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Abstract

This paper introduces BART-RDD, a sum-of-trees regression model built around a novel re-

gression tree prior, which incorporates the special covariate structure of regression discontinuity

designs. Speci�cally, the tree splitting process is constrained to ensure overlap within a narrow

band surrounding the running variable cuto� value, where the treatment e�ect is identi�ed. It

is shown that unmodi�ed BART-based models estimate RDD treatment e�ects poorly, while our

modi�ed model accurately recovers treatment e�ects at the cuto�. Speci�cally, BART-RDD is

perhaps the �rst RDD method that e�ectively learns conditional average treatment e�ects. The

new method is investigated in thorough simulation studies as well as an empirical application

looking at the e�ect of academic probation on student performance in subsequent terms (Lindo

et al., 2010).
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1 Introduction

Regression discontinuity designs (RDD), originally proposed by Thistlethwaite and Campbell (1960),

are widely used in economics and other social sciences to estimate treatment e�ects from observational

data. Such designs arise when treatment assignment is based on whether a particular covariate �

referred to as the running variable � lies above or below a known value, referred to as the cuto�

value. Thus in an RDD, deterministic treatment assignment implies that conditional confounded-

ness is trivially satis�ed, given the running variable. However, controlling for the running variable

introduces a complete lack of overlap. Thus, identi�cation of treatment e�ects from RDDs relies on

assumptions that permit coping with this lack of overlap. First, individuals are unable to manipu-

late their realization of the forcing variable. For example, if the forcing variable is a test score and

students can take the test only once, then students who score slightly above or below the cuto� are

likely very similar except for their position relative to the cuto�. On the other hand, if students could

retake the test arbitrarily often, then a student who scored above the cuto� on their �rst try and a

student who did so only on their tenth try are most likely not similar, but both would be eligible for

treatment. Second, the conditional expectation of the response variable, given the forcing variable,

must be smooth at the cuto� point. Without this assumption, it would not possible to disambiguate

between a treatment e�ect and non-causal aspect of the data-generating process (Lee and Lemieux,

2010; Imbens and Lemieux, 2008).

Previous work has shown that treatment e�ects can be estimated from RDDs as the magnitude

of a discontinuity in the conditional mean response function at the cuto� (Hahn et al., 2001). This

paper investigates the use of Bayesian additive regression tree models (Chipman et al., 2010; Hahn

et al., 2020) for the purpose of �tting RDD data with additional covariates for estimating conditional

average treatments e�ects (CATE) at the cuto�. Broadly, our work expands on both frequentist

and Bayesian methods for performing RDD analyses that incorporate covariates in addition to the

running variable. Relative to earlier works, the method proposed here accommodates a richer set of

data generating processes and admits more convenient sensitivity analysis and methods for visualizing

heterogeneity. Most importantly, our estimator is one of the few RDD estimators which allow for

exploring heterogeneity in a data-driven manner, instead of relying on separate ATE estimation for

predetermined subgroups.

1.1 Previous work

The inclusion of covariates in RDD models has been studied by Calonico et al. (2019), who extend the

local linear regression to include covariates linearly and discuss the implications of this in terms of bias

and variance, and Frölich and Huber (2019) who propose a nonparametric kernel regression method

which increases precision and may reduce bias and restore identi�cation in data with discontinuities

in the covariate set at the threshold, provided that all relevant discontinuous covariates are included.

Additionally, Arai et al. (2024) and Kreiss and Rothe (2023) study RDD regressions with high-

dimensional covariate sets. The latter two essentially consist of a pre-selection step where one �ts

a variable selection model (typically a Lasso) to either the full sample or a subsample closer to the

cuto� and then �ts the local polynomial estimator of Calonico et al. (2019) to the reduced feature set.
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These methods inherit the local polynomial's linearity assumption which can lead to high variance

estimators in the presence of strong heterogeneity if the running variable and other features interact

in more complex ways. The estimator proposed by Frölich and Huber (2019) is more �exible in that

regard because it allows for feature-speci�c kernels, extending the traditional local RDD regression.

However, this can render the method computationally infeasible as the dimension of the feature set

increases.

The previous works discuss inclusion of covariates from a perspective of obtaining precision gains

and barely discuss e�ect moderation. Regarding e�ect heterogeneity, Frandsen et al. (2012) and Shen

and Zhang (2016) discuss it from the perspective of distributional e�ects, while Cattaneo et al. (2016)

and Bertanha (2020) discuss heterogeneity arising from settings with multiple cuto�s. These works

do not focus speci�cally on heterogeneity in the form of moderation by additional variables. Becker

et al. (2013) extend the traditional local regression to include interaction terms between the running

variable and additional features. Hsu and Shen (2019) develop hypothesis tests for detecting e�ect

moderation in the local regression setup by means of comparison between the ATE parameter for

the whole sample and pre-speci�ed subgroups of interest. These methods still depend on reasonable

previous knowledge about potential sources of heterogeneity.

Prominent examples of Bayesian estimators for RDDs, include Chib et al. (2023), who estimate

the response curves with global splines where observations are weighted by their distance to the

cuto�; Karabatsos and Walker (2015), who propose approximating the conditional expectations by

an in�nite mixture of normals; and Branson et al. (2019), who propose a Gaussian process prior for

the expectations, in which observations are also weighted by their distance to the cuto�. All of these

methods consist of global approximations of the outcome curves, while in some cases emphasizing

units near the cuto� to obtain better predictions in that region. As will be discussed later, our

method can be seen as an intermediate approach between such global approximations and the local

linear regression ubiquitous in the frequentist literature, since we use the entire data to estimate the

outcomes but take advantage of the local nature of BART for estimation near the cuto�.

Reguly (2021) proposes what is perhaps the closest in spirit to our method. The author proposes

a modi�cation to the basic Classi�cation and Regression Tree (CART) algorithm in which the tree is

split using all features available except for the running variable. Then, within each leaf the algorithm

performs a separate regression for treated and untreated units, and the leaf-speci�c ATE parameter

is obtained as the di�erence between the intercepts of the two regressions. The model can be seen

as a non-linear polynomial regression where the parameters depend on the covariates via the CART

�t. This approach presents two important di�erences compared to ours. First, it is a single tree

method, whereas we propose a forest model. Second, the �exibility of the tree is only used for the

additional covariates, but the leaf regressions are still polynomials of the running variable. These

features mean that, although more �exible than global regressions, the method should still su�er in

situations where the response surface is smoother on the covariates or where the way the running

variable interacts with the others is more complex than a polynomial model could accurately capture.

Still, this is, to the best of our knowledge, the only RDD estimator beside our own which does not

require pre-speci�cation of subgroups for CATE analysis.
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2 Background

This paper brings together ideas from many di�erent areas, each with their own terminology and

notation. In this section we review the basics of regression discontinuity designs, BART, and Bayesian

causal forests.

