1 Poisson distribution

We will use the Poisson distribution to model count data and (re)-introduce key concepts as probability density function, likelihood, maximum likelihood estimator (MLE), and estimator properties, such as unbiasedness, sufficiency, consistency and efficiency (Cramér-Rao lower bound).

1.1 Probability density function

A random variable \(y \in \{0,1,2,\ldots\}\) follows a Poisson distribution with rate \(\lambda>0\), if \[ Pr(y|\lambda) = \frac{\lambda^ye^{-\lambda}}{y!}, \ \ \ \mbox{for} \ y=0,1,2,\ldots. \] Below we illustrate the distributions of \(y\) following a Poisson(2):

  • \(Pr(y=2|\lambda=2)=0.271\)

  • \(Pr(y \leq 3|\lambda=2)=0.857\).

cbind(0:3,dpois(0:3,2))
##      [,1]      [,2]
## [1,]    0 0.1353353
## [2,]    1 0.2706706
## [3,]    2 0.2706706
## [4,]    3 0.1804470
sum(dpois(0:3,2))
## [1] 0.8571235

1.2 A few different rates \(\lambda\)

plot(0:10,dpois(0:10,1),type="h",xlab="Count (y)",ylab="Probability",lwd=2)
lines(0:10+0.1,dpois(0:10,2),col=2,lwd=2,type="h")
lines(0:10+0.2,dpois(0:10,3),col=3,lwd=2,type="h")
legend("topright",legend=c("Y~Poisson(1)","Y~Poisson(2)","Y~Poisson(3)"),col=1:3,lwd=2,bty="n")

2 Example: Coal mining disaster

Counts of coal mining disaster in Great Britain by year from 1851 to 1891

y = c(4,5,4,1,0,4,3,4,0,6,3,3,4,0,2,6,3,3,5,4,5,3,1,4,4,1,5,5,3,4,2,5,2,2,3,4,2,1,3,2,2)

c(mean(y),var(y))
## [1] 3.097561 2.540244
n = length(y)
freq = rep(0,7)
for (i in 1:7)
  freq[i] = sum(y==(i-1))

tab = cbind(0:6,freq,round(freq/n,2),round(dpois(0:6,2),2),round(dpois(0:6,3),2))
colnames(tab) = c("y","Freq","Rel.Freq","Poi(2)","Poi(3)")
tab
##      y Freq Rel.Freq Poi(2) Poi(3)
## [1,] 0    3     0.07   0.14   0.05
## [2,] 1    4     0.10   0.27   0.15
## [3,] 2    7     0.17   0.27   0.22
## [4,] 3    9     0.22   0.18   0.22
## [5,] 4   10     0.24   0.09   0.17
## [6,] 5    6     0.15   0.04   0.10
## [7,] 6    2     0.05   0.01   0.05
plot(0:6,freq/n,type="h",xlab="Counts",ylab="Relative frequency",lwd=4,ylim=c(0,0.3))
title("Coal mining disaster")
lines(0:6+0.05,dpois(0:6,2),col=2,lwd=2,type="h")
lines(0:6+0.1,dpois(0:6,3),col=3,lwd=2,type="h")
lines(0:6+0.15,dpois(0:6,mean(y)),col=4,lwd=2,type="h")
legend("topright",legend=c("Observed frequency","Y~Poisson(2)","Y~Poisson(3)","Y~Poisson(3.098)"),
       col=1:5,lwd=2,bty="n")

