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1 Readings in Statistics and Econometrics 2015: Causality

• In the Fall semester of 2015 (almost a decade ago!) I organized a readings in statistics seminars on causality.

• The list of presenters and papers can be found here:

https://hedibert.org/previous-teaching/

• In the following link you will find links to textbooks and edited books, special issues, articles with discussion and
web material: slides of lectures, discussion of causality, video lectures and more (in chronological order):

http://hedibert.org/wp-content/uploads/2015/10/annotatedbibliography.pdf

• In the following link you will find only articles and book chapters (in alphabetical order).

http://hedibert.org/wp-content/uploads/2015/10/annotatedbibliography-articles.pdf

• I reproduce below the Outline of the lectures (all talks have slides, but the 7th)

1. September 29th, 2015 – Hedibert Lopes, Insper
Haavelmo (1943) The statistical implications of a system of simultaneous equations. Econometrica, 11, 1-12.

2. October 6th, 2015 – Hedibert Lopes, Insper
Rubin (1974) Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of
Educational Psychology, 56, 688-701.

3. October 13th, 2015 – André Yoshizumi, IME/USP
Holland (1986) Statistics and causal inference (with discussion). JASA, 81, 945-970.

4. October 20th, 2015 – Paloma Uribe, IME/USP
Pearl (1995) Causal diagrams for empirical research (with discussion). Biometrika, 82, 669-710.

5. November 3rd, 2015 – Sergio Firpo, EESP/FGV
Angrist, Imbens and Rubin (1996) Identification of causal effects using IVs (with discussion). JASA, 91, 444-472.

6. November 10th – Julio Trecenti, IME/USP
Dawid (2000) Causal inference without counterfactuals (with discussion). JASA, 95, 407-424.

7. November 24th, 2015 – Manasses Nóbrega, UFABC
Vansteelandt and Goetghebeur (2003) Causal inference with generalized structural mean models. JRSS-B, 65,
817-835.

8. December 1st, 2015 – Hedibert Lopes, Insper
Heckman and Pinto (2015) Causal analysis after Haavelmo. Econometric Theory, 31,115-151.
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2 Simpson’s Paradox

“Named after Edward Simpson (born 1922), the statistician who first popularized it, the paradox refers to the existence
e of data in which a statistical association that holds for an entire population is reserved in every subpopulation.”

2.1 Example 1

“We record the recovery rates of 700 patients (343 women and 357 men) who were given access to the drug. A Total
of 350 patients chose to take the drug and 350 patients did not.”

Drug No drug
Patients 273 out of 350 - 78% 289 out of 350 - 83%

Total and percentage of recovered.

Question: Based on this data, should a doctor recommend the drug or not?

2.2 Example 2

Drug No drug
Low BP 81 out of 87 - 93% 234 out of 270 - 87%
High BP 192 out of 263 - 73% 55 out of 80 - 69%

Total and percentage of recovered.

Question: Based on this data, should a doctor recommend the drug or not?

2.3 Example 3

The more a person exercises, the higher their cholesterol is!
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3 Causal inference

3.1 Why study causation

• “We study causation because we need to make sense of data, to guide actions and policies, and to learn from
our sucess and failures.”

• “We need to estimate the effect of

i) Smoking on lung cancer;

ii) Education on salaries;

iii) Carbon emissions on the climate.”

• “We need to understand HOW and WHY causes influence effects”

3.2 Back to example 1

“We record the recovery rates of 700 patients (343 women and 357 men) who were given access to the drug. A Total
of 350 patients chose to take the drug and 350 patients did not.”

Drug No drug
Men 81 out of 87 - 93% 234 out of 270 - 87%
Women 192 out of 263 - 73% 55 out of 80 - 69%
Combined 273 out of 350 - 78% 289 out of 350 - 83%

Total and percentage of recovered.

“The data seem to say that if we know the patient’s gender – male or female – we can prescribe the drug, but if the
gender is unknown we should not! Obviously, that conclusion is ridiculous.”

“Should a doctor prescribe the drug for a woman? A man? A patient of unknown gender? Or consider a policy
maker who is evaluating the drug’s overall effectiveness on the population. Should he/she use the recovery rate for
the general population? Or should he/she use the recovery rates for the gendered subpopulations?”

“The answer is nowhere to the found in simple statistics. In order to decide whether the drug will harm or help a
patient, we first have to understand the story behind the data – the causal mechanism that let to, or generated, the
results we see.”

“Suppose we knew an additional fact: Estrogen has a negative effect on recovery, so women are less likely to recover
than men, regardless of the drug. In addition, as we can see from the data, women are significantly more likely to
take the drug than men are.”

gender

drug rec
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3.3 Back to example 2

“Suppose we looked at the same numbers from our first example of drug taking to recovery, instead of recording
participants’ gender, patient’s blood pressure (BP) were recorded at the end of the experiment. In this case, we know
that the drug affects recovery by lowering the BP of those who take it – but unfortunately, it also has a toxic effect.”

Drug No drug
Low BP 81 out of 87 - 93% 234 out of 270 - 87%
High BP 192 out of 263 - 73% 55 out of 80 - 69%
Combined 273 out of 350 - 78% 289 out of 350 - 83%

Total and percentage of recovered.

“In the general population, the drug might improve recovery rates because of its effect on the BP. But in the subpop-
ulations – the group of people whose posttreatment BP is high and the group whose posttreatment BP is low – we, of
course, would not see that effect; we would only see the drug’s toxic effect.”

“Remarkably, though the numbers are the same in the gender and blood pressure examples, the correct result lies in
the segregated data for the former and the aggregated data for the latter.”

BP

drug rec

3.4 Back to example 3

“Consider a study that measures weekly exercise and cholesterol in various age groups. When we plot exercise on the
X-axis and cholesterol on the Y-axis and seggragate by age, we see that there is a general trend downward in each
group; the more young people exercise, the lower their cholesterol is, and the sample applies for middle-aged people
and elderly.”

