Comparing estimators: MSE

Suppose $X_{1},...,X_{m}|\theta$ iid $\mathcal{U}[0,\theta]$, i.e. uniform between 0 and θ , for $\theta>0$. We want to compare 4 estimators:

$$\begin{cases} \widehat{\theta}_1 = \overline{X} \\ \widehat{\theta}_2 = X_{(n)} \end{cases}$$

 $\overline{X} = \int_{M} \sum_{i=1}^{\infty} x_i$ Order statistics: $x_{(1)}, \dots, x_{(m)}$

$$\begin{cases} \hat{\theta}_3 = 2 \hat{\theta}_1 \\ \hat{\theta}_4 = \left(\frac{M+1}{m}\right) \hat{\theta}_2 \end{cases}$$

	ð,	A O ₂	$\widehat{\Theta}_3$	Ó ₄
E(ô)	0/2	m m+1	θ	Ð
V(Ô)	-2,	$\frac{M\Theta^2}{(M+2)}$	$\theta^2/3m$	$\frac{\theta^2}{M(n+2)}$
		MTI) (MTZ)		11(4142)

Do and Da, respectively.

To compare the estimators we will use mean squared errors:

MSE(
$$\hat{\Theta}$$
) = $E_{X|\Theta}$ {($\hat{\Theta}$ - $E(\Theta)$) }
= $V(\hat{\Theta}) + (E(\Theta) - \Theta)^2$
variance Bias

Obviously, MSE(Ôi) = V(Ôi) for i= 3,4

We can show that

MSE(
$$\hat{\theta}_1$$
) = $\left(\frac{1+3m}{12m}\right)\theta^2$
MSE($\hat{\theta}_2$) = $\left(\frac{2}{(M+1)(M+2)}\right)\theta^2$

Therefore, for M>2

$$MSE(\hat{\theta}_4) < MSE(\hat{\theta}_2) < MSE(\hat{\theta}_3) < MSE(\hat{\theta}_1)$$

Let us explore a bit further $\hat{\theta}$, and $\hat{\theta}_2$

$$\hat{\theta}_1 = \bar{X}$$
 is a "matural choice".

Not quite! All xi's are less than or equal to θ , so most likely X_n will be even further away!

MLE

$$P(x_{1},...,x_{m}|\theta) = \left(\frac{1}{\theta}\right) \mathbb{1}(x_{1} \leqslant \theta)_{x...x} \mathbb{1}(x_{m} \leqslant \theta)$$

$$= \left(\frac{1}{\theta}\right) \mathbb{1}(x_{0} \leqslant \theta)$$
where $x_{(m)} = \max(x_{1},...,x_{m})$. So,
$$L(\theta|x_{1},...,x_{m}) = \frac{1}{\theta^{m}} \mathbb{1}(\theta \geqslant x_{(m)})$$

$$\frac{1}{x_{0}^{m}}$$

$$\frac{1}{x_{0}^{m}}$$

$$\frac{1}{x_{0}^{m}}$$