2.1 Regression Discontinuity Designs

Following Imbens and Lemieux (2008), we frame the RD setting in a potential outcomes model,

which can be brie�y described as follows. Let Z denote a binary treatment variable and Y z
i denote

the potential outcome of unit i under treatment state Zi = z. The treatment e�ect for unit i is de�ned

as:

τi := Y 1
i − Y 0

i . (1)

Let X denote the running variable and W denote a set of additional covariates. Commonly, interest

lies on the average and conditional average treatment e�ect (ATE/CATE):

E[τi] = E[Y
1
i − Y 0

i ]

E[τi | X,W ] = E[Y 1
i − Y 0

i | X,W ].
(2)

These quantities are of course unobservable since each unit is only observed at a single given treatment

state. However, under the following assumptions we can link τ to the observed outcome and covariates

(Y,Z,X,W ).

Assumption 2.1 (SUTVA) This assumption has two components: consistency and no-interference,

which are represented, respectively, as:

Y = Y 0 + Z(Y 1 − Y 0)

Y 1
i , Y

0
i ⊥⊥ Zj ,

(3)

for all i, j ∈ {1, . . . , n}, where i ̸= j.

Assumption 2.2 (Mean conditional unconfoundedness) Y 1, Y 0 are mean independent of Z con-

ditional on X,W :

E[Y 1 | Z,X,W ] = E[Y 1 | X,W ]

E[Y 0 | Z,X,W ] = E[Y 0 | X,W ].
(4)

Under assumptions (2.1) and (2.2), the conditional average treatment e�ect (CATE) is identi�ed

as:

E[Y 1 − Y 0 | X,W ] = E[Y | Z = 1, X,W ]− E[Y | Z = 0, X,W ]. (5)

While the previous assumptions lead to identi�cation of the CATE, one more assumption is nec-

essary for estimation:
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Assumption 2.3 (Conditional overlap) Both treatment states have a positive probability condi-

tional on X,W :

0 < P (Z = z | X,W ) < 1. (6)

In words, assumption (2.3) allows one to compare treated and untreated units in any region of the

support of (X,W ), leading to the construction of valid causal contrasts.

The distinctive feature of the RDD is that Z is a deterministic function of X:

Zi =

{
0, if Xi < c

1, if Xi ≥ c

for a known cuto� value c1.

The deterministic assignment mechanism implies that controlling for X is su�cient to ensure

unconfoundedness. However, this control induces a complete lack of overlap. Therefore, treatment

e�ect estimation in the RDD requires additional assumptions to circumvent this issue. In order to

discuss these assumptions, we write the expectation of Y given (X,W,Z) as:

E[Y | X,W,Z] = µ(X,W ) + τ(X,W )Z

µ(X,W ) = E[Y | X,W,Z = 0]

τ(X,W ) = E[Y | X,W,Z = 1]− E[Y | X,W,Z = 0].

(7)

Because of the lack of overlap, one can only learn µ(X,W ) in the region X < c and µ(X,W ) +

τ(X,W ) in the region X ≥ c, so that inferences concerning τ(X,W ) at arbitrary x cannot be obtained

without further assumptions. We now discuss the kinds of assumptions necessary for estimation in

the RDD.

For some ϵ > 0, let x−ε = {x ∈ (c− ϵ, c)}, x+ε = {x ∈ [c, c+ ϵ)}, and xϵ = x−ϵ ∪ x+ϵ . Suppose that,

for X ∈ xϵ, the treatment e�ect function is independent from the treatment variable conditional on

X. Then:

E[E[Y | X,W,Z = 1] | X ∈ xϵ]− E[E[Y | X,W,Z = 0] | X ∈ xϵ]

=E[τ(X,W ) | X ∈ x+ϵ ] + (E[µ(X,W ) | X ∈ x+ϵ ]− E[µ(X,W ) | X ∈ x−ϵ ]).
(8)

Suppose that:

E[µ(X,W ) | X ∈ x+ϵ ] = E[µ(X,W ) | X ∈ x−ϵ ] = E[µ(X,W ) | X ∈ xϵ]

E[τ(X,W ) | X ∈ x+ϵ ] = E[τ(X,W ) | X ∈ x−ϵ ] = E[τ(X,W ) | X ∈ xϵ].
(9)

Then, the ATE2 is identi�ed inside this region:

1Our focus lies on the so-called �sharp� RDD, in which case there is perfect compliance � as opposed to the �fuzzy�
RDD, in which case compliance is imperfect � so the perfect compliance assumption is implicit throughout the text.

2As is commonly done in the RDD literature, we refer to the CATE conditional only on X as the ATE and use
CATE only when conditioning on W as well
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E[E[Y | X,W,Z = 1] | X ∈ xϵ]− E[E[Y | X,W,Z = 0] | X ∈ xϵ]

=E[τ(X,W ) | X ∈ xϵ].
(10)

This is the basis of the continuity-based identi�cation approach introduced by Hahn et al. (2001).

Under that setting, if these conditions can be assumed to hold at least as ϵ → 0 � i.e. if the

expectation of the µ and τ functions are continuous at X = c � the ATE at this point is identi�ed

as E[τ(X = c,W )].

If interest lies in identi�cation of the CATE in some region of the feature set W = w, we need

similar assumptions about the expectations conditional on W . Suppose that, for all x− ∈ x−ϵ and

x+ ∈ x+ϵ :

µ(X = x−,W = w) = µ(X = x+,W = w)

τ(X = x−,W = w) = τ(X = x+,W = w).
(11)

Then, the CATE at W = w is identi�ed in the region xϵ by τ(X,W = w). As before, if these

equalities hold as ϵ→ 0, i.e. if µ and τ are continuous at X = c, the CATE for W = w is identi�ed at

that point. Because we propose an estimator for the CATE, (11) is assumed to hold for the remainder

of the text. However, it is worth emphasizing that only (9) is required for identi�cation of the ATE,

so that, even if τ(X,W ) does not identify any CATE, estimates of this function can still be used to

produce ATE estimates if the relevant assumptions hold.

To introduce some of the challenges faced by tree models in the RDD context, consider the

treatment e�ect estimate in a single tree model for a partition in the tree �t that contains X = c,

denoted by B. Suppose µ and τ are continuous at X = c for allW � and, thus, the CATE is identi�ed

at the cuto� for all W � and suppose (11) does not hold. For points inside that partition, de�ne

XB
+ = x ∈ [c, x], XB

− = x ∈ [x, c], where x and x are the smallest and largest values of X inside the

partition, respectively, and XB = XB
+ ∪XB

−. Then:

E[Y | X ∈ XB,W,Z = 1]− E[Y | X ∈ XB,W,Z = 0]

=µ(X ∈ XB
+,W )− µ(X ∈ XB

−,W ) + τ(X ∈ XB
+,W ).

(12)

This means that the bias for the cuto� treatment e�ect estimate inside this partition is given by:

τbias = τ(X = c,W )− τ(X ∈ XB
+,W ) + µ(X ∈ XB

+,W )− µ(X ∈ XB
−,W ). (13)

Equation (13) shows how the bias in a tree model is determined by the composition of the leaf

nodes. In words, although nodes that are too tight around X = c could lead to an increase in variance

due to the decreasing number of available points in the leaves, nodes that contain too wide regions

around the cuto� could lead to extremely biased estimates if µ and τ feature a wide range of values in

that partition. Therefore, when considering a split in a tree, minimal variation of the prognostic and
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treatment e�ect functions around the cuto� inside the generated leaves should be a key component

of the tree growth process. This is the essence of the BART-RDD model, which will be discussed in

more detail in section 3.

