X → {1, . . . , |mj | = Bj} be a function denoting which leaf node of the
jth tree contains the point x; then

gj(x) = g(x;Tj ,mj) = mj,bj(x).

Therefore, the parameters of a standard BART regression model are (T1,m1), . . . , (TJ ,mJ) and σ.
Chipman et al. (2010) consider priors such that: the tree components (Tj ,mj) are independent of
each other and of σ2, and the leaf node parameters mj,b are all mutually independent. Furthermore,
Chipman et al. (2010) specify the same priors for all trees and leaf node parameters. The model thus
consists of the specification of three priors: p(T ), p(σ2) and p(m | T ).

The tree prior, p(T ), is defined by three components. First, the probability that a node with depth
d will split is

α

(1 + d)β
, α ∈ (0, 1), β ∈ [0,∞), (6)

implying that trees of greater depth have lower prior probability. The prior over cutpoints of the
regression trees are uniform on the observed range of each feature and each feature is given equal
prior weight. For the prior on the leaf node parameters, p(m | T ), Chipman et al. (2010) specify
independent Gaussian distributions over the elements of the mj vectors: mj,b

iid∼ N(m0, σ
2
0). Finally,

σ2 is given an inverse Gamma prior. For further details and justification concerning BART prior
specification, see Chipman et al. (2010).

Chipman et al. (2010) construct a Gibbs sampling algorithm to obtain posterior draws of the
trees, their leaf parameters, and the residual variance σ2. Let T9j denote the set of all trees except Tj ,
and similarly for m9j . At each iteration, the algorithm produces J consecutive samples of (Tj ,mj , σ)

using the following compositions:

Tj | T9j ,m9j , σ, y, (7)

then
mj | Tj , T9j ,m9j , σ, y, (8)

and finally
σ | T1,m1, . . . TJ ,mJ , y. (9)
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Sampling from (7) is simplified by noting that each tree depends on (T9j ,m9j , y) only through a
“partial” residual:

rj = y −
∑
j′ ̸=j

g(x;Tj′ ,mj′). (10)

Therefore, the log marginal likelihood of the data in leaf bj (integrating out the unknown leaf mean
parameter mj,bj ) is:

lbj = −
nbj
2

log(2π)− nbj log(σ) +
1

2
log

(
σ2

nbjσ
2
µ + σ2

)
−
∑

i:xi∈bj r
2
i

2σ2
+
σ2µ(
∑

i:xi∈bj ri)
2

2σ2(nbjσ
2
µ + σ2)

, (11)

which is used to compute a Metropolis-Hastings ratio for accepting or rejecting a proposed tree.
Details may be found in Chipman et al. (2010) . Conditional on the tree, sampling the elements of
mj (step 8) is a standard conjugate update that can be found in any textbook (see, for example,
section 2.3 in Gamerman and Lopes (2006))), where the observed “data” is the rj vector from just
above.

3 Bayesian Additive RDD Trees

3.1 BART for Causal Inference

BART may be used to fit the conditional expectations needed for treatment effect estimation in RDDs
in a number of different ways. The first way, what is sometimes called an “S-Learner”, is simply to
include the treatment assignment indicator Z = I(X > 0) among the feature set along with the
other covariates, X and W . This approach was proposed in Hill (2011) in the context of regression
adjustment for treatment effect estimation under conditional strong ignorability. The second way,
what is sometimes called a “T-Learner” is to fit two individual BART models to the treated z = 1

and control z = 0 data separately. See Künzel et al. (2019) for a discussion of the S- and T-Learner
nomenclature.

