
PhD in Business Economics Advanced Bayesian Econometrics
Hedibert Freitas Lopes Due date: 9am, September 30th, 2024.

Please submit either your file (handwritten or typed) in PDF or HTML. The file must be a single
PDF/HTML document for submission to me at hedibertfl@insper.edu.br. Students should follow
the deadlines for submissions. This homework assignment should be done individually.

AR(1) plus noise

Suppose we observe some time series data yt for t = 1, . . . , n, jointly denoted by y1:n when needed,
and consider the following normal dynamic linear model:

yt = θt + εt εt ∼ N(0, σ2), (t = 1, . . . , n),

θt = α + βθt−1 + ωt ωt ∼ N(0, τ 2), (t = 2, . . . , n),

while θ1 ∼ N(a1, R1), for known hyperparameters a1 and R1. εt and ωt+h are uncorrelated for all h.

Now, conditioning on γ = (α, β, τ 2, σ2) and y1:n, derive the following full conditionals

a) p(θ1|θ−1, y1:n, γ)

b) p(θn|θ−n, y1:n, γ)

c) p(θt|θ−t, y1:n, γ)

where θ−t = (θ1, . . . , θt−1, θt+1, . . . , θn). Because of the Markovian structure of the dynamics of θt, it
is easy to show that

p(θ1|θ−1, y1:n, γ) = p(θ1|θ2, y1, γ) ∝ p(y1|θ1, γ)p(θ1)p(θ2|θ1, γ)
p(θn|θ−n, y1:n, γ) = p(θn|θn−1, yn, γ) ∝ p(yn|θn, γ)p(θn|θn−1γ)

p(θt|θ−t, y1:n, γ) = p(θt|θt−1, θt+1, yt, γ) ∝ p(yt|θt, γ)p(θt|θt−1, γ)p(θt+1|θt, γ).

Since all densities are Gaussian and linear on θt, then all full conditional are also Gaussian. Your
job is to simply derive the means and variances of these n Gaussian distribution.

Simulating some data and running the Gibbs sampler

d) Let n = 100, θ0 = 0, γ = (0, 1, 0.25, 1), simulate y1:n following an AR(1) plus noise process.

e) Using the derivations from a)-c), with a1 = 0 and R1 = 9, implement the Gibbs sampler and
obtain M = 1, 000 draws, after discarding M0 = 1000 as burn-in, from p(θ1, . . . , θn|y1:n, γ). Let
us call these draws {θ(i)1 , . . . , θ

(i)
n }. As for initial values, let θ(0)1:n = y1:n. For each t ∈ {1, . . . , n},

obtain the 95% credible interval for θt along with its median, i.e. obtain the 2.5th, 50th and
97.5th percentiles.



Below you find my own code for simulating the data:

set.seed(12345)
n = 100
sig = 1
tau = 0.25
alpha = 0
beta = 1
theta0 = 0
sig2 = sig^2
tau2 = tau^2
theta = rep(0,n)
theta[1] = rnorm(1,alpha+beta*theta0,tau)
for (t in 2:n)

theta[t] = rnorm(1,alpha+beta*theta[t-1],tau)
y = rnorm(n,theta,sig)
plot(y)
lines(theta,col=2)

Learning about γ and running the complete Gibbs sampler

f) Now, let us assume that (α, β) follows a zero-mean bivariate normal with covariance δI2, inde-
pendent of τ 2 and σ2. Also, let σ2 ∼ IG(aσ, bσ) and τ 2 ∼ IG(aτ , bτ ). The hyperparameters are
δ = 9, aσ = bσ = aτ = bτ = 1. Derive the additional full conditional distributions:

f.1) p(α, β|τ 2, σ2, θ1:n, y1:n) ≡ p(α, β|τ 2, θ1:n) - Bivariate Gaussian,

f.2) p(τ 2|α, β, θ1:n, y1:n) ≡ p(τ 2|α, β, θ1:n) - Inverse Gamma,

f.3) p(σ2|α, β, θ1:n, y1:n) ≡ p(σ2|θ1:n, y1:n) - Inverse Gamma,

You are now ready for the full-blown Gibbs sampler for the AR(1) plus noise model.

g) Compare the 95% credibility intervals for p(θt|α, β, τ 2, σ2, y1:n) from d) with p(θt|y1:n) from f).
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