2.2 Bayesian Additive Regression Trees

The Bayesian Additive Regression Trees model (Chipman et al., 2010), or BART, represents an

unknown mean function as a sum of regression trees, where each regression tree is assumed to be

drawn from the tree prior described in Chipman et al. (1998). Letting f(x) = E(Y | X = x) denote

a smooth function of a covariate vector X, the BART model is traditionally written

Yi = f(xi) + εi,

=

k∑
j=1

gj(xi;Tj ,mj) + εi,
(14)

where εi ∼ N(0, σ2) is a normally distributed additive error term. Here, each gj(x;Tj ,mj) denotes a

piecewise function of x de�ned by a set of splitting rules Tj that partitions the domain of x into disjoint

regions, and a vector, mj , which records the values g(·) takes on each of those regions. Therefore, the

parameters of a standard BART regression model are (T1,m1), . . . , (Tk,mk) and σ. Chipman et al.

(2010) consider priors such that: the tree components (Tj ,mj) are independent of each other and of

σ2, and the terminal node parameters µk1, . . . , µkb of a given tree k are independent of each other.

Furthermore, Chipman et al. (2010) consider the same priors for all trees and leaf node parameters.

The model thus consists of the speci�cation of three priors: p(T ), p(σ2) and p(m|T ).
The tree prior, p(T ), is de�ned by three components. First, the probability that a node d will

split is determined by
α

(1 + d)β
, α ∈ (0, 1), β ∈ [0,∞). (15)

That is, the deeper the node (higher d), the higher the chance that it is a terminal node. This is

essentially a regularization component of the tree prior to avoid over�tting.

The other components of the tree prior are the probability that a given variable will be chosen for

the splitting rule at node d, and the probability that a given observed value of the chosen variable will

be used for the splitting rule. The splitting variable is chosen uniformly among the set of covariates

and then the splitting value is chosen uniformly among the discrete set of observed values of that

covariate.

For further details and justication concerning BART prior speci�cation, see Chipman et al. (2010).

2.3 Bayesian Causal Forest

There are two common strategies for estimating heterogeneous treatment e�ects. One is to simply

focus on estimating the response surface including a treatment indicator as an additional covariate,

while the other consists of �tting two di�erent models for treatment and control groups. Recently,

these approaches have been dubbed �S-learners� and �T-learners� respectively, where S means �single�

and T means �two� (Künzel et al., 2019). In the context of applying BART for causal inference, Hill
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(2011) follows the �rst approach, under the assumption of no unobserved confounding, which implies

that treatment e�ect estimation reduces to response surface estimation. For the second approach, one

could simply �t two di�erent BART models for treated and control units.

As described in Hahn et al. (2020), neither of these approaches is ideal in common causal inference

settings. The two-model T-learner approach has the problem that regularization of the treatment

e�ect is necessarily weaker than regularization of each individual model, which is the opposite of what

you would expect in many contexts, where treatment e�ects are expected to be modest. The single-

model approach of Hill (2011) addresses this to some extent, but at the expense of transparency: the

implied degree of regularization depends sensitively on the joint distribution of the control variables

and the treatment variable. Accordingly, Hahn et al. (2020) proposed the Bayesian Causal Forest

(BCF) model, which �ts two BART models simultaneously to a reparametrized response function:

Yi = µ(Xi,wi) + τ(Xi,wi)bzi + εi, εi ∼ N(0, σ2),

b0 ∼ N(0, 1/2), b1 ∼ N(0, 1/2).
(16)

where µ(·) is referred to as a prognostic function and τ(·) a treatment e�ect function3. The model

parametrized in this way can be seen as a linear regression with a covariate-dependent slope and

intercept (Hahn et al., 2020).

Note that b0 and b1 are parameters that can be estimated; practically this is desirable because it

avoids giving the treated potential outcome higher prior predictive variance4. Under this parameter-

ization the treatment e�ect can be expressed as:

E(Y 1 | X = x)− E(Y 0 | X = x) = (b1 − b0)τ(x). (17)

2.4 The XBCF model

To sample from the posterior distributions of trees, Chipman et al. (2010) propose a back�tting

MCMC algorithm that explores the tree space by proposing at each iteration a grow or prune step,

producing highly correlated tree samples. This can make convergence of the algorithm slow and may

not scale well to large datasets. And, as BCF depends on BART priors, it will also be a�ected by

these problems.

As a more e�cient alternative, He and Hahn (2023) propose the accelerated Bayesian additive

regression trees (XBART) algorithm for BART-like models. XBART grows new trees recursively,

but stochastically, at each step while using a similar set of cutpoints and splitting criteria as BART,

which allows for much faster exploration of the posterior space. Krantsevich et al. (2023) extends

the XBART algorithm to the BCF model, with their accelerated Bayesian causal forest (XBCF)

algorithm, an XBCF algorithm. The XBCF algorithm uses a slightly modi�ed BCF model, allowing

3This terminology is motivated by the case where b0 = 0 and b1 = 1, in which case µ(x) = E(Y 0 | X = x) and
τ(x) = E(Y 1 | X = x)−E(Y 0 | X = x).

4Treatment coding can imply non-equivalent priors for the treatment e�ects. For example, Z ∈ (0, 1) implies the
expected potential outcomes for the treated group depend on the treatment e�ect function, while the expected potential
outcomes for the control group do not, which is not reasonable if we have a comparison between two levels of treatment
instead of treatment vs. no treatment. See Hahn et al. (2020) for a more thorough discussion on how treatment e�ect
priors are dependent on treatment encoding.

8



the error variance to di�er by treatment status:

Yi = aµ(xi) + bzi τ̃(xi) + ϵi, ϵi ∼ N(0, σ2
zi)

a ∼ N(0, 1), b0, b1 ∼ N(0, 1/2),
(18)

where µ(x) and τ̃(x) are two XBART forests and τ = (b1 − b0)τ̃ .

The BART-RDD method described below is a modi�ed XBCF algorithm, specialized in critical

ways to the RDD setting. The key innovation from He and Hahn (2023) is the so-called �Grow-From-

Root� stochastic tree-�tting algorithm, reproduced in algorithm 1 in a summary form. It will be

discussed later how this algorithm is particularly well-suited to the RDD context.

Algorithm 1: GrowFromRoot
Output: Modi�es T by adding nodes and sampling associated leaf parameters µ.