Hahn et al. (2020) provide an extensive discussion of potential drawbacks to the S-Learner and
T-Learner approaches in the context of BART models, which we now summarize. We will refer to
S-BART and T-BART in relation to these strategies. The main problem with S-BART is that there
can be many trees, with potentially very different splits, that achieve a similar likelihood evaluation.
While this is unobjectionable if the goal is merely to predict E[Y | X = x,W = w, Z = z] — indeed,
the over-parametrization of these models probably accounts for much of their empirical success —
different splitting patterns in Z versus X tend to imply different treatment effect estimates. The
upshot — borne out by extensive simulation studies — is that S-BART models for causal inference
tend to have unpredictable biases as a result of the specific dependency structure among the predictor
variables in a given data set. While the T-BART approach successfully addresses this drawback of
S-BART, fitting completely separate models to the treated and control data introduces a different
problem: regularization of the conditional treatment effect function itself is implicit, and generally
too weak when treatment effects are expected to be small relative to variation in the outcome due to
other observed features or unobserved factors. In short, T-BART tends to over-fit the data, yielding
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CATE estimators with high variance.
In the next section, we introduce a modified BART model — different from both S-BART and

T-BART — that it is markedly better at CATE estimation than either one, and also better than local
polynomial regression and the CART approach of Reguly (2021) as well.

3.2 The BARDDT Model

For RDD, we propose that a linear model in the leaf is a viable strategy for overcoming the problems
with T-BART and S-BART described above. We build on the work of Chipman et al. (2002), Gramacy
and Lee (2008), and Starling et al. (2020), by proposing a BART model where the trees are allowed
to split on (x,w) but where each leaf node parameter is a vector of regression coefficients tailored
to the RDD context (rather than a scalar constant as in default BART). In one sense, such a model
can be seen as implying distinct RDD ATE regressions for each subgroup determined by a given
tree; however, this intuition is only heuristic, as the entire model is fit jointly as an ensemble of such
trees. Instead, we motivate this model as a way to estimate the necessary conditional expectations
via a parametrization where the conditional treatment effect function can be explicitly regularized,
as follows.

Let ψ denote the following basis vector:

ψ(x, z) =
[
1 zx (1− z)x z

]
. (12)

To generalize the original BART model, we define gj(x,w, z) as a piecewise linear function as follows.
Let bj(x,w) denote the node in the jth tree which contains the point (x,w); then the prediction
function for tree j is defined to be:

gj(x,w, z) = ψ(x, z)Γbj(x,w) (13)

for a leaf-specific regression vector Γbj = (ηbj , λbj , θbj ,∆bj )
t. Therefore, letting nbj denote the number

of data points allocated to node b in the jth tree and Ψbj denote the nbj ×4 matrix, with rows equal to
ψ(x, z) for all (xi, zi) ∈ bj , the model for observations assigned to leaf bj , can be expressed in matrix
notation as:

Ybj | Γbj , σ
2 ∼ N(ΨbjΓbj , σ

2)

Γbj ∼ N(0,Σ0),
(14)

where we set Σ0 =
0.033
J I as a default (for x vectors standardized to have unit variance in-sample).

This choice of basis entails that the RDD CATE at w, τ(0,w), is a sum of the ∆bj(0,w) elements
across all trees j = 1, . . . , J :

8



τ(0,w) = E[Y 1 | X = 0,W = w]− E[Y 0 | X = 0,W = w]

= E[Y | X = 0,W = w, Z = 1]− E[Y | X = 0,W = w, Z = 0]

=

J∑
j=1

gj(0,w, 1)−
J∑

j=1

gj(0,w, 0)

=
J∑

j=1

ψ(0, 1)Γbj(0,w) −
J∑

j=1

ψ(0, 0)Γbj(0,w)

=

J∑
j=1

(
ψ(0, 1)− ψ(0, 0)

)
Γbj(0,w)

=
J∑

j=1

(
(1, 0, 0, 1)− (1, 0, 0, 0)

)
Γbj(0,w)

=

J∑
j=1

∆bj(0,w).

(15)

As a result, the priors on the ∆ coefficients directly regularize the treatment effect. We set the tree
and error variance priors as in the original BART model.