“If, however, we use the sample scatter plot, but we don’t segregate by gender, we see a general trend upward; the
more a person exercises, the higher their cholesterol is.”

“If we know that that older people, who are more likely to exercise, are also more likely to have high cholesterol
regardless of exercise, then the reversal is easily explained, and easily resolved.”

“Age is a common cause of both treatment (exercise) and outcome (cholesterol).”
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age

exer chol

4 Chains, Forks and Colliders

4.1 Chains

X Y Z

Rule 1: Conditional independence chains: X and Z are conditionally independent given Y , if there is only one
unidirectional path between X and Z and Y is any set of variables that intercepts that path.

4.2 Forks

X

Y Z

Rule 2: Conditional independence forks: If X is a common cause of Y and Z, and there is only one path
between Y and Z, then Y and Z are independent conditional on X.

8



4.3 Colliders

Z

Y Y

Rule 3: Conditional independence of colliders: If Z is a collision between X and Y and there is only one path
between X and Y , then X and Y are unconditionally independent but are conditionally dependent given Z and any
descendants of Z.

5 More on chains, forks and colliders

Graham Harrison, Towards Data Science, Jan 31, 2024. Explaining junctions using correlation, independence and
regression to understand their critical importance in causal inference. https://search.app/xNWjnZeghtJ1Jayx8

“I have constructed the fictitious DAG below because it is sufficiently simple to effectively explore the concepts and
sufficiently complex to contain all 3 types of junctions: chains, forks and colliders.”

Z3

Z1 Z2

X W Y

5.1 Paths and junctions

“Paths always start at the treatment (X), always end at the outcome (Y ) and are acyclic (i.e. they do not loop back).
A junction has exactly 3 nodes and 2 connections. The 5 paths visualised above can be expressed in this form as
follows:”

1) X →W → Y One junction.

2) X ← Z1→ Z3→ Y Two junction.

3) X ← Z1→ Z3 < −Z2→ Y Three junction.

4) X ← Z3→ Y

5) X ← Z3← Z2→ Y

9
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All junctions from the above DAG:

1) X →W → Y

2) Z1 → X →W

3) Z3 → X →W

4) Z1 → Z3 → X

5) Z1 → Z3 → Y

6) Z2 → Z3 → X

7) Z2 → Z3 → Y

8) X ← Z1 → Z3

9) X ← Z3 → Y

10) Y ← Z2 → Z3

11) W → Y ← Z2

12) W → Y ← Z3

13) Z2 → Y ← Z3

14) Z1 → X ← Z3

15) Z1 → Z3 ← Z2

“It should be apparent from a quick review of all junctions within our DAG that there are just 3 possible patterns or
types.

Chain: Junction 1 (X →W → Y ) is an example of a chain where the first node points to the intermediary (X →W )
and the intermediary “points” to the final node (W → Y ). Junctions 2 to 7 are also chains.

Fork: Junction 8 (X ← Z1 → Z3) is an example of a fork where the intermediary node points to both the first node
(X ← Z1) and the final node (Z1 → Z3). Junctions 9 and 10 are also forks.

Collider: Junction 11 (W → Y ← Z2) is an example of a collider where the first node points to the intermediary
(W → Y ) and the final node also points to the intermediary (Y ← Z2). Junctions 12 to 15 are also colliders.

5.2 Causal Discovery and Causal Validation

“Causal Discovery is the concept of automatically generating a DAG from the data and Causal Validation is the
process of testing a proposed DAG against a dataset. It is typically possible for more than one DAG to satisfy the
causal validation tests against a given dataset, hence these approaches are complex and uncertain. ”

5.3 Simulating a dataset from a DAG

Z1 ∼ N(4.75, 1.722) and Z2 ∼ N(3.29, 1.892)

Z3 = 3Z1 − 1.5Z2 + εz3

X = 2Z1 + 2.5Z3 + εx

W = 3X + εw

Y = 2W + 2Z2 − 3Z3 + εy

10



R code

set.seed(4321)

n = 100

z1 = rnorm(n,4.75,1.72)

z2 = rnorm(n,3.29,1.89)

z3 = 3*z1 -1.5*z2

x = 2*z1 + 2.5*z3

w = 3*x

y = 2*w + 2*z2 -3*z3

sig.z3 = sqrt(var(z3))

sig.x = sqrt(var(x))

sig.w = sqrt(var(w))

sig.y = sqrt(var(y))

z3 = z3 + rnorm(n,0,sig.z3)

x = x + rnorm(n,0,sig.x)

w = w + rnorm(n,0,sig.w)

y = y + rnorm(n,0,sig.y)

cbind(z1,z2,w,x,y)

6 d-separation (directional)

• d-connected: there exists a connecting path between them.

• d-separated: there exists no such path.

• If we are not conditioning on any variable, then only colliders can block a path.

(d-separation) A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A ← B → C such that the middle node B is in Z (i.e., B is
conditioned on), or

2. p contains a collider A→ B ← C such that the collision node B is not in Z, and no descendants of B is in Z.

If Z blocks every path between X and Y , then X and Y are d-separated, conditional on Z, and thus are independent
conditional on Z.

6.1 Example

The graphical model below contains a collider with child and a fork.

W

Z X Y

U
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• Z and Y are d-separated, so Z ⊥⊥ Y .

• Conditioning on W (collider) “unblocks” Z and Y , so Z and Y are conditionally dependent.

• Conditioning on U (descendant of a collider) “unblocks” Z and Y , so Z and Y are conditionally dependent.

• Conditioning on {W,X} “blocks” Z and Y , so Z and Y are conditionally independent.

The graphical model below contains an additional forked path between Z and Y .

T

W

Z X Y

U

• Z 6⊥⊥ Y , since path between Z and Y with no colliders.

• Z ⊥⊥ Y |T

• Z 6⊥⊥ Y |T,W

• Z ⊥⊥ Y |T,W,X

• Z and Y are d-connected conditional on W,U, {W,U}, {W,T}, {U, T}, {W,U, T}, {W,X}, {U,X}, {W,U,X}.