1 if the stopping conditions are met then
2 Go to step 13, update leaf parameter µnode;
3 end

4 s∅ ← s(y,X,Ψ, C, all);
5 for cjk ∈ C do
6 s

(1)
jk ← s(y,X,Ψ, C, j, k, left);

7 s
(2)
jk ← s(y,X,Ψ, C, j, k, right);

8 Calculate L(cjk) = m
(
s
(1)
jk ;Φ,Ψ

)
×m

(
s
(2)
jk ;Φ,Ψ

)
;

9 end

10 Calculate L(∅) = |C|
(
(1+d)β

α − 1
)
m

(
s∅;Φ,Ψ

)
;

11 Sample a cutpoint cjk proportional to integrated likelihoods

P (cjk) =
L(cjk)∑

cjk∈C L(cjk) + L(∅)
,

or

P (∅) = L(∅)∑
cjk∈C L(cjk) + L(∅)

for the null cutpoint;
12 if the null cutpoint is selected then
13 µnode ← SampleParameters(∅);
14 return
15 else
16 Create two new nodes, left_node and right_node, and grow T by designating them as

the current node's (node) children;
17 Partition the data (y,X) into left (yleft,Xleft) and right (yright,Xright) parts, according

to the selected cutpoint xij′ ≤ x∗jk and xij′ > x∗jk, respectively, where x∗jk is the value

corresponding to the sampled cutpoint cjk;
18 GrowFromRoot(yleft,Xleft,Φ,Ψ, d+ 1, T, left_node);
19 GrowFromRoot(yright,Xright,Φ,Ψ, d+ 1, T, right_node)
20 end
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3 Bayesian Regression Trees for Regression Discontinuity Designs

Unlike local polynomial regression methods, a BART-based approach to RDD does not have to pre-

specify a set of global basis functions nor must it entirely discard data outside of a neighborhood of

the cuto�. These features are particularly useful when incorporating additional covariates W for the

purpose of CATE estimation. However, this �exibility comes at a cost and estimation can go wrong

in one of two ways. First, a BART-based T-Learner may give poor estimates of E(Y | X = c,W )

because tree ensembles with constant leaf models are known to extrapolate poorly (but see Starling

et al. (2021) and Wang et al. (2024) for alternatives, which we do not pursue here.) Second, a BART-

based S-Learner may estimate the response surface at X = c reasonably well, but still provide biased

estimates of the treatment e�ect because some of its individual trees end up using data very far from

the cuto�. These �aws will be depicted in numerical examples below.

To overcome these problems, we introduce novel splitting constraints, which ensure that the data

used to make predictions at X = c warrant a causal interpretation. Speci�cally, we impose the

constraint that our ensembles must be composed of trees where any partition containing the point

(x = c, w) is estimated from data �close enough� to the cuto� from both sides.

3.1 Splitting Constraints for RDD with Regression Trees

The proposed constraints have two distinct, though related, goals. First, we need the treatment-

control contrast � upon which τ(x = c, w) will be estimated � to be well-de�ned: for this we require

observations from both treatment arms (e.g. overlap). Without imposing this condition it is typical

during posterior sampling to encounter leaf nodes that contain no treated (resp. untreated) observa-

tions, which in turn yields leaf parameters that are biased for the treatment e�ect.

Second, because we cannot rely on observations far from the cuto� to estimate the treatment

e�ect, we insist that a partition that includes x = c have a strong majority of its observations within

a narrow, user-de�ned band about the cuto�. This constraint de�nes a set of suitably localized basis

functions from which to perform causal inference at the cuto�.

More formally, these constraints can be expressed as follows. For a user-de�ned bandwidth pa-

rameter h > 0, we assume that the potential outcome mean function does not vary abruptly inside

the interval [c − h, c + h], which we refer to as the �identi�cation strip�. Let B ⊂ X be a hypercube

corresponding to a node in a regression tree and let Nb denote the number of observations falling

within B. Further, let nl denote the number of observations in B ∩ [c − h, c) and nr denote the

number of observations in B ∩ [c, c+ h]. For user-speci�ed variables NOmin ∈ N+ and α ∈ (0, 1), the

leaf node region B is valid if it satis�es the following condition:(
∀w | (x = c, w) /∈ B

)
∪(

(∃w | (x = c, w) ∈ B) ∩ (min (nl, nr) ≥ NOmin) ∩ ((nl + nr)/Nb ≥ α)

)
.

(19)

The initial clause says that any node which does not make predictions at the cuto� remains entirely

unrestricted; the second clause says that any node that does make predictions at x = c has to have

both i) a minimum number of observations within the cuto� region on either side of the cuto�, as
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well as ii) not too many observations, proportionally, outside of the identi�cation strip.

3.2 Stochastic search for valid partitions

For nodes predicting at the cuto�, the two conditions (i and ii) above have qualitatively di�erent

rami�cations for the stochastic search for valid partitions. In particular, the �rst condition, if unsat-

is�ed, can never become satis�ed by further branching, while the second condition, if unsatis�ed, can

be satis�ed by further branching, by trimming away observations outside of the identi�cation strip.

This observation motivates us to use XBART/XBCF rather than standard BART MCMC for our

model �tting. An unmodi�ed local random walk would violate recurrence because certain valid states

can only be reached by passing through invalid states; as a practical matter, reaching valid partitions

by a random walk would be highly ine�cient. By utilizing the Grow-From-Root algorithm, passing

through invalid states to reach favorable valid states is a simple matter of not terminating the growth

process at an invalid state. Speci�cally, never accept a partition that violates condition i, and never

stop at a partition that violates condition ii.

In practice, this new stochastic search procedure is implemented by modifying the likelihood

calculation in steps 8 and 10 of the GFR algorithm for XBCF as follows. Consider a candidate split

with cutpoint cjk which splits the current node into left and right nodes. Let B
(l)
x denote the range

of x which the left node covers and similarly de�ne B
(r)
x . Let nll and nlr denote the number of

observations such that x ∈ [c − h, c) and x ∈ [c, c + h] in the left node, and nrl and nrr denote the

same quantities in the right node, respectively. If,

c ∈ B(l)
x and max(nll, nlr) < NOmin (20)

or if

c ∈ B(r)
x and max(nrl, nrr) < NOmin, (21)

this split violates condition (i). Therefore, we consider this an invalid partition and set L(cjk) = 0.

If the split does not violate condition (i), we calculate its likelihood as in the GFR algorithm. For

condition (ii), we check whether:

c ∈ Bx and
nl + nr

Nb
< α. (22)

If so, we set the likelihood of the no-split option L(∅) = 0 unless there are no other valid splits, in

which case we set L(∅) = 1. In the latter case, we end up with a tree that is still invalid, as it violates

condition ii; our implementation monitors for this eventuality and �nd that it rarely if ever occurs in

most data sets.

3.3 Illustration of the constraints and search

The impact of expression (19) on the �tted trees may be visualized by considering a concrete example.

Consider a tree �t with only the running variable (X). Figure 1 plots X against some outcome Y for

a dataset with 75 observations, presenting di�erent partitions in X. For this example, the cuto� is

c = 0 � denoted by the dotted line � and the ATE at that point is equal to 0.5. We consider a window
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of h = 0.06, denoted by the dashed lines in the plots. The treated units (x ≥ c) are denoted by

black triangle dots and the control units are denoted by white round dots. Splits in X are denoted by

solid lines. For each partition, we represent the inferred potential outcome as a red line for untreated

and blue line for treated outcomes. For the partitions that include both types of observations � i.e.

points from both sides of the cuto� � we represent both potential outcomes.