Posterior sampling from this model proceeds nearly identically to the traditional BART Gibbs
sampler, but with a modified log marginal likelihood, which for a node bj is:

lbj =−
nbj
2

log(2π)− nbj log(σ)−
1

2
log

(
det

(
I +

Σ0Ψ
t
bj
Ψbj

σ2

))

−
rtbjrbj

2σ2
+

1

2

rtbjΨbj

σ2

(
Σ−1
0 +

Ψt
bj
Ψbj

σ2

)−1
Ψt

bj
rbj

σ2
,

(16)

where rbj is a nbj vector containing the partial residuals, as defined in (10), for the points in bj . Note
that this expression generalizes (11); the two expressions become equivalent if the basis vector Ψbj in
the above expression is a single column of ones.

Likewise, the parameter sampling follows a standard conditionally (on σ2) conjugate linear regres-
sion update, independently for each leaf of the current tree which we omit here as it can be found in
standard references (for example, section 2.3.3 in Gamerman and Lopes (2006)).

Figures 2 through 4 provide a graphical depiction of how the BARDDT model fits a response
surface and thereby estimates CATEs for distinct values of w. For simplicity only two trees are used
in the illustration, while in practice dozens or hundreds of trees may be used (in our simulations and
empirical example, we use 50 trees).

An interesting property of BARDDT can be seen in this small illustration — by letting the
regression trees split on the running variable, there is no need to separately define a “bandwidth” as
is used in the polynomial approach to RDD. Instead, the regression trees automatically determine (in
the course of posterior sampling) when to “prune” away regions away from the cutoff value. There
are two notable features of this approach. One, different trees in the ensemble are effectively using
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Figure 2: Two regression trees with splits in x and a single scalar w. Node images depict the g(x,w, z)
function (in x) defined by that node’s Γ coefficients. The vertical gap between the two line segments
in a node that contain x = 0 is that node’s contribution to the CATE at X = 0. Note that only such
nodes contribute for CATE prediction at x = 0

different local bandwidths and these fits are then blended together. For example, in the bottom panel
of figure 3, we obtain one bandwidth for the region d+i, and a different one for regions a+g and d+g.
Two, for cells in the tree partition that do not span the cutoff, the regression within that partition
contains no causal contrasts — all observations either have Z = 1 or Z = 0. For those cells, the
treatment effect coefficient is ill-posed and in those cases the posterior sampling is effectively a draw
from the prior; however, such draws correspond to points where the treatment effect is unidentified
and none of these draws contribute to the estimation of τ(0,w) — for example, only nodes a + g,
d+ g, and d+ i in figure 3 provide any contribution. This implies that draws of ∆ corresponding to
nodes not predicting at X = 0 will always be draws from the prior, which has some intuitive appeal.

BARDDT differs from Reguly (2021) — which is, to the best of our knowledge, the only other
tree-based CATE estimator for RDD — in three important ways:

• BARDDT is a sum of many regression trees, rather than a single tree,

• the BARDDT estimator is based on Bayesian posterior mean1 rather than a single optimization-
based model fit,

• BARDDT trees are permitted to split in the running variable (as mentioned in the previous
paragraph).

1As a partition model, BART-based estimates of conditional expectations have points of discontinuity. Although
RDD demands that µ1 and µ0 are smooth functions, this identification condition is on the DGP, not on the estimator.
BART is a consistent estimator of that underlying smooth function (He and Hahn, 2023; Saha, 2023) even if its estimates
are not.
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Figure 3: The two top figures show the same two regression trees as in the preceding figure, now
represented as a partition of the x-w plane. Labels in each partition correspond to the leaf nodes
depicted in the previous picture. The bottom figure shows the partition of the x-w plane implied by
the sum of the two trees; the red dashed line marks point W = w∗ and the combination of nodes that
include this point
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Figure 4: Left: The function fit at W = w∗ for the two trees shown in the previous two figures, shown
superimposed. Right: The aggregated fit achieved by summing the contributes of two regression tree
fits shown at left. The magnitude of the discontinuity at x = 0 (located at the dashed gray vertical
line) represents the treatment effect at that point. Different values of w will produce distinct fits; for
the two trees shown, there can be three distinct fits based on the value of w.

