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Count and time-to-event datasets

Dataset A – count data: The data below represents the yearly counts of coal mining disasters (yi) in
Great Britain from 1851 to 1962, i.e. for i = 1, . . . , n and n = 112 observations.

y = c(4,5,4,1,0,4,3,4,0,6,3,3,4,0,2,6,3,3,5,4,5,3,1,4,4,1,5,5,3,4,2,5,2,2,3,4,2,1,3,2,2,
1,1,1,1,3,0,0,1,0,1,1,0,0,3,1,0,3,2,2,0,1,1,1,0,1,0,1,0,0,0,2,1,0,0,0,1,1,0,2,3,3,
1,1,2,1,1,1,1,2,4,2,0,0,0,1,4,0,0,0,1,0,0,0,0,0,1,0,0,1,0,1)

years = 1851:1962
n = length(y)
plot(years,y,ylab="count of disasters",type="b")

This data was analyzed, for example, by Carlin, Gelfand and Smith (1992) in their paper entitled Hierarchical
Bayesian Analysis of Changepoint Problems that appeared in the prestigious statistical journal Applied
Statistics, volume 41, number 2 and pages 389-405 (https://www.jstor.org/stable/2347570). They make
the following statement: “A much analysed data set of intervals between British coal-mining disasters during
the 112-year period 1851-1962 was gathered by Maguire et al. (1952), extended and corrected by Jarrett
(1979). Frequentist changepoint investigations appear in Worsley (1986) and in Siegmund (1988) while
Raftery and Akman (1986) apply their Bayesian model.” For completion, all additional references appear at
the end of this document.

Dataset B – time-to-event data:

The data below represent the time intervals in days between explosions in mines, involving 10 or more men
killed, from 15 March 1851 to 22 March 1962.

days = c(157,123,2,124,12,4,10,216,80,12,33,66,232,826,40,12,29,190,97,65,186,23,92,197,
431,16,154,95,25,19,78,202,36,110,276,16,88,225,53,17,538,187,34,101,41,139,42,1,250,80,
3,324,56,31,96,70,41,93,24,91,143,16,27,144,45,6,208,29,112,43,193,134,420,95,125,34,127,
218,2,378,36,15,31,215,11,137,4,15,72,96,124,50,120,203,176,55,93,59,315,59,61,1,13,189,
345,20,81,286,114,108,188,233,28,22,61,78,99,326,275,54,217,113,32,388,151,361,312,354,
307,275,78,17,1205,644,467,871,48,123,456,498,49,131,182,255,194,224,566,462,228,806,
517,1643,54,326,1312,348,745,217,120,275,20,66,292,4,368,307,336,19,329,330,312,536,
145,76,364,37,19,156,47,129,1630,29,217,7,18,1358,2366,952,632)

https://www.jstor.org/stable/2347570


Working questions to discuss with TA during the office hours

Assuming the sample from dataset A follows a Poisson model, i.e. y1, . . . , yn are conditionally independent
and identically distribution Poisson(λ), denoted by

y1, . . . , yn|λ ∼ Poi(λ).

a) Obtain λ̂mle, the maximum likelihood estimator (MLE) of λ. Recall that

p(yi|λ) =
λyie−λ

yi!
,

log p(yi|λ) = y1 log(λ)− λ− log(yi!),

l(λ|y1, . . . , yn) = Log

{
n∏
i=1

p(yi|λ)

}
=

n∑
i=1

log p(yi|λ)

= log(λ)nȳ − nλ−
n∑
i=1

log yi!

for λ > 0, yi ∈ {0, 1, 2, . . .}, i = 1, . . . , n and ȳ =
∑n
i=1 yi/n.

b) We know that when Y ∼ Poi(λ), it follows that E(Y ) = V (Y ) = λ. Is λ̂mle close to the sample variance
of the ys?

c) Looking at the data more closely (draw a time series plot and you will see), it seems that around 1897
(observation i = 47) there is a break in the count of disasters. If that is correct, then we obtain MLEs
for λ before and after 1987. We could repeat this for, say, years 1890 to 1905, and compare the MLEs
before and after in order to grasp more or less where this potential break may actually occur.

d) In c), instead of comparing MLEs, we can compare log-likelihoods. More precisely, we can compute

Sk = l(λ̂mle,1:k|y1, . . . , yk) + l(λ̂mle,(k+1):n|yk+1, . . . , yn),

where λ̂mle,a:b is the MLE of λ based on data {ya, . . . , yb}. We can, say, make k = 40, . . . , 55. One
possible estimator of k could be

k̂mle ≡ arg max
k∈{40:55}

Sk.

Plotting k against Sk also helps.
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Solution

ks = 20:90
lambda.mle = NULL
S = NULL
for (k in ks){

lambdas = c(mean(y[1:k]),mean(y[(k+1):n]))
lambda.mle = rbind(lambda.mle,lambdas)
S = c(S,sum(dpois(y[1:k],lambdas[1],log=TRUE)) + sum(dpois(y[(k+1):n],lambdas[2],log=TRUE)))

}
kmax = ks[S==max(S)]
yearmax = years[kmax]
lambda1 = lambda.mle[ks==kmax,1]
lambda2 = lambda.mle[ks==kmax,2]

par(mfrow=c(1,2))
plot(years,y,ylab="count of disasters",type="b")
abline(v=yearmax,col=2)
plot(years[ks],S,xlim=range(years))
title(paste("Year with highest likelihood = ",yearmax,sep=""))
abline(v=yearmax,col=2)
legend("topright",legend=c(paste("lambda (left) = ",round(lambda1,3),sep=""),
paste("lambda (right) = ",round(lambda2,3),sep="")),bty="n")

Homework questions

Repeat the above analysis for the time-to-event dataset (dataset B), which obviously cannot be modeled as
Poisson. For time-to-event data, we usually assume the Exponential model, or the Gamma model, or the
Weibul model, to name a few. To keep it simpler, let us assume that y1, . . . , yn are conditionally independent
and identically distribution Exponential(λ), denoted by

y1, . . . , yn|λ ∼ Exp(λ),

where p(yi|λ) = λe−λyi , with E(yi|λ) = 1/λ and V (yi|λ) = 1/λ2. It is very easy to see that

p(y1, . . . , yn|λ) = λne−λ
∑n

i=1
yi

logp(y1, . . . , yn|λ) = nlog(λ)− λ
n∑
i=1

yi,

such that λ̂ = n/
∑n
i=1 yi = 1/ȳ.
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