Panel 1a shows a split which is invalid since it cuts through the identi�cation strip, leading to a

node that contains only one point to the right of the cuto� in that region. The ATE at the cuto� for

that tree is predicted to be 0.78. Panel 1b presents a split which only violates condition (ii), since

it does not cut through the identi�cation strip, but features a node with too many points outside

the strip. The ATE at the cuto� for that tree is predicted to be 0.7. This tree can be made valid

by `trimming out' points too far from the cuto� in the right node. Panel 1c presents an additional

split that does exactly that. The ATE at the cuto� for that tree is predicted to be 0.67. Finally,

panel 1d presents another tree, with a couple of additional splits to the left of the identi�cation strip,

and a split to the right that's closer to the strip. Since the new nodes generated do not include the

identi�cation strip, they are all potentially valid. The ATE at the cuto� for that tree is predicted to

be 0.6.

Analysis of the �gures makes clear what types of trees will be accepted under our restrictions. We

consider only trees that do not cut through the identi�cation strip, are well populated with points in

that region from both sides of the cuto� and are tight around that region. This way, we incorporate

the RDD assumption that units su�ciently near the cuto� are similar enough to be compared and use

this to create an `overlap region' around the cuto�. The shape of the trees is also largely dependent on

the data structure. If there are many points with x ≈ c we can make the identi�cation strip narrower

without being too restrictive on the tree growth especially if the points are well dispersed in regards

to the other covariates. On the contrary, if most points have x far from the cuto� we might need

to de�ne a wider identi�cation strip to reasonably explore the tree space. Finally, it is worth noting

that this strategy can be used more generally for any problem where one must �t tree ensembles and

enforce smoothness over a speci�c variable and around a speci�c point.

This exercise also highlights the problems that unmodi�ed BART models might face in the context

of the RDD. Note that all trees above are, at least in principle, valid under the standard BART prior.

If the nodes that contain X = c include points close to the cuto� from both sides, but many points

far from it, these trees will only lead to reasonable causal contrasts if Y is relatively constant with

respect to X. Otherwise, such trees should exhibit strong bias if the prognostic or treatment e�ect

functions vary substantially, as is the case in the previous example, which illustrates the bias described

in equation (13). In fact, as we move closer towards the kinds of trees that would be accepted by

BART-RDD � i.e. moving from the �rst panel to the last � we decrease the bias in the predicted

ATE at the cuto�. The important distinction here is that, while all BART-based models could reach

reasonable trees, only BART-RDD is guaranteed to do so by rejecting trees that do not behave `well'.

This means the unmodi�ed BART trees might sometimes do well and sometimes not, so these models

will produce ensembles which mix over biased and unbiased trees, leading to biased �ts.
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Figure 1: Tree examples: panel (a) shows a tree with a split that violates condition i, which cannot
be accepted; panel (b) presents a tree with a split that violates condition ii, which can be accepted
because we can make this tree valid by trimming out the region outside the identi�cation strip in the
relevant nodes; the tree in panel (c) is an example of the kind of tree that would be accepted by the
algorithm, with tight bounds on the identi�cation region and good representation from both sides of
the cuto�; the tree in panel (d) is the same as the one in panel (c) with some additional splits that
do not contain the identi�cation strip, so the tree remains valid
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3.4 Prior elicitation

The question remains as to how one should set the relevant parameters in order to obtain good

predictions. A completely general rule cannot be expected, as the impact each parameter has in

the estimation is highly data-dependent. Nonetheless, it is instructive to consider what kinds of

restrictions our parameters imply to the tree search process and how they impact prior bias.

First, consider the bandwidth parameter h. On the one hand, h should be set as low as possible

for two reasons. First, setting h too high makes it more likely that a given tree would cut through the

identi�cation strip. In particular if h is such that the strip covers all the support of X, the algorithm

would only accept trees that do not use X for partitions. Given the essential role that X plays in the

outcome distribution in an RDD setting, not using it for the tree splits would lead to severely biased

trees. Additionally, since the goal is to make inference enforcing smoothness over X at a speci�c point

(X = c), one should only use points as close to c as possible to obtain better approximations of the

true function around that point.

On the other hand, there is also a limit to how low one can set h for each dataset. In particular, if

h is so small that there are no points inside the identi�cation strip, any tree will produce nodes with

an empty overlap region and, thus, be invalid. This means that h also interacts with NOmin in that

extreme: even if there are points in the identi�cation strip, if there are less than NOmin points, the

same phenomenon happens, making all trees invalid.

Next, we turn to NOmin: if it is set to 0, the trees could produce nodes which contain the

overlap region but have no points inside it. Thus, predictions near the cuto� could be based only

on observations too far from the cuto�, which would undermine the constraint associated with this

parameter. Setting NOmin too high could be too restrictive since there would be fewer valid nodes

containing the overlap region, which could bias the individual posterior distributions or at least make

it harder to detect heterogeneity in the data, since we could have very short trees.

Finally, we note that if α is set too low, we allow for many points outside the strip to in�uence

the results from nodes that do include the strip. However, setting it high is not necessarily a problem

since, as discussed in the previous section, nodes that do not satisfy this criterion can be made to

satisfy it by simply `trimming' the outer region of nodes containing the identi�cation strip. It is

important to note, however, that setting α too high could lead to many forced splits in the boundaries

of the identi�cation strip, which can lead to an increase in variance if these additional splits are not

particularly relevant. Therefore, this parameter should also be chosen carefully.

Clearly, it is nontrivial how these considerations might interact in a given sample. This re�ects

the immense delicacy of the regression discontinuity design itself, rather than a limitation intrinsic to

the BART-RDD proposed; all RDD methods require grappling with how to set tuning parameters.

Our proposed approach is via a prior predictive elicitation procedure. Speci�cally, we recommend, for

a given sample (x,w, y), the following:

1. Generate s samples of a synthetic data from a known DGP using (x,w)

2. Fit BART-RDD to each sample for di�erent values of the prior parameters

3. Choose the parameter values which lead to lower RMSE values for the ATE in those s synthetic
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samples.

We �nd that generating the synthetic data from a simple model with no treatment e�ect hetero-

geneity and relatively small ATE leads to �nding good values for the prior parameters even when

the true data exhibits strong heterogeneity or large e�ects. This is also a reasonable prior for the

treatment e�ects, unless one has strong reason to believe in a more complex scenario. In the sim-

ulation studies to follow, we use this procedure to choose h, NOmin and α. A detailed analysis of

this procedure may be found in Appendix A, where we discuss its application in the context of the

simulations.

4 Simulation studies

4.1 Setup

In order to investigate the properties of the BART-RDD algorithm, we perform a simulation study

comparing its performance to an S-learner BART �t (S-BART), a T-learner BART �t (T-BART),

the robust bias-corrected local linear regression (LLR), as implemented by Calonico et al. (2015),

and the cubic spline estimator (CGS) of Chib et al. (2023). The goal of this exercise is twofold.