4 Simulation studies for CATE estimation in RDDs

This section describes a parametrized protocol for simulating data for evaluating CATE estimation
methods in RDDs. Modifiable code implementing this approach is available at the Github repository
associated with the paper.

There are three ingredients to any simulation-based statistical method evaluation procedure: the
estimand, the evaluation criteria, and the data generating process.

4.1 The estimand

Generically, our estimand is the CATE function at x = 0; i.e. τ(0,w). The key practical question is
which values of w to consider. Some values of w will not be well-represented near x = 0 and so no
estimation technique will be able to estimate those points effectively. As such, to focus on feasible
points — which will lead to interesting comparisons between methods — we recommend restricting
the evaluation points to the observed wi such that |xi| ≤ δ, for some δ > 0. In our example, we use
δ = 0.1 for a standardized x variable. Therefore, our estimand of interest is a vector of treatment
effects:

τ(0,wi) ∀i such that |xi| ≤ δ. (17)
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4.2 Estimation loss function

For our evaluation criteria we will consider average root-mean-squared estimation error, expressed as
a fraction of a default ATE estimator:

CATE RMSE =

√∑
i:|xi|≤δ (τ̂(0,wi)− τ(0,wi))

2√∑
i:|xi|≤δ (τ̂(0)− τ(0,wi))

2
. (18)

This performance metric judges the ability of τ̂(0,w) to estimate CATEs relative to a baseline ATE
estimator (at x = 0), thereby allowing us to tell if methods are doing better than would be possible
just by assuming homogeneous effects. It also permits a unitless performance measure, so that relative
accuracy across methods can be compared in a standardized way across data generating processes of
varying outcome scales, which can affect the implicit difficulty of the estimation problem.

4.3 Data generating process

The goal of our simulation study is to understand how various methods perform at estimating CATEs
across a variety of DGPs. More particularly, we would like to be able to characterize what aspects of
a DGP make a causal inference problem hard or easy so that we may identify methods which adapt
to variation in the “intrinsic” problem difficulty. To approach this problem we will take an analysis of
variance (ANOVA) perspective (Hahn et al., 2018, 2019), tailored to the RDD context.

Because an RDD only identifies the treatment effect at x = 0, the relevant signal to noise ratios
vis-a-vis treatment effect estimation are conditional on x = 0; accordingly, we will design our DGP so
that it is explicitly parametrized in terms of conditional variances at x = 0. Data will be simulated
consistent with the causal diagram in Figure 1: W and X will be generated , followed by Y given W
and X.

4.3.1 Generating (W,X)

Our simulation studies will consider W to be fixed in advance and we will consider replications over
(X,Y ). The covariates W can be empirical data from a real-world application or can be simulated.
Here, for illustration purposes, we generate W according to a mean-zero multivariate Gaussian dis-
tribution with a Toeplitz covariance matrix, with entries ranging from 0 to 2. For example, for p = 5

the covariance would be:

Cov(W ) =


2 3

2 1 1
2 0

3
2 2 3

2 1 1
2

1 3
2 2 3

2 1
1
2 1 3

2 2 3
2

0 1
2 1 3

2 2

 .

We then draw X according to a Gaussian distribution centered at a linear combination of the W = w

values:
X |W = w ∼ N(γ0 +wtγ, ν)

13



where γ0 is the marginal mean and γ is a p-dimensional vector of regression coefficients. For our
demonstration here we use γ0 = 1; this choice was made so that X is not centered at the cutoff,
which we thought would be unrealistic. For γ we use an evenly weighted coefficient vector such that
Cov(X) = 1 and Cor(X,W tγ) = ρ, for some pre-specified value of ρ; these constraints also determine
the value of ν. Full details can be found in the Github repository associated with this paper.

