Please submit either your file (handwritten or typed) in PDF or HTML. The file must be a single PDF/HTML document for submission to me at hedibertfl@insper.edu.br. Students should follow the deadlines for submissions. This homework assignment should be done individually.

AR(1) plus noise

Suppose we observe some time series data y_t for $t = 1, \ldots, n$, jointly denoted by $y_{1:n}$ when needed, and consider the following normal dynamic linear model:

$$
y_t = \theta_t + \epsilon_t \qquad \epsilon_t \sim N(0, \sigma^2), \qquad (t = 1, \dots, n),
$$

$$
\theta_t = \alpha + \beta \theta_{t-1} + \omega_t \qquad \omega_t \sim N(0, \tau^2), \qquad (t = 2, \dots, n),
$$

while $\theta_1 \sim N(a_1, R_1)$, for known hyperparameters a_1 and R_1 . ϵ_t and ω_{t+h} are uncorrelated for all h.

Now, conditioning on $\gamma = (\alpha, \beta, \tau^2, \sigma^2)$ and $y_{1:n}$, derive the following full conditionals

a) $p(\theta_1|\theta_{-1}, y_{1:n}, \gamma)$ b) $p(\theta_n | \theta_{-n}, y_{1:n}, \gamma)$ c) $p(\theta_t | \theta_{-t}, y_{1:n}, \gamma)$

where $\theta_{-t} = (\theta_1, \ldots, \theta_{t-1}, \theta_{t+1}, \ldots, \theta_n)$. Because of the Markovian structure of the dynamics of θ_t , it is easy to show that

$$
p(\theta_1 | \theta_{-1}, y_{1:n}, \gamma) = p(\theta_1 | \theta_2, y_1, \gamma) \propto p(y_1 | \theta_1, \gamma) p(\theta_1) p(\theta_2 | \theta_1, \gamma)
$$

\n
$$
p(\theta_n | \theta_{-n}, y_{1:n}, \gamma) = p(\theta_n | \theta_{n-1}, y_n, \gamma) \propto p(y_n | \theta_n, \gamma) p(\theta_n | \theta_{n-1} \gamma)
$$

\n
$$
p(\theta_t | \theta_{-t}, y_{1:n}, \gamma) = p(\theta_t | \theta_{t-1}, \theta_{t+1}, y_t, \gamma) \propto p(y_t | \theta_t, \gamma) p(\theta_t | \theta_{t-1}, \gamma) p(\theta_{t+1} | \theta_t, \gamma).
$$

Since all densities are Gaussian and linear on θ_t , then all full conditional are also Gaussian. Your job is to simply derive the means and variances of these n Gaussian distribution.

Simulating some data and running the Gibbs sampler

- d) Let $n = 100$, $\theta_0 = 0$, $\gamma = (0, 1, 0.25, 1)$, simulate $y_{1:n}$ following an AR(1) plus noise process.
- e) Using the derivations from a)-c), with $a_1 = 0$ and $R_1 = 9$, implement the Gibbs sampler and obtain $M = 1,000$ draws, after discarding $M_0 = 1000$ as burn-in, from $p(\theta_1, \ldots, \theta_n | y_{1:n}, \gamma)$. Let us call these draws $\{\theta_1^{(i)}\}$ $\{a_1^{(i)}, \ldots, a_n^{(i)}\}$. As for initial values, let $\theta_{1:n}^{(0)} = y_{1:n}$. For each $t \in \{1, \ldots, n\}$, obtain the 95% credible interval for θ_t along with its median, i.e. obtain the 2.5th, 50th and 97.5th percentiles.

Below you find my own code for simulating the data:

```
set.seed(12345)
n = 100sig = 1tau = 0.25alpha = 0beta = 1theta0 = 0sig2 = sig^2tau2 = \tan^22theta = rep(0, n)theta[1] = rnorm(1, \text{alpha}+ \text{beta}+ \text{theta}), tau)
for (t in 2:n)
  theta[t] = rnorm(1,alpha+beta*theta[t-1],tau)y = rnorm(n, theta, sig)plot(y)
lines(theta,col=2)
```
Learning about γ and running the complete Gibbs sampler

f) Now, let us assume that (α, β) follows a zero-mean bivariate normal with covariance δI_2 , independent of τ^2 and σ^2 . Also, let $\sigma^2 \sim IG(a_{\sigma}, b_{\sigma})$ and $\tau^2 \sim IG(a_{\tau}, b_{\tau})$. The hyperparameters are $\delta = 9, a_{\sigma} = b_{\sigma} = a_{\tau} = b_{\tau} = 1$. Derive the additional full conditional distributions:

f.1) $p(\alpha, \beta | \tau^2, \sigma^2, \theta_{1:n}, y_{1:n}) \equiv p(\alpha, \beta | \tau^2, \theta_{1:n})$ - Bivariate Gaussian, f.2) $p(\tau^2|\alpha, \beta, \theta_{1:n}, y_{1:n}) \equiv p(\tau^2|\alpha, \beta, \theta_{1:n})$ - Inverse Gamma, f.3) $p(\sigma^2|\alpha, \beta, \theta_{1:n}, y_{1:n}) \equiv p(\sigma^2|\theta_{1:n}, y_{1:n})$ - Inverse Gamma,

You are now ready for the full-blown Gibbs sampler for the $AR(1)$ plus noise model.

g) Compare the 95% credibility intervals for $p(\theta_t|\alpha, \beta, \tau^2, \sigma^2, y_{1:n})$ from d) with $p(\theta_t|y_{1:n})$ from f).