• Z and Y are d-separated conditional on T, {X,T}, {W,X, T}, {U,X, T}, {W,U,X, T}.

7 Examples

7.1 Estimating the effect of a marketing campaign

This example is taken from Heinrich Kögel’s Medium article Causal Machine Learning in Marketing, from July 31st,
2023. https://medium.com/@heinrichkoegel/causal-machine-learning-in-marketing-12dcd91ec24e

1. The company sells computer equipment to other businesses.
2. Marketing campaign offering discounts to certain customer firms.
3. Marketing managers: should we continue providing these discounts?
4. Comparing average sales from firms that received or not the discount.
5. Larger firms (more employees) were more likely to receive the discount.
6. The company has higher sales with larger firms.
The following graph summarizes the dependences between the variables.
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size

disc. sales

Effect of receiving the discount on sales: disc → sales.
Firm size influences the likelihood of receiving the discount: size → disc.
Larger firms tend to result in higher sales: size → sales.

Discount is the treatment, sales is the outcome, and firm size is the confounding variable is associated with both
discount and sales. If we do not account for the influence of this confounding variable when estimating the effect of the
discount, we will obtain an incorrect estimate. Confounding variables lead to false conclusions in naive estimations.
To isolate the causal effect, we need to control for or hold constant the confounding variables in our estimation.
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7.2 Comparing two classes of medication for hypertension

The figure below is the beginning of Section 1.1, page 4, of the 2024 book Bayesian Nonparametrics for Causal
Inference and Missing Data, by Michael Daniels, Antonio Linero and Jason Roy. Also, the reference [8] in the text
is the 2015 book Causal Inference for Statistics, Social, and Biomedical Sciences, by Guido Imbens and Donald
Rubin. The reference [14] in the text is the 1974 paper Estimating causal effects of treatments in randomized and
nonrandomized studies, by Donald Rubin, that appeared in the volume 66, number 5, pages 688, of “Journal of
Educational Psychology”.
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8 Potential outcome, ATE, QTE, CATE, STUVA

“Causal inference requires assumptions that cannot be checked from the data.”

Suppose that A is a binary treatment, then

A =

{
1 if unit is treated
0 if unit is untreated

.

In the previous example, A = 1 if prescribed ACEIs (treated) and A = 0 if prescribed ARBs (untreated). The outcome
Y is the systolic blood pressure (SBP). Recall that ACEI stands for angiotensin-converting enzyme inhibitor and ARB
stands for angiotensin II receptor blockers.

• Y (a) is a potential outcome, i.e. the outcome that would be observed if the individual received treatment
a ∈ {0, 1}.

• Potential outcomes can be used to derive causal estimands. For instance, the average treatment effect (ATE)
is defined as

E{Y (1)} − E{Y (0)},
which, for the example, is “a population-level parameter and can be interpreted as the answer to the question,
how much higher would the average SBP be in the population if everyone had been treated with ACEIs compared
to if everyone had been treated with ARBs?

• The average treatment effect on the treated (ATT) is defined as

E{Y (1)|A = 1} − E{Y (0)|A = 1},

which is “a contrast between the average outcome under treatment and under no treatment within the subpop-
ulation of treated individuals. For treated individuals, we can think of Y (0) as the counterfactual outcome – the
outcome that would have been observed had the subject, contrary to fact, not been treated.

• The quantile treatment effect (QTE) can be defined as

F−11 (p)− F−10 (p),

where Fa(y) = Pr(Y (a) ≤ y). “QTEs are particularly usefl when the outcome of interest is skewed, or when the
treatment only has a large effect for a small subset of the population. Check Brantly Callaway’s notes on the
QTE at https://cran.r-project.org/web/packages/qte/vignettes/R-QTEs.html.

• For binary outcomes, one might define the causal relative risk

E{Y (1)}
E{Y (0)}

,

which can be read as “how many times more likely would high BPS be if everyone was treated with ACEIs
rather than ARBs?”

• Computing ATE for subpopulations, the conditional ATE (CATE):

E{Y (1)− Y (0)|V = v},

where V is a set of covariates of interest and V = v defines a subpopulations.

15
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8.1 Identifiability and causal assumptions

“For most studies, we observe the treatment received (Ai) and the outcome (Yi) for N total subjects (i = 1, . . . , N).
To link observed data (no potential outcomes!) to potential outcomes, we need causal assumptions.”

SUTVA: The Stable Unit Treatment Value Assumption (SUTVA) is said to hold when the potential outcome of
any subject i does not depend on the treatment received by the other subjects. That is if a = (a1, . . . , aN ) and
a′ = (a′1, ..., a

′
N ) are any two possible assignments of subjects to treatments such that ai = a′i and Yi(a) is the

potential outcome of subject i under a, we have

Yi(a) = Yi(a
′).

Consistency: The consistency assumption holds if Yi = Yi(a), if Ai = a. That is, if subject i is observed to have
received treatment a then their observed outcome is just their potential outcome for treatment a.

Randomized trials are the gold standard for establishing causation because randomizing the treatment assignment
guarantees that {Yi(0), Yi(1)} is independent of A, so

E{Yi(a)} = E{Yi(a)|Ai = a} = E(Yi|Ai = a),

so that E{Yi(a)} can be identified in terms of the observable quantities (Yi, Ai).

Ignorability: The ignorability assumption holds if

{Y (0), Y (1)} ⊥⊥ A | L,

where L is a set of observed covariates that influence both Y and A (remember when we defined a fork?). “The
selection of confounders L is, at least in part, based on subject matter knowledge. These pre-treatment variables
should be chosen to completely capture the association between the treatment assignment and the outcome. This
assumption is sometimes refereed to as a no unmeasured confounders assumption, an unconfoundedness assumption,
or as a exchangeability assumption.”

“The validity of ignorability cannot be assessed from the observed data, regardless of how large the sample size is.
This is because we can never rule out the possibility that an apparent association between the treatment and outcome
is due to some variable that we happen to not have measured.”

Positivity: The positivity assumption holds if

Pr(A = a|L = l) > 0 for all a and l.