Setting γ to the zero vector implies that X and W are independent, which is an interesting special
case. But being able to test the performance of CATE estimators under varying degrees of association
between the running variable X and moderators W is important and this linear model is a simple
test case for that. To summarize, γ0 and ρ are important parameters in our DGP, governing how
concentrated around the cutoff the data are and the strength of the association between the running
variable and the moderators.

4.3.2 Generating Y , given W and X

To begin, we use the following “treatment effect parametrization” when specifying our DGP.

E(Y | X = x,W = w, Z = z) = µ(x,w) + τ(x,w)z, (19)

which relates to the notation in Section 2.1 by taking µ(x,w) ≡ µ0(x,w) and τ(x,w) ≡ µ1(x,w) −
µ0(x,w). This parametrization allows us to generate our data directly in terms of the treatment effect
function; we may specify the average magnitude and complexity of τ(x,w) explicitly. In this paper
we will consider only homoskedastic errors in our DGP:

Yi = µ(xi,wi) + τ(xi,wi)zi + σϵi, (20)

for a mean-zero Gaussian error term; extensions to heteroskedastic and/or non-normal errors are
straightforward.

Before describing our specific choices for µ(x,w) and τ(x,w), we will discuss a strategy for fixing
some properties of these functions averaged over W , given X = 0. Specifically, we consider the
following properties/quantities: minw τ(0,w), V(τ(0,W ) | X = 0), and V(µ(0,W ) | X = 0). We
use Monte Carlo simulation to compute these quantities for “template” functions µ⋆ and τ⋆ and then
devise linear transformations of those template functions to achieve desired relationships between
them. That is, we take a large sample from W | X = 0 and compute the above quantities based on
that simulated data. For (W,X) draw as described above, W | X = 0 is a multivariate Gaussian with

E(W | X = 0) = −γ0γ,

V(W | X = 0) = ΣW − ΣWββ
tΣt

W .
(21)

Using this strategy, we fix V(µ(0,W ) | X = 0) = 1 and specify our DGP in terms of the following
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parameters √
V(τ(0,W ) | X = 0) = k2,√

V(Y | X = 0,W ) = σ = k4

min
w
τ(0,w) =

¯
τ0 = k5.

(22)

These values, along with γ0 and ρ mentioned in the previous section, are the key parameters in our
DGP.

Last, but not least, we must specify µ⋆ and τ⋆. Letting w = (w1 . . . wp) be realizations of a length

p random vector W , define w⋆ =
∑p

j=1 wj√
p . Our template functions are:

µ⋆(x,w) = k1(x+ 1)3 + (w⋆ + 2)2
(
sign(x+ 1)

√
|(x+ 1)|

)k3
,

τ⋆(w) = Φ(2w1 + 3)/2 + ϕ(w1),
(23)

where Φ(·) and ϕ(·) are the cumulative distribution and probability density functions, respectively,
of a standard normal random variable. The variables k1 and k3 are further parameters for variation;
the parameter k1 controls how much variability of µ will be due to X versus to W and k3 determines
whether or not µ is additive in X and W or if there is an interaction (k3 = 1) or not (k3 = 0).

These choices of µ⋆ and τ⋆ provide nontrivial nonlinearities while being relatively easy to grok.
Furthermore, they are designed such that the dimension of W can be modified without changing the
function definition, but still using all available dimensions in the definition of µ. The treatment effect
function is restricted to depend on a single element of W to facilitate plotting.

Many variations of these functions were explored in the preparation of this paper; these specific
choices nicely illustrate the simulation procedure. Considering a variety of template functions is of
course recommended and should be chosen depending on domain knowledge to investigate their impact
on the performance of candidate CATE estimation procedures in a use-case-relevant way.

