Second homework assignment

PhD in Business Economics Hedibert Freitas Lopes Advanced Bayesian Econometrics Due date: 9am, September 10th, 2024.

Please submit either your file (handwritten or typed) in PDF or HTML. The file must be a single PDF/HTML document for submission to me at hedibertfl@insper.edu.br. Students should follow the deadlines for submissions. This homework assignment should be done individually.

PART I: Monte Carlo integration

Let θ follow a Gamma distribution with parameters a and b, denoted by $\theta | a, b \sim G(a, b)$, such that its probability density function is given by

$$p(\theta|a,b) = \frac{b^a}{\Gamma(a)} \theta^{a-1} \exp\{-b\theta\},\$$

for $\theta, a, b > 0$.

- i) Show that $\mu = E(\theta|a, b) = a/b$ and $\sigma^2 = V(\theta|a, b) = a/b^2$;
- ii) For $(a,b) \in \{(2,1), (2,2), (3,2), (2,3)\}$, plot $p(\theta|a,b)$ and compute μ and σ^2 ;
- iii) Sample M draws from $p(\theta|a, b)$, for the four pairs (a, b) given in ii), and for increasing Monte Carlo size:

 $M \in \{1000, 10000, 100000\}.$

Let the samples be summarized as $\{\theta^{(1)}, \ldots, \theta^M\}$. Approximate μ and σ^2 by their Monte Carlo integration approximation:

$$\mu_{MC} = \frac{1}{M} \sum_{i=1}^{M} \theta^{(i)}$$
 and $\sigma_{MC}^2 = \frac{1}{M} \sum_{i=1}^{M} (\theta^{(i)} - \mu_{MC})^2$,

respectively. Compare the MC-based approximated integrals, μ_{MC} and σ_{MC}^2 , to the exact, closed form values, μ and σ^2 ;

iv). To verify empirically that the MC approximations become increasingly closer to the integrals $(\mu_{MC} \text{ and } \sigma_{MC}^2)$, let us repeat iii) R = 100 times (a replication study) and store μ_{MC} and σ_{MC}^2 :

$$\{\mu_{MC}^{(1)}, \dots, \mu_{MC}^{(R)}\}$$
 and $\{\sigma_{MC}^{2(1)}, \dots, \sigma_{MC}^{2(R)}\},\$

for each value of M and pair (a, b). *Hint:* Comparing the boxplots of the replications as M increases will highlight the decreasing variability of the MC approximation.

Note: You can easily find textbooks and wikipedia-like pages deriving the law of large numbers and central limit theorems for various MC-based integration approximation, at various levels of formality.

PART II: Monte Carlo Sampling

Here we introduce algorithmically the MC methods commonly known as SIR. The idea is to obtain draws from a *target* density, say $\pi(\theta)$, based on resampled draws from a *candidate* density, say $q(\theta)$:

STEP 1: Sampling from the candidate density $q(\theta)$

Sample $\{\tilde{\theta}^{(1)}, \ldots, \tilde{\theta}^{(M)}\}$ from $q(\theta)$;

STEP 2: Computing resampling weights

$$w_i \equiv w(\tilde{\theta}^{(i)}) = \frac{\pi(\theta^{(i)})}{q(\tilde{\theta}^{(i)})} \qquad i = 1, \dots, M$$

STEP 3: Resampling

Sample N draws from the discrete set $\{\tilde{\theta}^{(1)}, \ldots, \tilde{\theta}^{(M)}\}$ with weights $\{w_1, \ldots, w_M\}$. Call the resampled draws $\{\theta^{(1)}, \ldots, \theta^{(M)}\}$.

A few rule of thumbs:

- 1. The performance of the MC approximation depends on $q(\theta)$ being able to envelop $\pi(\theta)$;
- 2. The closer $q(\theta)$ is to $\pi(\theta)$, the better;
- 3. One need to be able to sample from $q(\theta)$ and point-wise evaluate both $q(\theta)$ and $\pi(\theta)$, up to normalizing constants.

Let us practice?

Let $\pi_A(\theta) \propto \exp\{-0.5\theta^2\}$ and $\pi_B(\theta) \propto \exp\{-|\theta|\}$, for $\theta \in \Re$. It is easy to see that these are the kernels of the standards normal and Laplace (double-exponential) densities, respectively. The normalizing constants are $(2\pi)^{-1/2}$ and 1/2 respectively, but unnecessary for the implementation of the SIR scheme. As proposal density, let us use a Student's t with $\nu = 3$ degrees of freedom, i.e. $q(\theta) \propto (1 + \theta^2/\nu)^{-(\nu+1)/2}$.

- i) Let M = 5.000 and N = 1.000 and obtain draws from π_A and π_B .
- ii) Compute the SIR-based approximations to $(E_{\pi_A}(\theta), V_{\pi_A}(\theta))$ and $(E_{\pi_B}(\theta), V_{\pi_B}(\theta))$. It is easy to see that the exact values are (0, 1) and (0, 2), respectively.
- iii) What happens when instead $q(\theta)$ is a uniform distribution in (-10, 10)? Probably, M will need to be much bigger, say M = 50.000, because this new proposal might be less efficient than the Student's t one.
- iv) What if instead we want to approximate via SIR tail areas $P_A(\theta > 2)$ and $P_B(\theta > 2)$? M and N might need to be bigger. Check it out. By the way, the exact value of the tail probabilities are 0.02275013 and 0.06766196, respectively.