Identifiability of the ATE: Combining consistency, positivity, and ignorability can be used to identify the ATE
with binary treatments.

8.2 Propensity scores

The propensity score is defined as
e(l) = Pr(A = 1|L = l)

Proposition: Suppose that the SUTVA, consistency, ignorability, and positivity assumptions hold and that the
treatment Ai is binary. Then the ATE can be written as

ATE = E

{
AY

e(L)
− (1−A)Y

1− e(L)

}
= E

{
Y

A− e(L)

e(L){1− e(L)}

}
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“If we can estimate the propensity score sufficiently well, then the plug-in estimate

ÂTE =
1

n

n∑
i=1

Yi
Ai − ê(Li)

ê(Li){1− ê(Li)}

is consistent for the ATE.”

“The propensity score plays a prominent role in causal inference. It has the property of being a balancing scores,
which makes it a useful one-dimensional summary of L.”

9 Instrumental variables

The following DAG illustrate the well-known instrumental variable solution to the endogeneity in the treatment/outcome
scenario.

C

T OIV

IV: Instrumental variable/Instrument
T: Treatment/Program/Policy/Risk Factors
C: Unmeasured Confounders/Measured Confounders/Confounding Factors
O: Outcome

Confounders (C) Treatment (T) Outcome (O) IV
i Maternal characteristics Smoking during pregnancy Low birth weight Cigarettes taxes
ii Smoking, caffeine, alcohol body mass index Parkinson disease FTO gene variant
iii Prognostic factors Catheter use Mortality Patients with catheter at facility
iv Ability Education Earnings Mother’s education
v Proximity Tutoring program GPA Library hours

9.1 Bivariate Gaussian linear regression

In the most popular IV problem, the goal is to measure the effect of treatment x on the outcome y:

yi = β0 + β1xi + εyi ,

for i = 1, . . . , n. However, there is dependence between xi and εyi as the following DAG illustrates. In words, the
treatment variable xi is endogenous, and both xi and the outcome variable yi are affected by unmeasured or measured
confounders (εxi , ε

y
i )

εxi , ε
y
i

xi yizi
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If the error terms (the unmeasured confounders) were uncorrelated, i.e. cov(εxi , ε
y
i ) = 0, then endogeneity disappears

and β1 is a causal effect. From the below DAG becomes obvious why. Notice that zi → xi → yi is a fork, so yi and zi
are independent, conditionally on xi.

εxi εyi

xi yizi

Now, let us go back to the first DAG where cov(εxi , ε
y
i ) 6= 0. We have have a system with two equations:

yi = β0 + β1xi + εyi
xi = δ0 + δ1zi + εxi ,

with εi = (εxi , ε
y
i ) following a bivariate normal distribution with zero mean vector, variances σ2

y and σ2
x and covariance

σxy = ρσyσx. We can now characterize lack of endogeneity and the strength of the instrumental variables:

ρ = 0 ⇒ no endogeneity

δ = 0 ⇒ no instrument

To understand how one is able to learn the effect of x on y, let us replace xi in the outcome equation by the treatment
equation, i.e.

yi = β0 + β1[δ0 + δ1zi + εxi ] + εyi
= (β0 + β1δ0) + (β1δ1)zi + (β1ε

x
i + εyi )

= θ0 + θ1zi + ui,

where ui are iid N(0, τ2), where τ2 = β2σ2
x + σ2

y + 2ρσxσy. We are now ready to obtain the (two-stage) estimator of
β1:

1. Obtain δ̂1 from the treatment equation (first stage)

2. Obtain θ̂1 from the outcome equation (2nd stage)

3. Since θ1 = β1δ1, it follows that

effect of x on y = β̂IV
1 =

θ̂1

δ̂1
=
cov(z, y)

cov(z, x)
=

effect of z on y

effect of z on x

9.2 Regression of y on (x, z)

Since (εxi , ε
y
i ) is bivariate normal with zero mean, variances σ2

y and σ2
x and covariance σxy = ρσyσx, it can be easily

shown that

εyi |ε
x
i ∼ N

(
σxy
σ2
x

εxi , σ
2
y(1− ρ2)

)
,

or
εyi =

σxy
σ2
x

εxi + ωi,
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for ωi ∼ N(0, σ2
y(1− ρ2)). Now, replacing εxi by xi − δ0 − δ1zi, if follows that

εyi =
σxy
σ2
x

[xi − δ0 − δ1zi] + ωi,

=
σxy
σ2
x

xi −
σxy
σ2
x

δ0 −
σxy
σ2
x

δ1zi + ωi,

so the outcome equation becomes

yi = β0 + β1xi +
σxy
σ2
x

xi −
σxy
σ2
x

δ0 −
σxy
σ2
x

δ1zi + ωi,

or

yi =

(
β0 −

σxy
σ2
x

δ0

)
+

(
β1 +

σxy
σ2
x

)
xi +

(
−σxy
σ2
x

δ1

)
zi + ωi.

In words, by simply including the instrumental variable zi in the outcome regression will not suffice to estimate β1.

9.3 A few examples

A few examples can be found here, http://hedibert.org/wp-content/uploads/2016/05/iv-workedexamples.pdf,
back in 2015 when I taught Introduction to Econometrics to Economics undergraduate students.

A) Simulated exercise: the omitted variable problem

B) Estimating the return to education for married women: 753 observations and 22 variables
Outcome: log(wage)
Treatment: Education in years
IV: Father’s education in years
OLS: 11% return for another year of education
2SLS: 5.9% return for another year of education
OLS suffers from omitted ability bias
More details: http://hedibert.org/wp-content/uploads/2016/05/return-to-education-women.pdf
R code: http://hedibert.org/wp-content/uploads/2016/05/return-to-education-women-R.txt

C) Estimating the effect of smoking on birth weight: 1388 observations and 14 variables
Outcome: Child birth weight
Treatment: Cigarette smoking (number of packs smoked by the mother per day)
IV: Average price of cigarettes in the state of residence
The IV fails the one requirement of an IV that we can always test.