4.4 Estimation methods

To demonstrate our simulation protocol we will compare the following methods:

• BARDDT
• S-BART
• T-BART
• a local polynomial estimator
• RD-Tree (Reguly, 2021).

All three BART variants were fit with 50 trees each (two forests of 50 trees for T-BART), with tree
depth parameters set as in Chipman et al. (2010): α = 0.95, β = 2 and fit using the stochtree

package. Further, the CATE estimator in all cases was the vector of posterior means of τ(0,wi) for i
such that |xi| ≤ 0.1.

The local polynomial estimator is trained on data points within the bandwidth obtained with
the rdrobust package (Calonico et al., 2015). Ordinary-least-squares is used to fit a fourth degree
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polynomial in each feature of W , interacted with X and Z, and an additive third degree polynomial
in X, or, in Wilkinson notation (Wilkinson and Rogers, 1973):

Y ∼

 p∑
j=1

poly(Wj , 4)

 ·X · Z + poly(X, 3), (24)

where poly(A, p) =
∑p

j=1A
j . The choice of this particular polynomial is of course open to discussion,

but any specific choice will likewise be subject to critique; a main benefit of tree-based regressions is
that they side-step this decision.

Model parameters for RD-Tree were set as suggested in Reguly (2021). For further details on
the method and its parameters, please refer to the original text and the example script at https:

//github.com/regulyagoston/RD_tree/.

4.5 Comparisons

The results in this section are based on configurations of the DGP described in the previous section
which can be roughly separated into two groups: “easy” and “hard”. For the easy setting, (k1 = 1, k2 =

1, k3 = 0, k4 = 0.1): prognostic and treatment variation are comparable magnitudes, µ is separable
in x and w, and low noise. For the “hard” setting (k1 = 5, k2 = 0.25, k3 = 1, k4 = 0.5): prognostic
variation is twenty times larger than treatment variation, µ is non-separable in x and w, and noise is
high. Results are based on 100 replications of size n = 4000 for each DGP configuration.

4.5.1 Overall results

Figure 5 shows boxplots of the CATE RMSE per replication for three configurations each of the “easy”
and “hard” setups. S-BART results are excluded from these plots because it had significantly worse
performance in all scenarios, distorting the plotting scale and making comparing the other methods
more difficult visually. Recall that a value greater than or equal to 1 means the estimator is doing no
better at CATE prediction than estimating the ATE and assuming treatment effect homogeneity.

Table 1 presents the average RMSE obtained by all estimators. BARDDT is always better than
the other methods. T-BART performs well in the easier settings, but suffers a near tenfold increase in
its average RMSE in the settings with high noise and non-separable µ. The local polynomial estimator
usually performs worse than BARDDT, even in the settings in which it is competitive on average,
and it frequently obtains much larger errors in individual replications. RD-Tree is competitive with
the polynomial for second-best in the harder DGPs, but is the second worst performer in the easier
cases.

4.5.2 Individual fits

In addition to the aggregate results, such as those reported in Table 1 and depicted in Figure 5, it
is often instructive to consider individual fits compared to the ground-truth, which is available to us
in simulation studies. The qualitative behavior — the specific ways that the models misfit certain
types of data — are often persistent across replications, but can be seen in individual fits. Figure 6
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Figure 5: RMSE results per estimator. The upper row corresponds to the ‘easy’ setup described
in the text; the lower row corresponds to the ‘hard’ setup. For the easy setting, the values for the
additional parameters are (k5, p, ρ) = {(0, 2, 0.5), (0, 4, 0), (1, 2, 0)}; for the hard setting, the values
are (k5, p, ρ) = {(0, 4, 0.5), (1, 2, 0.5), (1, 4, 0)}. The CATE RMSE values are divided by the RMSE
obtained by predicting the CATE with an estimate ATE. Thus, the red line at 1 indicates the point
above which the methods are worse than this naive estimator. BARDDT produces lower RMSE than
the other estimators on average and is most often better than the homogenous estimator.
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k1 k2 k3 k4 k5 p ρ BARDDT T-BART S-BART Polynomial RD-Tree
1.00 1.00 0.00 0.10 0.00 2.00 0.50 0.13 0.21 1.32 0.37 0.53
1.00 1.00 0.00 0.10 0.00 4.00 0.00 0.18 0.19 1.47 0.31 0.74
1.00 1.00 0.00 0.10 1.00 2.00 0.00 0.18 0.19 1.67 0.37 0.80
5.00 0.25 1.00 0.50 0.00 4.00 0.50 0.77 1.70 1.49 1.08 1.16
5.00 0.25 1.00 0.50 1.00 2.00 0.50 0.84 2.00 2.83 1.06 1.03
5.00 0.25 1.00 0.50 1.00 4.00 0.00 0.84 1.75 2.47 1.02 1.14