First, we want to investigate how BART-RDD compares with o�-the-shelf implementations of BART

applied to the RDD context. We are able to show that our modi�cation does in fact make the BART

prior more suited to this context. Second, we want to compare BART-RDD to estimators that were

designed speci�cally to the RDD context, in particular the local polynomial estimator, by far the

most commonly used in the literature, and the cubic splines estimator which is possibly the closest

in spirit to that in the Bayesian literature. Besides showing BART-RDD is more suited to the RDD

setup than unmodi�ed BART models, we also show that BART-RDD generally performs better and

never far worse than the estimators designed speci�cally for the RDD.

Let X denote the running variable, W an additional set of features, Z the treatment indicator

and Y a continuous outcome. We investigate 500 samples of size 1000 of variations of the following

DGP:

X ∼ 2B(2, 4)− 0.75

W1 ∼ U(−0.1, 0.1)

W2 ∼ N (0, 0.2)

W3 ∼ Binomial(1, 0.4)

W4 ∼ Binomial(1, p(x))

Z = 1(X ≥ c)

µ(X,W ) =
µ0(X,W )

σ(µ0(X,W ))
δµ

τ(X,W ) = τ̄ +
τ0(X,W )

σ(τ0(X,W ))
δτ

Y = µ(X,W ) + τ(X,W )Z + ε

c = 0

τ̄ = {0.2, 0.5}

δµ = {0.5, 1.25}

δτ = {0.1, 0.3}

ε ∼ N (0, 1),

where B(2, 4) denotes a Beta distribution with parameters 2 and 4, p(x) denotes the Gaussian prob-

ability density of x with mean c and standard deviation 0.5, and:
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µ0(X,W ) = 3x5 − 2.5x4 − 1.5x3 + 2x2 + 3x+ 2 +
1

2

4∑
p=1

(wp − E[wp])

τ0(X,W ) = −0.1x+
1

4

4∑
p=1

(wp − E[wp])

(23)

4.1.1 Rationale

Here we brie�y justify the choices made in the simulation design described above. First, although

there are other parameters that a�ect the performance of any estimator, the spread in µ and τ were

the only factors that we found to have distinct impacts on di�erent estimators. In other words, the

e�ect of other DGP characteristics in the results were common across estimators in the expected

ways5. We control these features in the data through the parameters (δµ, δτ ). The particular choices

for these parameters were made in an attempt to replicate realistic behavior in µ and τ . Particularly,

we made sure that there are generally no sign changes in the individual treatment e�ects and that

the spread in the prognostic component is larger than the spread in the treatment e�ects.

In regards to the functional forms chosen, while we did experiment with di�erent functional forms,

the results remain the same qualitatively (although sometimes less clear depending on how hard the

functions are to estimate). In most methodological RDD studies, the setups considered feature only

X as a strong predictor and a very strong signal-to-noise ratio. In that regard, we consider our setup

to be more complete in terms of expected characteristics of empirical data6.

The distribution of X plays an important role in the RDD, as it determines the distribution of

treatment. If X is skewed to the left (right) of the cuto�, the sample will have many less (more)

treated units, which should make estimation harder. Conversely, if X is nearly symmetric around

the cuto�, estimation should be simpler. The distribution described above is relatively standard in

the literature, so we chose it for more comparability with previous studies7. While we did explore

di�erent distributions of X, these variations did not change the results qualitatively.

4.2 Results

4.2.1 Comparison of ATE Estimates

Although the primary new functionality of BART-RDD is in providing CATE estimates, we begin by

examining its performance on the ATE for comparison for other methods and because a good CATE

learner should be able to provide ATE estimates as well. Table 1 and �gure 2 present the RMSE for

the ATE point estimate produced by each estimator8.

5For example, larger sample or e�ect sizes increased the performance of every estimator in roughly the same manner,
meaning these features are not particularly helpful in determining the situations in which the estimators might di�er
in their performance.

6For a summary of the simulation exercises in some of the most relevant methodological RDD papres, see https:
//github.com/rafaelcalcantara/BART-RDD.

7Most papers in fact set X ∼ 2B(2, 4)− 1. We chose X ∼ 2B(2, 4)− 0.75 here so that X is centered slightly closer
to the cuto� and the proportion of treated and control units in the sample is not so di�erent (we obtain nearly 40%
treated units in every sample).

8In the case of the Bayesian estimators, we consider the posterior mean as the point estimate.
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Table 1: RMSE - ATE

τ̄ δµ δτ BART-RDD S-BART T-BART CGS LLR

0.2 0.5 0.1 0.114 0.214 0.253 0.370 0.233
0.2 0.5 0.3 0.114 0.228 0.264 0.388 0.243
0.2 1.25 0.1 0.226 0.298 0.424 0.411 0.234
0.2 1.25 0.3 0.250 0.321 0.440 0.445 0.255
0.5 0.5 0.1 0.158 0.257 0.249 0.387 0.247
0.5 0.5 0.3 0.147 0.250 0.258 0.372 0.239
0.5 1.25 0.1 0.251 0.397 0.432 0.437 0.251
0.5 1.25 0.3 0.247 0.402 0.429 0.443 0.245

The results indicate that high variation in µ makes estimation harder for all estimators, although

the di�erence is not so sizeable for LLR. In that setting, BART-RDD and LLR perform similarly.

However, when δµ is low, BART-RDD clearly outperforms all estimators. Regarding the other BART-

based estimators, S-BART and T-BART perform similarly, but the former is less sensitive to high

variability in µ. Overall, CGS is the worst performer in terms of the RMSE.

In order to better understand the behavior of the RMSE, �gures 3 and 4 present, respectively, the

absolute bias and variance for each estimator, separated by the parameter values of the DGPs. This

decomposition highlights some important patterns. First, the consistently low bias of the LLR and

CGS estimators is remarkable, which means any variation in their RMSE is coming from the estimator

variance. For LLR, this should not come as a surprise given this method's focus on reducing bias,

but it is worth noting how e�ective it is in that regard. On the contrary, BART-RDD presents bias

comparable to LLR and CGS when heterogeneity in µ is low, but a much greater bias otherwise.

This trend is true for all BART-based models, although, for a given value of δµ, BART-RDD almost

always presents much lower � and never far worse � bias than the others. Finally, δµ is the only

factor that signi�cantly a�ects bias for the BART-based models. These results corroborate the bias

described in equation (13) for tree-based RDD estimators. In particular, although both variation in µ

and τ near the cuto� point can pose problems, the models are potentially much more sensitive to the

former, since they require low variation for the prognostic function at both sides of the cuto�. The

results also highlight how BART-RDD is particularly e�ective in decreasing the o�-the-shelf BART

sensititivity to such issues

Regarding variance, BART-RDD is always the best performer, with a consistently lower variance

than the other estimators. LLR also presents much larger variance than BART-RDD. T-BART

presents a slightly larger variance than BART-RDD, whereas S-BART presents larger variance that

is very sensitive to δµ. Finally, CGS presents the worst variance in all scenarios, which explains this

method's poor RMSE performance.

Although Bayesian intervals are generally not expected to achieve any particular coverage rate,

frequentist coverage is a helpful metric to consider. Table 2 presents the coverage rate and interval

size (in parenthesis) for each estimator. CGS and LLR present near 95% coverage in all cases, while

S-BART presents near 95% coverage in all cases when τ̄ = 0.2 and near 90% coverage when τ̄ = 0.5.