D) College Proximity as IV: 3010 observations and 31 variables
Card (1995)1 used wage and education data for a sample of men in 1976 to estimate the return to education.
Outcome: log(wage)
Treatment: Education
IV: Dummy variable for whether someone grew up near a four-year college.
Controls: i) experience, ii) a black dummy variable, iii) dummy variables for living in an Standard Metropolitan
Statistical Area (SMSA), and iv) living in the South, and a few others.

β̂ols = 0.075 and β̂iv = 0.132 (twice as big!) - 95% CI: (0.069, 0.081).

se(β̂ols) = 0.003 and se(β̂iv) = 0.055 (twenty times as big!) = 95% CI: (0.022, 0.242).
Larger CIs: Price paid for consistent estimator of the return to (endogenous) education.

1Card (1995) Using Geographic Variation in College Proximity to Estimate the Return to Schooling. In Aspects of Labour Market
Behavior: Essays in Honour of John Vanderkamp, ed. Christophides, Grant and Swidinsky, 201-222. Toronto: University of Toronto
Press.
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9.4 A few of my own papers on Bayesian IV modeling

• Hahn, He and Lopes (2018)
Bayesian factor model shrinkage for linear IV regression with many instruments,
Journal of Business and Economic Statistics, 36(2), 278-287.

Abstract: A Bayesian approach for the many instruments problem in linear instrumental variable models is
presented. The new approach has two components. First, a slice sampler is developed, which leverages a
decomposition of the likelihood function that is a Bayesian analogue to two-stage least squares. The new
sampler permits non-conjugate shrinkage priors to be implemented easily and efficiently. The new computational
approach permits a Bayesian analysis of problems that were previously infeasible due to computational demands
that scaled poorly in the number of regressors. Second, a new predictor-dependent shrinkage prior is developed
specifically for the many instruments setting. The prior is constructed based on a factor model decomposition of
the matrix of observed instruments, allowing many instruments to be incorporated into the analysis in a robust
way. Features of the new method are illustrated via a simulation study and three empirical examples.

• Lopes and Polson (2014)
Bayesian instrumental variables: likelihoods and priors,
Econometric Reviews, 33, 100-121.

Abstract: Instrumental variable (IV) regression provides a number of statistical challenges due to the shape of the
likelihood. We review the main Bayesian literature on instrumental variables and highlight these pathologies. We
discuss Jeffreys priors, the connection to the errors-in-the-variables problems and more general error distributions.
We propose, as an alternative to the inverted Wishart prior, a new Cholesky-based prior for the covariance matrix
of the errors in IV regressions. We argue that this prior is more f lexible and more robust thanthe inverted Wishart
prior since it is not based on only one tightness parameter and therefore can be more informative about certain
components of the covariance matrix and less informative about others. We show how prior-posterior inference
can be formulated in a Gibbs sampler and compare its performance in the weak instruments case for synthetic
as well as two illustrations based on well-known real data.

• Heckman, Lopes and Piatek (2014)
Treatment effects: a Bayesian perspective,
Econometric Reviews, 33, 36-67.

Abstract: This paper contributes to the emerging Bayesian literature on treatment effects. It derives treat-
ment parameters in the framework of a potential outcomes model with a treatment choice equation, where the
correlation between the unobservable components of the model is driven by a low-dimensional vector of latent
factors. The analyst is assumed to have access to a set of measurements generated by the latent factors. This
approach has attractive features from both theoretical and practical points of view. Not only does it address the
fundamental identification problem arising from the inability to observe the same person in both the treated and
untreated states, but it also turns out to be straightforward to implement. Formulae are provided to compute
mean treatment effects as well as their distributional versions. A Monte Carlo simulation study is carried out to
illustrate how the methodology can easily be applied.
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10 Difference-in-differences (DiD)

This section is partially based on Nick Huntington-Klein’s notes at https://www.nickchk.com/causalgraphs.html.

“There’s a group of people, let’s call them Treated, who at a certain point had a new policy applied to
them. We can observe them both Before the treatment went into effect, and After. We think that the
policy treatment might have had an effect on Y. Ideally, we could just look at whether Y went up After
Treatment, compared to Before, and call it a day. However, there are plenty of reasons this might not
work! Y might have risen for all groups at the same time that treatment was imposed, not just for the
Treated group.”

Below, X is Treatment, Y is the outcome and T is the measured confounder.

T

X Y

Example: Effect of switching from cubicles to open office on productivity

“For example, say Treatment is a particular office switching from cubicles to an open office, and Y is
productivity. They make the switch on January 1, 2017, so Before Treatment might be 2016 and After
Treatment might be 2017. But the economy also improved from 2016 to 2017, so maybe the increase in
productivity has nothing to do with the open office.”

“When this happens, the difference between Y Before treatment and Y After treatment for the Treated
group will reflect two things:

• We want: The effect of Treatment on Y, and

• We don’t want: The way that Y may have changed over Time for reasons unrelated to Treatment.

Time gives us a back-door path from Treatment to Y. We can get from Treatment to Y either through
the Treatment → Y path (which we want), or the Treatment ← Time → Y path (which we don’t).”

Question: What can we do? Answer: Adding a control group

We can add a Control group that never gets treated (in our example, an office that keeps its cubicles
throughout 2016 and 2017). This is going to let us control for Time, but introduces the problem that now
we have another back door, since the Control and Treatment groups may be different.

In the below diagram, a person receives “Treatment” only if they are in the Treated group AND in the
Time period AFTER treatment is applied.

In addition to our Time back door, we also have a back door from Treatment ← In Treated Group → Y
that we need to close:
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Time

T Y

ITG

“We can close both back-door paths through Time and In Treated Group using Difference-in-Differences.
The idea is that we look at how much Y changed from Before to After in the Treated group, and also how
much Y changed from Before to After in the Control group (those are the Differences).”

10.1 DiD linear regression and parameter interpretation

The following four graphs were borrowed from here:
https://bookdown.org/cuborican/RE_STAT/difference-in-differences.html#regression-did

In fact, check the Section of 11.2.4 (Difference in Differences: Animated).

