
Second homework assignment

PhD in Business Economics Advanced Bayesian Econometrics
Hedibert Freitas Lopes Due date: 9am, September 10th, 2024.

Please submit either your file (handwritten or typed) in PDF or HTML. The file must be a single
PDF/HTML document for submission to me at hedibertfl@insper.edu.br. Students should follow
the deadlines for submissions. This homework assignment should be done individually.

PART I: Monte Carlo integration

Let θ follow a Gamma distribution with parameters a and b, denoted by θ|a, b ∼ G(a, b), such that
its probability density function is given by

p(θ|a, b) =
ba

Γ(a)
θa−1 exp{−bθ},

for θ, a, b > 0.

i) Show that µ = E(θ|a, b) = a/b and σ2 = V (θ|a, b) = a/b2;

ii) For (a, b) ∈ {(2, 1), (2, 2), (3, 2), (2, 3)}, plot p(θ|a, b) and compute µ and σ2;

iii) Sample M draws from p(θ|a, b), for the four pairs (a, b) given in ii), and for increasing Monte
Carlo size:

M ∈ {1000, 10000, 100000}.
Let the samples be summarized as {θ(1), . . . , θM}. Approximate µ and σ2 by their Monte Carlo
integration approximation:

µMC =
1

M

M∑
i=1

θ(i) and σ2
MC =

1

M

M∑
i=1

(θ(i) − µMC)2,

respectively. Compare the MC-based approximated integrals, µMC and σ2
MC , to the exact,

closed form values, µ and σ2;

iv). To verify empirically that the MC approximations become increasingly closer to the integrals
(µMC and σ2

MC), let us repeat iii) R = 100 times (a replication study) and store µMC and σ2
MC :

{µ(1)
MC , . . . , µ

(R)
MC} and {σ2(1)

MC , . . . , σ
2(R)
MC },

for each value of M and pair (a, b). Hint: Comparing the boxplots of the replications as M
increases will highlight the decreasing variability of the MC approximation.

Note: You can easily find textbooks and wikipedia-like pages deriving the law of large numbers and
central limit theorems for various MC-based integration approximation, at various levels of formality.



PART II: Monte Carlo Sampling

Here we introduce algorithmically the MC methods commonly known as SIR. The idea is to obtain
draws from a target density, say π(θ), based on resampled draws from a candidate density, say q(θ):

STEP 1: Sampling from the candidate density q(θ)

Sample {θ̃(1), . . . , θ̃(M)} from q(θ);

STEP 2: Computing resampling weights

wi ≡ w(θ̃(i)) =
π(θ̃(i))

q(θ̃(i))
i = 1, . . . ,M.

STEP 3: Resampling
Sample N draws from the discrete set {θ̃(1), . . . , θ̃(M)} with weights {w1, . . . , wM}.
Call the resampled draws {θ(1), . . . , θ(M)}.

A few rule of thumbs:

1. The performance of the MC approximation depends on q(θ) being able to envelop π(θ);

2. The closer q(θ) is to π(θ), the better;

3. One need to be able to sample from q(θ) and point-wise evaluate both q(θ) and π(θ), up to
normalizing constants.

Let us practice?

Let πA(θ) ∝ exp{−0.5θ2} and πB(θ) ∝ exp{−|θ|}, for θ ∈ <. It is easy to see that these are
the kernels of the standards normal and Laplace (double-exponential) densities, respectively. The
normalizing constants are (2π)−1/2 and 1/2 respectively, but unnecessary for the implementation of
the SIR scheme. As proposal density, let us use a Student’s t with ν = 3 degrees of freedom, i.e.
q(θ) ∝ (1 + θ2/ν)−(ν+1)/2.

i) Let M = 5.000 and N = 1.000 and obtain draws from πA and πB.

ii) Compute the SIR-based approximations to (EπA(θ), VπA(θ)) and (EπB(θ), VπB(θ)). It is easy to
see that the exact values are (0, 1) and (0, 2), respectively.

iii) What happens when instead q(θ) is a uniform distribution in (−10, 10)? Probably, M will need
to be much bigger, say M = 50.000, because this new proposal might be less efficient than the
Student’s t one.

iv) What if instead we want to approximate via SIR tail areas PA(θ > 2) and PB(θ > 2)? M and
N might need to be bigger. Check it out. By the way, the exact value of the tail probabilities
are 0.02275013 and 0.06766196, respectively.
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