Coverage rates for BART-RDD and T-BART follow a common pattern of decreasing coverage when

δµ increases. However BART-RDD presents better coverage than T-BART, reaching 95% coverage in
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Figure 2: RMSE for the ATE point estimate produced by each estimator, divided by the di�erent
DGP parameters

18



0.
0

0.
1

0.
2

0.
3

A
bs

ol
ut

e 
B

ia
s

BART−RDD S−BART T−BART CGS LLR

δµ

0.5 1.25

(a) δµ

0.
0

0.
1

0.
2

0.
3

A
bs

ol
ut

e 
B

ia
s

BART−RDD S−BART T−BART CGS LLR

δτ

0.1 0.3

(b) δτ

0.
0

0.
1

0.
2

0.
3

A
bs

ol
ut

e 
B

ia
s

BART−RDD S−BART T−BART CGS LLR

τ

0.2 0.5

(c) τ

Figure 3: Absolute bias for the ATE point estimate produced by each estimator, divided by the
di�erent DGP parameters

19



0.
05

0.
10

0.
15

0.
20

V
ar

ia
nc

e

BART−RDD S−BART T−BART CGS LLR

δµ

0.5 1.25

(a) δµ

0.
05

0.
10

0.
15

0.
20

V
ar

ia
nc

e

BART−RDD S−BART T−BART CGS LLR

δτ

0.1 0.3

(b) δτ

0.
05

0.
10

0.
15

0.
20

V
ar

ia
nc

e

BART−RDD S−BART T−BART CGS LLR

τ

0.2 0.5

(c) τ

Figure 4: Variance for the ATE point estimate produced by each estimator, divided by the di�erent
DGP parameters

20



one case and never falling below 70% coverage. Meanwhile, T-BART reaches at most 82.8% coverage.

Comparing the interval sizes provides an explanation of the coverage rate behavior. CGS presents,

by far, the largest intervals so it is still able to get good coverage despite being the worst in terms of

the RMSE. S-BART produces the second largest intervals on average, which also helps compensate

the larger bias in some cases, leading to very good coverage generally. LLR produces the third largest

intervals on average, which, combined with the relatively good RMSE performance leads to great

coverage. T-BART comes next, and the combination of shorter intervals and bad RMSE performance

leads to poor coverage. Finally, BART-RDD produces the shortest intervals. However, because of the

really good RMSE performance, it is still able to obtain good coverage in all cases.

Table 2: Coverage rate and interval sizes (in parenthesis) for the ATE

τ δµ δτ BART-RDD S-BART T-BART CGS LLR

0.2 0.5 0.1 0.924 0.954 0.798 0.962 0.94
(0.424) (0.713) (0.719) (1.598) (0.855)

0.2 0.5 0.3 0.954 0.95 0.724 0.95 0.932
(0.442) (0.757) (0.677) (1.604) (0.877)

0.2 1.25 0.1 0.782 0.94 0.538 0.97 0.93
(0.546) (0.97) (0.797) (1.792) (0.863)

0.2 1.25 0.3 0.718 0.95 0.52 0.964 0.938
(0.539) (1.068) (0.794) (1.814) (0.88)

0.5 0.5 0.1 0.9 0.866 0.828 0.958 0.946
(0.536) (0.859) (0.743) (1.604) (0.87)

0.5 0.5 0.3 0.92 0.89 0.772 0.962 0.942
(0.519) (0.913) (0.704) (1.607) (0.87)

0.5 1.25 0.1 0.722 0.87 0.558 0.966 0.918
(0.579) (1.239) (0.81) (1.788) (0.87)

0.5 1.25 0.3 0.702 0.894 0.572 0.962 0.934
(0.567) (1.313) (0.818) (1.798) (0.872)

4.2.2 Comparison of CATE estimates

This section compares the various BART-based models in terms of their CATE estimation (the poly-

nomial estimators do not provide CATE estimates). Tables 3 and 4 present the RMSE and coverage

for each estimator, respectively. The results for the RMSE are qualitatively the same as before for

all estimators. Regarding coverage, BART-RDD is the best model, with S-BART and T-BART per-

forming slightly worse. Overall, these results suggest a similar trend as with the ATE: S-BART

and T-BART present similar performance, with the latter being more sensitive to variability in µ.

BART-RDD comes out as the best estimator among the BART variants in all scenarios but one.

For a more detailed look into the CATE predictions of each model, �gures 5 and 6 present the

CATE �t for an illustrative sample of the DGP described earlier, with δµ = 0.5 and δµ = 1.25

respectively. We set δτ = 0.3 and τ̄ = 0.5 for these examples. The values are presented for units

inside the identi�cation strip in ascending order. Two patterns stand out in these comparisons. First,

although increasing δµ evidently makes it harder to recover τ in general, the results from BART-RDD

are a lot less sensitive to these changes. Second, S-BART seems to have a lot more di�culties in

picking up variations in W , producing much more constant CATE estimates than the other methods.

Overall, the �gures suggest that the BART-RDD CATE predictions are less biased and more able to
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Table 3: RMSE - CATE

τ δµ δτ BART-RDD S-BART T-BART

0.2 0.5 0.1 0.164 0.204 0.280
0.2 0.5 0.3 0.216 0.287 0.298
0.2 1.25 0.1 0.262 0.255 0.445
0.2 1.25 0.3 0.302 0.345 0.463
0.5 0.5 0.1 0.228 0.247 0.281
0.5 0.5 0.3 0.249 0.297 0.295
0.5 1.25 0.1 0.315 0.363 0.451
0.5 1.25 0.3 0.321 0.411 0.452

Table 4: Coverage - CATE

τ δµ δτ BART-RDD S-BART T-BART

0.2 0.5 0.1 0.993 0.969 0.951
0.2 0.5 0.3 0.986 0.904 0.936
0.2 1.25 0.1 0.985 0.949 0.828
0.2 1.25 0.3 0.974 0.897 0.816
0.5 0.5 0.1 0.986 0.919 0.955
0.5 0.5 0.3 0.985 0.933 0.941
0.5 1.25 0.1 0.980 0.909 0.820
0.5 1.25 0.3 0.982 0.922 0.835

capture heterogeneity than the unmodi�ed BART models.

4.3 Summary of Simulation Results

These simulation results bear out our motivating problem: unmodi�ed BART models have a di�cult

time coping sensibly with the lack of overlap in RDDs. BART's lack of control over how the leaves

containing points near the cuto� are formed can lead to nearly empty nodes in that region. This is

especially true if the conditional expectations have a large spread in that region, either because of

steepness in X or because of strong heterogeneity in W , as this will probably lead to many splits.

These issues arise even more prominently for the T-BART model, since this model only features

observations from one side of the cuto� or the other by construction. The BART-RDD model avoids

these issues by having direct BART priors for the prognostic and treatment e�ect components and

restricting the growth process of these trees to ensure that nodes containing the cuto� point are well

populated by points from both sides of the cuto�.