LS0tCnRpdGxlOiAiQ2xhc3MgMTogUG9pc3NvbiBtb2RlbCIKYXV0aG9yOiAiSGVkaWJlcnQgRnJlaXRhcyBMb3BlcyIKZGF0ZTogIjEwLzA5LzIwMjQiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZGVwdGg6IDMKICAgIHRvY19jb2xsYXBzZWQ6IHRydWUKICAgIGNvZGVfZG93bmxvYWQ6IHllcwogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCi0tLQoKIyBQb2lzc29uIGRpc3RyaWJ1dGlvbgpXZSB3aWxsIHVzZSB0aGUgUG9pc3NvbiBkaXN0cmlidXRpb24gdG8gbW9kZWwgY291bnQgZGF0YSBhbmQgKHJlKS1pbnRyb2R1Y2Uga2V5IGNvbmNlcHRzIGFzCnByb2JhYmlsaXR5IGRlbnNpdHkgZnVuY3Rpb24sIGxpa2VsaWhvb2QsIG1heGltdW0gbGlrZWxpaG9vZCBlc3RpbWF0b3IgKE1MRSksIGFuZCBlc3RpbWF0b3IgcHJvcGVydGllcywgc3VjaCBhcyB1bmJpYXNlZG5lc3MsIHN1ZmZpY2llbmN5LCBjb25zaXN0ZW5jeSBhbmQgZWZmaWNpZW5jeSAoQ3JhbcOpci1SYW8gbG93ZXIgYm91bmQpLgoKIyMgUHJvYmFiaWxpdHkgZGVuc2l0eSBmdW5jdGlvbgpBIHJhbmRvbSB2YXJpYWJsZSAkeSBcaW4gXHswLDEsMixcbGRvdHNcfSQgZm9sbG93cyBhIFBvaXNzb24gZGlzdHJpYnV0aW9uIHdpdGggcmF0ZSAkXGxhbWJkYT4wJCwgaWYKJCQKUHIoeXxcbGFtYmRhKSA9IFxmcmFje1xsYW1iZGFeeWVeey1cbGFtYmRhfX17eSF9LCBcIFwgXCBcbWJveHtmb3J9IFwgeT0wLDEsMixcbGRvdHMuCiQkCkJlbG93IHdlIGlsbHVzdHJhdGUgdGhlIGRpc3RyaWJ1dGlvbnMgb2YgJHkkIGZvbGxvd2luZyBhIFBvaXNzb24oMik6CgoqICRQcih5PTJ8XGxhbWJkYT0yKT0wLjI3MSQKCiogJFByKHkgXGxlcSAzfFxsYW1iZGE9Mik9MC44NTckLgoKYGBge3J9CmNiaW5kKDA6MyxkcG9pcygwOjMsMikpCgpzdW0oZHBvaXMoMDozLDIpKQpgYGAKCiMjIEEgZmV3IGRpZmZlcmVudCByYXRlcyAkXGxhbWJkYSQKCmBgYHtyIGZpZy53aWR0aD04LCBmaWcuaGVpZ2h0PTUsIGZpZy5hbGlnbj0nY2VudGVyJ30KcGxvdCgwOjEwLGRwb2lzKDA6MTAsMSksdHlwZT0iaCIseGxhYj0iQ291bnQgKHkpIix5bGFiPSJQcm9iYWJpbGl0eSIsbHdkPTIpCmxpbmVzKDA6MTArMC4xLGRwb2lzKDA6MTAsMiksY29sPTIsbHdkPTIsdHlwZT0iaCIpCmxpbmVzKDA6MTArMC4yLGRwb2lzKDA6MTAsMyksY29sPTMsbHdkPTIsdHlwZT0iaCIpCmxlZ2VuZCgidG9wcmlnaHQiLGxlZ2VuZD1jKCJZflBvaXNzb24oMSkiLCJZflBvaXNzb24oMikiLCJZflBvaXNzb24oMykiKSxjb2w9MTozLGx3ZD0yLGJ0eT0ibiIpCmBgYAoKCiAgICAgICAKIyBFeGFtcGxlOiBDb2FsIG1pbmluZyBkaXNhc3RlcgpDb3VudHMgb2YgY29hbCBtaW5pbmcgZGlzYXN0ZXIgaW4gR3JlYXQgQnJpdGFpbiBieSB5ZWFyIGZyb20gMTg1MSB0byAxODkxCgpgYGB7ciBmaWcud2lkdGg9OCwgZmlnLmhlaWdodD01LCBmaWcuYWxpZ249J2NlbnRlcid9CnkgPSBjKDQsNSw0LDEsMCw0LDMsNCwwLDYsMywzLDQsMCwyLDYsMywzLDUsNCw1LDMsMSw0LDQsMSw1LDUsMyw0LDIsNSwyLDIsMyw0LDIsMSwzLDIsMikKCmMobWVhbih5KSx2YXIoeSkpCgpuID0gbGVuZ3RoKHkpCmZyZXEgPSByZXAoMCw3KQpmb3IgKGkgaW4gMTo3KQogIGZyZXFbaV0gPSBzdW0oeT09KGktMSkpCgp0YWIgPSBjYmluZCgwOjYsZnJlcSxyb3VuZChmcmVxL24sMikscm91bmQoZHBvaXMoMDo2LDIpLDIpLHJvdW5kKGRwb2lzKDA6NiwzKSwyKSkKY29sbmFtZXModGFiKSA9IGMoInkiLCJGcmVxIiwiUmVsLkZyZXEiLCJQb2koMikiLCJQb2koMykiKQp0YWIKICAgCnBsb3QoMDo2LGZyZXEvbix0eXBlPSJoIix4bGFiPSJDb3VudHMiLHlsYWI9IlJlbGF0aXZlIGZyZXF1ZW5jeSIsbHdkPTQseWxpbT1jKDAsMC4zKSkKdGl0bGUoIkNvYWwgbWluaW5nIGRpc2FzdGVyIikKbGluZXMoMDo2KzAuMDUsZHBvaXMoMDo2LDIpLGNvbD0yLGx3ZD0yLHR5cGU9ImgiKQpsaW5lcygwOjYrMC4xLGRwb2lzKDA6NiwzKSxjb2w9Myxsd2Q9Mix0eXBlPSJoIikKbGluZXMoMDo2KzAuMTUsZHBvaXMoMDo2LG1lYW4oeSkpLGNvbD00LGx3ZD0yLHR5cGU9ImgiKQpsZWdlbmQoInRvcHJpZ2h0IixsZWdlbmQ9YygiT2JzZXJ2ZWQgZnJlcXVlbmN5IiwiWX5Qb2lzc29uKDIpIiwiWX5Qb2lzc29uKDMpIiwiWX5Qb2lzc29uKDMuMDk4KSIpLAogICAgICAgY29sPTE6NSxsd2Q9MixidHk9Im4iKQpgYGAK