Table 1: Average RMSE per DGP, also divided here by the RMSE of the naive ATE estimator

presents the CATE fits for on an individual data set, for one easy and one hard DGP. The qualitative
fits of BARDDT are in line with expectations, while the other methods exhibit undesirable behavior
in certain cases.

• Although T-BART performs well under the easier regime, even there it still exhibits high vari-
ance CATE estimates. T-BART’s high variance becomes more pronounced under the harder
DGP, resulting in substantially higher RMSE relative to both BARDDT and the polynomial
model.

• The extreme bias shift exhibited by S-BART in the low noise setting is reminiscent of the
regularization-induced confounding (RIC) problem, described by Hahn et al. (2020). Broadly,
the lesson here is that S-BART has unpredictable biases in causal inference problems. It does
comparatively well in the high noise case, but only because it rarely splits in that case, collapsing
to a homogenous treatment model, which outperforms the overfitting T-BART and polynomial
models in this regime.

• The fits for the easier setup show that, even with high signal, the polynomial model struggles
with extrapolation at the boundaries of the support of w1. At the same time, the polynomial
model also presents a sizable increase in variance under high noise, as seen on the fits for the
harder regime.

• RD-Tree appears to “under-split” on W , leading to a too-coarse fit of the CATE function,
especially in the low-noise regime. This behavior is to be expected with a single CART fit, a
problem that additive tree models, like BART, were explicitly designed to address.

5 The Effect of Academic Probation on Educational Outcomes

We turn now to an empirical illustration based on Lindo et al. (2010), who analyze data on college
students enrolled in a large Canadian university in order to evaluate the effectiveness of an academic
probation policy. Students who present a grade point average (GPA) lower than a certain threshold
at the end of each term are placed on academic probation and must improve their GPA in the
subsequent term or else face suspension. We are interested in how being put on probation or not, Z,
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Figure 6: Each panel presents the CATE fits for one illustrative sample for one easy and one hard
DGP setting, plotted against the true CATE, shown as a red curve. Left panel corresponds to the
parameter configuration in the first row of table 1, right panel corresponds to the fourth row. The
BARDDT fit is shown in gold in all of the plots for ease of comparison. From top to bottom we have
T-BART (purple), S-BART (blue), polynomial (green), and RD-Tree (gray).
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affects students’ GPA, Y , at the end of the current term. The running variable, X, is the negative
distance between a student’s previous-term GPA and the probation threshold, so that students placed
on probation (Z = 1) have a positive score and the cutoff is 0. Potential moderators, W , are:

• gender (‘male’),

• age upon entering university (‘age_at_entry’)

• a dummy for being born in North America (‘bpl_north_america’),

• the number of credits taken in the first year (‘totcredits_year1’)

• an indicator designating each of three campuses (‘loc_campus’ 1, 2 and 3), and

• high school GPA as a quantile w.r.t the university’s incoming class (‘hsgrade_pct’).