The following linear regression summarizes the above discussion:

yti = β0 + β1Pt + β2Ti + β3Pt × Ti + x′tiγ + εti,

where Pt = 1 for the post-treatment period and Pt = 0 for the pre-treatment period, while Ti = 1 if individual i is in
the treatment group and Ti = 0 if individual i is in the control group. The components of xti are additional control
variables and will be cancelled out.
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“While it is possible to obtain the DiD estimator by calculating the means by hand, using a regression framework may
be more advantageous as it: i) outputs standard errors for hypothesis testing, ii) can be easily extended to include
multiple periods and groups, and iii) allows the addition of covariates.”
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10.2 Example: Increase in the state minimum wage on the employment

“The data is adapted from the dataset in Card and Krueger (1994), which estimates the causal effect of an increase in
the state minimum wage on the employment. On April 1, 1992, New Jersey raised the state minimum wage from $4.25
to $5.05 while the minimum wage in Pennsylvania stays the same at $4.25. Data about the employment in the fast
food restaurants in NJ (0) and PA (1) were collected in February 1992 and in November 1992. Total 384 restaurants
after removing null values.

Source: Card and Krueger (1994) Minimum Wages and Employment: A Case Study of the Fast-Food Industry in
New Jersey and Pennsylvania, The American Economic Review, 84(4), 772-793. https://davidcard.berkeley.edu/
papers/njmin-aer.pdf

• time= 0 : February 1992

• time= 1 : November 1992

• treatment= 1 : New Jersey raised the state minimum wage from $4.25 to $5.05

• treatment= 0 : Pennsylvania minimum wage stays the same at $4.25

10.2.1 R script - Classical approach

data = read.table("https://hedibert.org/wp-content/uploads/2024/10/card-krueger.txt",header=TRUE)
attach(data)
pretreatment.untreated = mean(outcome[time==0 & treatment==0])
pretreatment.treated = mean(outcome[time==0 & treatment==1])
posttreatment.untreated = mean(outcome[time==1 & treatment==0])
posttreatment.treated = mean(outcome[time==1 & treatment==1])

A = posttreatment.treated - pretreatment.treated
B = posttreatment.untreated - pretreatment.untreated
effect = A-B
c(A,B,effect)
#[1] 0.4666667 -2.2833333 2.7500000

interaction = time*treatment

summary(lm(outcome~time+treatment+interaction))

#lm(formula = outcome ~ time + treatment + interaction)
#
#Residuals:
# Min 1Q Median 3Q Max
#-21.097 -6.472 -0.931 4.603 64.569
#
#Coefficients:
# Estimate Std. Error t value Pr(>|t|)
#(Intercept) 23.380 1.098 21.288 <2e-16 ***
#time -2.283 1.553 -1.470 0.1419
#treatment -2.949 1.224 -2.409 0.0162 *
#interaction 2.750 1.731 1.588 0.1126
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#Residual standard error: 9.511 on 764 degrees of freedom
#Multiple R-squared: 0.007587,Adjusted R-squared: 0.00369
#F-statistic: 1.947 on 3 and 764 DF, p-value: 0.1206

plot(c(0,0),xlim=c(0,3),ylim=c(19.5,23.5),col=0,axes=FALSE,xlab="",ylab="Employment growth")
box();axis(2)
abline(v=1.5)
text(1,pretreatment.untreated,round(pretreatment.untreated,2),col=2)
text(2,posttreatment.untreated,round(posttreatment.untreated,2),col=2)
text(1,pretreatment.treated,round(pretreatment.treated,2),col=4)
text(2,posttreatment.treated,round(posttreatment.treated,2),col=4)
text(1,19.5,"Pre-treatment")
text(2,19.5,"Post-treatment")
legend("topright",legend=c("Control Group","Treated Group"),col=c(2,4),pch=16,bty="n")
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10.2.2 R script - Bayesian approach

# Bayesian fit

n = length(outcome)

y = outcome

X = cbind(1,time,treatment,interaction)

sig2 = sum((y-X%*%beta1)^2)/(n-4)

iXtX = solve(t(X)%*%X)

Vbeta = sig2*iXtX

Ebeta = iXtX%*%t(X)%*%y

Lbeta = chol(Vbeta)

M = 10000

betas = matrix(Ebeta,M,4,byrow=TRUE)+matrix(rnorm(4*M),M,4)%*%Lbeta

layout(matrix(c(1,1,2,1,1,2), 2, 3, byrow = TRUE))

layout(matrix(c(1,1,2), 1, 3, byrow = TRUE))

plot(density(betas[,1]),xlim=c(15,30),ylim=c(0,0.8),xlab="Employment Growth",main="",lwd=3)

lines(density(betas[,1]+betas[,3]),col=2,lwd=3)

lines(density(betas[,1]+betas[,2]),col=3,lwd=3)

lines(density(betas[,1]+betas[,2]+betas[,3]+betas[,4]),col=4,lwd=3)

legend("topright",legend=c(

expression(paste("Pre-treatment,control group:",beta[1],sep="")),

expression(paste("Pre-treatment,treated group:",beta[1]+beta[3],sep="")),

expression(paste("Post-treatment,control group:",beta[1]+beta[2],sep="")),

expression(paste("Post-treatment,treated group:",beta[1]+beta[2]+beta[3]+beta[4],sep=""))),

col=1:4,lwd=2,bty="n")

title(expression(beta[1]+beta[2]*Time+beta[3]*Treat+beta[4]*Time*Treat))

plot(density(betas[,4]),xlab="",main=expression(beta[4]))

abline(v=0,lty=2)
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11 Regression Discontinuity Design (RDD)

Most of the text and examples in this section were taken primarily from Chapter 4 (Regression Discontinuity Designs),
pages 147-164, of Angrist and Pischke’s (2015) book enttitle Mastering ’Metrics: The Path from Cause to Effect. They
start the chapter with the following paragraph:

Human behavior is constrained by rules.

