Second homework assignment

PhD in Business Economics Advanced Bayesian Econometrics
Hedibert Freitas Lopes Due date: 9am, September 10th, 2024.

Please submit either your file (handwritten or typed) in PDF or HTML. The file must be a single
PDF/HTML document for submission to me at hedibertfl@insper.edu.br. Students should follow
the deadlines for submissions. This homework assignment should be done individually.

PART I: Monte Carlo integration

Let 6 follow a Gamma distribution with parameters a and b, denoted by #|a,b ~ G(a,b), such that
its probability density function is given by
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I(a) 6"t exp{—b0},
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for 6,a,b > 0.
i) Show that u = E(f|a,b) = a/b and 02 = V(0|a,b) = a/b?;
ii) For (a,b) € {(2,1),(2,2),(3,2),(2,3)}, plot p(f|a,b) and compute p and o2

iii) Sample M draws from p(6|a,b), for the four pairs (a,b) given in ii), and for increasing Monte
Carlo size:
M € {1000, 10000, 100000}.

Let the samples be summarized as {1, ... #}. Approximate ;1 and ¢ by their Monte Carlo
integration approximation:
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respectively. Compare the MC-based approximated integrals, pyc and 03,4, to the exact,
closed form values, p and o?;

iv). To verify empirically that the MC approximations become increasingly closer to the integrals
(pare and 03, let us repeat iii) R = 100 times (a replication study) and store pyc and o34

{ihies oy} and {oie. . o0},

for each value of M and pair (a,b). Hint: Comparing the boxplots of the replications as M
increases will highlight the decreasing variability of the MC approximation.

Note: You can easily find textbooks and wikipedia-like pages deriving the law of large numbers and
central limit theorems for various MC-based integration approximation, at various levels of formality.



PART II: Monte Carlo Sampling

Here we introduce algorithmically the MC methods commonly known as SIR. The idea is to obtain
draws from a target density, say m(#), based on resampled draws from a candidate density, say ¢(0):

STEP 1: Sampling from the candidate density ¢(6)

Sample {6V, ... 69D} from ¢(6);

STEP 2: Computing resampling weights

STEP 3: Resampling N B
Sample N draws from the discrete set {01, ... 0} with weights {wy, ..., wy}.
Call the resampled draws {#V) ... 9}

A few rule of thumbs:
1. The performance of the MC approximation depends on ¢(#) being able to envelop 7(6);
2. The closer ¢(0) is to m(0), the better;

3. One need to be able to sample from ¢(f) and point-wise evaluate both ¢(#) and 7 (), up to
normalizing constants.

Let us practice?

Let m4(0) o< exp{—0.50%} and 7p(0) o exp{—|0|}, for # € R. It is easy to see that these are
the kernels of the standards normal and Laplace (double-exponential) densities, respectively. The
normalizing constants are (27)~'/2 and 1/2 respectively, but unnecessary for the implementation of

the SIR scheme. As proposal density, let us use a Student’s t with v = 3 degrees of freedom, i.e.
q(0) o (1+062/v)~ 072,

i) Let M = 5.000 and N = 1.000 and obtain draws from 74 and 7p.

ii) Compute the SIR-based approximations to (E,,(#), V., (0)) and (E,,(0), V.,(0)). It is easy to
see that the exact values are (0,1) and (0, 2), respectively.

iii) What happens when instead ¢(¢) is a uniform distribution in (—10,10)? Probably, M will need
to be much bigger, say M = 50.000, because this new proposal might be less efficient than the
Student’s t one.

iv) What if instead we want to approximate via SIR tail areas P4(6 > 2) and Pp(f > 2)? M and
N might need to be bigger. Check it out. By the way, the exact value of the tail probabilities
are 0.02275013 and 0.06766196, respectively.