Figure 7 presents a summary of the CATE posterior produced by BARDDT for this application.
This picture is produced fitting a regression, using W as the predictors, to the individual posterior
mean CATEs:

τ̄i =
1

M

M∑
h=1

τ (h)(0,wi), (25)

where h indexes each of M total posterior samples. As in our simulation studies, we restrict our
posterior analysis to use wi values of observations with |xi| ≤ δ = 0.1 (after normalizing X to have
standard deviation 1 in-sample). For the Lindo et al. (2010) data, this means that BARDDT was
trained on n = 40, 582 observations, of which 1,602 satisfy xi ≤ 0.1, which were used to generate the
effect moderation tree from Figure 7.

The resulting effect moderation tree indicates that course load (credits attempted) in the academic
term leading to their probation is a strong moderator. Contextually, this result is plausible, both
because course load could relate to latent character attributes that influence a student’s responsiveness
to sanctions and also because it could predict course load in the current term, which would in turn
have implications for the GPA (i.e. it is harder to get a high GPA while taking more credit hours).
The tree also suggests that effects differ by campus, and age and gender of the student. These findings
are all prima facie plausible as well.

To gauge how strong these findings are statistically, we can zoom in on isolated subgroups and
compare the posteriors of their subgroup average treatment effects. This approach is valid because in
fitting the effect moderation tree to the posterior mean CATEs we in no way altered the posterior itself;
the effect moderation tree is a posterior summary tool and not any additional inferential approach; the
posterior is obtained once and can be explored freely using a variety of techniques without vitiating
its statistical validity. Investigating the most extreme differences is a good place to start: consider
the two groups of students at opposite ends of the treatment effect range discovered by the effect
moderation tree:

Group A a male student that entered college older than 19 and attempted at least 5 credits in the
first year (leftmost leaf node, colored red, comprising 128 individuals)

Group B a student of any gender who entered college younger than 19 and attempted more than
4, but less than 5 credits in the first year (rightmost leaf node, colored gold, comprising 108
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individuals).

Subgroup CATEs are obtained by aggregating CATEs across the observed wi values for individuals
in each group; this can be done for individual posterior samples, yielding a posterior distribution over
the subgroup CATE:

τ̄
(h)
A =

1

nA

∑
i:wi

τ (h)(0,wi), (26)

where h indexes a posterior draw and nA denotes the number of individuals in the group A. Figure 8
presents a contour plot for a bivariate kernel density estimate of the joint CATE posterior distribution
for subgroups A and B. The contour lines are almost all above the 45◦ line, indicating that the
preponderance of posterior probability falls in the region where the treatment effect for Group B is
greater than that of Group A, meaning that the difference in the subgroup treatment effects flagged by
the effect moderation tree persist even after accounting for estimation uncertainty in the underlying
CATE function.

As always, CATEs that vary with observable factors do not necessarily represent a causal mod-
erating relationship. Here, if the treatment effect of academic probation is seen to vary with the
number of credits, that does not imply that this association is causal: prescribing students to take a
certain number of credits will not necessarily lead to a more effective probation policy, it may simply
be that the type of student to naturally enroll for fewer credit hours is more likely to be responsive
to academic probation. An entirely distinct set of causal assumptions are required to interpret the
CATE variations themselves as causal. All the same, uncovering these patterns of treatment effect
variability are crucial to suggesting causal mechanism to be investigated in future studies.

6 Summary

Reliable CATE estimation is important for making the most of our observational data sets. As RDD
continues to gain popularity in industry — for example, as a byproduct of business decisions being
made based on an observed index — being able to use these data to explore subgroup treatment
effects is a big advantage. In this paper, we have demonstrated that a BART ensemble of treed
linear regressions — which we call BARDDT — estimates RDD CATEs successfully and markedly
better than available alternatives and have demonstrated how to interpret the resulting estimates on
a reanalysis of a policy evaluation question from education (Lindo et al., 2010). Software for fitting
BARDDT is freely available in the stochtree package, available in both R and Python.
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