• The State of California limits elementary school class size to 32 students; 33 is one too many.

• The Social Security Adm. won’t pay you a penny in retirement benefits until you’ve reached age 62.

• Potential armed forces recruits with test scores in the lower deciles are ineligible for military service.

They continue by saying:

• For rules that constrain the role of chance in human affairs often generate interesting experiments.

• Masters of ’metrics exploit these experiments with regression discontinuity (RD) design.

• RD doesn’t work for all causal questions, but it works for many.

• And when it does, the results have almost the same causal force as those from a randomized
trial.

11.1 Birthdays and Funerals

In the US the minimum legal drinking age (MLDA) is 21 years of age. Therefore, “the history of the MLDA generates
a natural experiment that can be used for a sober assessment of alcohol policy.”

The MLDA experiment emerges from the fact that a small change in age (measured in months or even days) generates
a big change in legal access. The difference a day makes can be seen in the figure below, which plots the relationship
between birthdays and funerals, i.e. number of deaths among Americans aged 20-22 between 1997 and 2003.
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Mortality risk shoots up on and immediately following a twenty-first birthday. This spike adds about 100 deaths to a
baseline level of about 150 per day. There’s something special about the twenty-first birthday.
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Death rates fluctuate from month to month, but few rates to the left of the age-21 cutoff are above 95. At ages over
21, however, death rates shift up, and few of those to the right of the age-21 cutoff are below 95.

The causal question addressed by Figure 4.2 is the effect of legal access to alcohol on death rates. The treatment
variable in this case can be written Da, where Da = 1 indicates legal drinking and is Da = 0 otherwise. Da is a
function of age, a: the MLDA transforms 21-year-olds from underage minors to legal alcohol consumers. We capture
this transformation in mathematical notation by writing

Da =

{
1 if a ≥ 21
0 if a < 21

• Treatment status is a deterministic function of a, so that once we know a, we know Da.

• Treatment status is a discontinuous function of a, because no matter how close a gets to the cutoff, Da remains
unchanged until the cutoff is reached (sharp RD).

• The variable that determines treatment, age in this case, is called the running variable.

• Sharp RD designs: treatment switches cleanly off or on as the running variable passes a cutoff.

• The MLDA is a sharp function of age, so an investigation of MLDA effects on mortality is a sharp RD study.

11.2 Controling for smooth variation in death rates

Mortality clearly changes with the running variable, a, for reasons unrelated to the MLDA.
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Death rates from disease-related causes like cancer (known to epidemiologists as internal causes) are low but increasing
for those in their late teens and early 20s, while deaths from external causes, primarily car accidents, homicides, and
suicides, fall.

To separate this trend variation from any possible MLDA effects, an RD analysis controls for smooth variation in
death rates generated by a.

RD gets its name from the practice of using regression models to implement this control.

A simple RD analysis of the MLDA estimates causal effects using a regression like

ya = α+ ρDa + γa+ εa

where ya is the death rate in month a (month is defined as a 30-day interval counting from the 21st birthday).

The regression equation includes the treatment dummy, Da, as well as a linear control for age in months.

Fitted values from the above regression produce the lines drawn in Figure 4.2.

The negative slope, captured by γ, reflects smoothly declining death rates among young people as they mature.

The parameter ρ captures the jump in deaths at age 21.

The regression generates an estimate of ρ equal to 7.7

This estimate indicates a substantial increase in risk at the MLDA cutoff.
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11.3 Nonlinearity mistaken for a discontinuity

Panel A shows RD with a linear model for E(yi|Xi); panel B adds some curvature. Panel C shows nonlinearity
mistaken for a discontinuity. The vertical dashed line indicates a hypothetical RD cutoff.
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11.4 Comparing two curves

Linear regression
ya = α+ ρDa + γa+ εa

Quadratic regressions with interactions

ya = α+ ρDa + γ1(a− a0) + γ2(a− a0)2 + δ1[(a− a0)Da] + δ2[(a− a0)2Da] + εa
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11.5 Replicating Figure 4.5

R script replicating Figure 4.5, Chapter 4: Regression discontinuity design, from Angrist and Pischke (2015).

data = read.table("age-mva-internal.txt",header=TRUE)
attach(data)
n = nrow(data)
over21 = rep(0,n)
over21[age>21]=1

par(mfrow=c(1,1))
plot(age,mva,pch=over21+15,ylim=c(10,40),xlab="Age",ylab="Death rate (per 100,000)")
points(age,internal,col=2,pch=over21+15)
abline(v=21,lty=2)
legend("bottomright",legend=c("Motor Vehicle Accidents","Deaths from Internal Causes"),col=1:2,pch=16,bty="n")
abline(v=21,lty=2)

# Linear models
fit = lm(mva~age+over21)
right = c(1,21,1)%*%fit$coef
left = c(1,21,0)%*%fit$coef
delta = right-left
sigma = summary(fit)$sigma
nsig = round(delta/sigma,3)

fit1 = lm(internal~age+over21)
right1 = c(1,21,1)%*%fit1$coef
left1 = c(1,21,0)%*%fit1$coef
delta1 = right1-left1
sigma1 = summary(fit1)$sigma
nsig1 = round(delta/sigma1,3)

par(mfrow=c(1,2))
plot(age,mva,pch=over21+15,ylim=c(10,40),xlab="Age",ylab="Death rate (per 100,000)")
points(age,internal,col=2,pch=over21+15)
abline(v=21,lty=2)
lines(age,fit$fit,lwd=3)
lines(age,fit$fit,lwd=3)
lines(age[over21==0],fit$fit[over21==0],lwd=3)
lines(age[over21==1],fit$fit[over21==1],lwd=3)
lines(age[over21==0],fit1$fit[over21==0],lwd=3,col=2)
lines(age[over21==1],fit1$fit[over21==1],lwd=3,col=2)
legend("bottomright",legend=c(paste("MVA: ",nsig," stdevs",sep=""),paste("DIC: ",nsig1," stdevs",sep="")),col=1:2,pch=16,bty="n")
title("Motor Vehicle Accidents (MVA)\nDeaths from Internal Causes (DIC)")

# Quadratic models
age2 = age^2
over21age = over21*age
over21age2 = over21*age2

fit = lm(mva~age+over21+age2+over21age+over21age2)
right = c(1,21,1,21^2,21,21^2)%*%fit$coef
left = c(1,21,0,21^2,0,0)%*%fit$coef
delta = right-left
sigma = summary(fit)$sigma

fit1 = lm(internal~age+over21+age2+over21age+over21age2)
right1 = c(1,21,1,21^2,21,21^2)%*%fit1$coef
left1 = c(1,21,0,21^2,0,0)%*%fit1$coef
delta1 = right1-left1
sigma1 = summary(fit1)$sigma

plot(age,mva,pch=over21+15,ylim=c(10,40),xlab="Age",ylab="Death rate (per 100,000)")
points(age,internal,col=2,pch=over21+15)
abline(v=21,lty=2)
lines(age[over21==0],fit$fit[over21==0],lwd=3)
lines(age[over21==1],fit$fit[over21==1],lwd=3)
lines(age[over21==0],fit1$fit[over21==0],lwd=3,col=2)
lines(age[over21==1],fit1$fit[over21==1],lwd=3,col=2)
legend("bottomright",legend=c(

paste("MVA: ",round(delta/sigma,3)," stdevs",sep=""),
paste("DIC: ",round(delta1/sigma1,3)," stdevs",sep="")),
col=1:2,pch=16,bty="n")

title("Motor Vehicle Accidents (MVA)\nDeaths from Internal Causes (DIC)")
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Bayesian approach

M = 1000
par(mfrow=c(2,2))

# Linear models
y = mva
X = cbind(1,age,over21)
iXtX = solve(t(X)%*%X)
b = iXtX%*%t(X)%*%y
sigma = mean((y-X%*%b)^2)
Vb = sigma*iXtX
L = chol(Vb)
betas = matrix(b,M,3,byrow=TRUE)+matrix(rnorm(M*3),M,3)%*%L
right = betas%*%c(1,21,1)
left = betas%*%c(1,21,0)

plot(density(left),xlim=c(25,38),xlab="Death rate (per 100,000)",main="",lwd=2,ylim=c(0,1.3))
lines(density(right),col=2,lwd=2)
title("Linear model (MVA)")
legend("top",legend=c("Left","Right"),col=1:2,lwd=2,bty="n")

y = internal
X = cbind(1,age,over21)
iXtX = solve(t(X)%*%X)
b = iXtX%*%t(X)%*%y
sigma = mean((y-X%*%b)^2)
Vb = sigma*iXtX
L = chol(Vb)
betas = matrix(b,M,3,byrow=TRUE)+matrix(rnorm(M*3),M,3)%*%L
right = betas%*%c(1,21,1)
left = betas%*%c(1,21,0)
plot(density(left),xlim=c(17,23),xlab="Death rate (per 100,000)",main="",lwd=2,ylim=c(0,1.3))
lines(density(right),col=2,lwd=2)
title("Linear model (DIC)")
legend("topright",legend=c("Left","Right"),col=1:2,lwd=2,bty="n")

# Quadratic models
y = mva
X = cbind(1,age,over21,age2,over21age,over21age2)
iXtX = solve(t(X)%*%X)
b = iXtX%*%t(X)%*%y
sigma = mean((y-X%*%b)^2)
Vb = sigma*iXtX
L = chol(Vb)
betas = matrix(b,M,6,byrow=TRUE)+matrix(rnorm(M*6),M,6)%*%L
right = betas%*%c(1,21,1,21^2,21,21^2)
left = betas%*%c(1,21,0,21^2,0,0)

plot(density(left),xlim=c(25,38),xlab="Death rate (per 100,000)",main="",lwd=2,ylim=c(0,1.3))
lines(density(right),col=2,lwd=2)
title("Quadratic model (MVA)")
legend("top",legend=c("Left","Right"),col=1:2,lwd=2,bty="n")

y = internal
X = cbind(1,age,over21,age2,over21age,over21age2)
iXtX = solve(t(X)%*%X)
b = iXtX%*%t(X)%*%y
sigma = mean((y-X%*%b)^2)
Vb = sigma*iXtX
L = chol(Vb)
betas = matrix(b,M,6,byrow=TRUE)+matrix(rnorm(M*6),M,6)%*%L
right = betas%*%c(1,21,1,21^2,21,21^2)
left = betas%*%c(1,21,0,21^2,0,0)

plot(density(left),xlim=c(17,23),xlab="Death rate (per 100,000)",main="",lwd=2,ylim=c(0,1.3))
lines(density(right),col=2,lwd=2)
title("Quadratic model (DIC)")
legend("top",legend=c("Left","Right"),col=1:2,lwd=2,bty="n")
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11.6 Non-parametric RDD

Local behavior: For observations in [a0 − b, a0 + b], for small b, nonlinear trends need not concern us at all.

Strategy: Comparing averages in a narrow window just to the left and just to the right of the cutoff.

High variance: Very narrow window → few observations → too imprecise estimates.

Trade-off: bias reduction near the boundary against the increased variance.

Local linear regression: In this case, one would consider the linear regression

ya = α+ ρDa + γa+ εa,

for the subset of observations where a ∈ [a0 − b, a0 + b].

11.7 Example: The NBA draft

Branson, Z., M. Rischard, L. Bornn, & L.W. Miratrix (2019) A nonparametric Bayesian methodology for RDDs.
Journal of Statistical Planning and Inference, 202, 14-30. https://arxiv.org/abs/1704.04858.

1,238 NBA basketball players drafted between 1995 and 2016.
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Bayesian Non-Parametric (BNP) Regression Discontinuity Design (RDD) via Gaussian Process Re-
gression (GPR) - “In summary, using our GPR methodology, we find that the treatment effect of being a second-
round pick significantly reduces the number of games played and marginally reduces the number of minutes played.”
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