The e�ectiveness of BART-RDD in controlling the potential bias of unmodi�ed BART models in

the CATE estimation naturally carries over to the ATE estimates. BART-RDD produces ATE esti-

mates that are generally better and never far worse than those produced by the polynomial estimators.

Being a Bayesian model for E[Y | X,W ], it is expected that BART will control variance at the cost

of some bias in the ATE estimation compared to LLR. However, for the reasons discussed above, this

bias might be stronger than the variance reduction in the unmodi�ed BART models. BART-RDD,

by controlling the extrapolation bias, is able to inherit the good predictive capabilities of BART into

this context, leading to competitive ATE estimates, even though the main focus is CATE estimation.
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Figure 5: Fit for τ(X = c,W ) for each method when δµ = 0.5 versus the true function
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5 The E�ect of Academic Probation in Educational Outcomes

We now conclude with a detailed empirical application of BART-RDD to illustrate its usage in a

real data setting. The data analyzed in this section comes from Lindo et al. (2010) and consists of

information on college students enrolled in a large Canadian university. Students who, by the end of

each term, present GPA lower than a certain threshold (which di�ers between the three university

campuses) are placed on academic probation and must improve their GPA in the next term and face

threat of punishment if they fail to achieve this goal, which can range from 1-year to permanent

suspension from the university.

Among the performance outcomes analyzed by Lindo et al. (2010), we focus on GPA in the term

after a student is placed on probation (Y ). Following the authors, we de�ne the running variable (X)

as the negative distance between a student's �rst-year GPA and the probation threshold, meaning

students below the limit have a positive score and the cuto� is 0. Additional student features in the

data include gender (`male'), age when student entered the university (`age_at_entry'), a dummy for

being born in North America (`bpl_north_america'), attempted credits in the �rst year (`totcred-

its_year1'), dummies for which campus each student belongs to (`loc_campus' 1, 2 and 3), and the

student's position in the distribution of high school grades of students entering the university in the

same year as a measure of high school performance (`hsgrade_pct').

Figure 7 presents a LOESS �t with a 95% con�dence band for the distribution of Y and each

covariate conditional on X for X ∈ [−0.5, 0.5]. We see a clear negative relationship between Y and

X, meaning students who had a lower GPA in the �rst year are more likely to have a lower GPA in

the second year as well. There is also a clear discontinuity at the probation threshold. Among the

covariates, only high-school grades and total credits attempted in the �rst year have a clear correlation

with X, both of them negative. This means that students with low �rst-year GPA are also more likely

to have had bad high-school grades and to have attempted less credits in the �rst year. The latter

feature also presents a discontinuity at the probation threshold, which means it must be included in

the estimation to avoid bias.

Table 5 presents the mean, standard deviation, minimum, maximum and correlation with Y for

each variable in the full sample and per campus. The running variable, high-school grade percentile

and credits attempted seem to be the strongest predictors. In terms of campus composition, the

running variable and high-school performance are the only ones with clearly varying distributions

across campus. The former feature presents a lower mean for campus 1 compared to the other two,

while the latter presents a higher mean for campus 1. This means students in campus 1 generally

performed better in high-school and obtain better GPA scores by the end of their �rst year. As

discussed by Lindo et al. (2010), the campuses are indeed di�erent in their student composition.

Campus 1 is the central campus and has a more traditional university structure, lower acceptance rates

and more full-time students, while campuses 2 and 3 are satellite campuses and resemble community

colleges more, with a higher acceptance rate and more part-time and commuter students. These

di�erences suggest not only that the expected second-year GPA should di�er across campuses, but

also that the probation policy could have di�erential impacts between campuses.

In order to determine the appropriate prior parameters for this sample, we perform the prior
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Figure 7: Outcome and covariate distribution conditional on X
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Table 5: Summary statistics

Sample Mean SD Min Max Cor

Y

Full 2.571 0.91 0 4.3 1
Campus 1 2.676 0.897 0 4.3 1
Campus 2 2.486 0.886 0 4.3 1
Campus 3 2.369 0.921 0 4.3 1

X

Full -0.961 0.864 -2.8 1.6 -0.656
Campus 1 -1.113 0.83 -2.8 1.5 -0.652
Campus 2 -0.79 0.84 -2.8 1.5 -0.64
Campus 3 -0.706 0.881 -2.7 1.6 -0.642

hsgrade_pct

Full 51.003 28.712 1 100 0.47
Campus 1 60.282 26.021 1 100 0.456
Campus 2 37.165 27.057 1 100 0.488
Campus 3 37.878 27.074 1 100 0.437

totcredits_year1

Full 4.584 0.505 3 6.5 0.222
Campus 1 4.694 0.435 4 6.5 0.191
Campus 2 4.465 0.47 4 6 0.129
Campus 3 4.395 0.609 3 6 0.237

age_at_entry

Full 18.656 0.735 17 21 -0.09
Campus 1 18.631 0.72 17 21 -0.089
Campus 2 18.658 0.717 17 21 -0.061
Campus 3 18.716 0.781 17 21 -0.09

male

Full 0.38 0.485 0 1 -0.039
Campus 1 0.378 0.485 0 1 -0.039
Campus 2 0.363 0.481 0 1 -0.055
Campus 3 0.398 0.489 0 1 -0.024

bpl_north_america

Full 0.87 0.337 0 1 0.02
Campus 1 0.874 0.332 0 1 0.012
Campus 2 0.897 0.305 0 1 0.02
Campus 3 0.84 0.367 0 1 0.022

Sample size

Total: 40582; Campus 1: 23999; Campus 2: 7029; Campus 3: 9554
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elicitation procedure described in section 3.4: �x X,W , generate 10 samples of the DGP described in

that section, take a grid of candidate values for (NOmin, NOpct, h) and calculate the RMSE over the

10 synthetic samples for each combination in the grid9. Table 6 presents the results of this procedure.

We set the parameters at the values which yield the lowest RMSE: (NOmin, NOpct, h) = (5, 0.6, 0.1).

Table 6: Results from prior elicitation

NOmin NOpct h RMSE

5 0.6 0.1 0.094
5 0.8 0.15 0.096
10 0.8 0.15 0.107
10 0.6 0.1 0.126
5 0.7 0.15 0.247
10 0.7 0.15 0.247
5 0.6 0.15 0.252
10 0.6 0.15 0.254
5 0.7 0.1 0.331
5 0.6 0.05 0.343
10 0.8 0.05 0.347
5 0.8 0.05 0.349
5 0.7 0.05 0.353
10 0.7 0.05 0.357
10 0.7 0.1 0.358
10 0.6 0.05 0.368
5 0.8 0.1 0.391
10 0.8 0.1 0.398

The model is �t for the whole sample but the treatment e�ect function at the cuto� is predicted

only for the points inside the identi�cation strip. Table 7 presents summary statistics for this pre-

diction sample. Second-year GPA is consistently greater for treated units overall and per campus.

Besides that, gender is the only feature that exhibits some di�erence between treatment groups, with

40.4% untreated and 26.4% treated men in campus 2, while the gender distribution for campus 1 and

3 is similar across treatment groups. The only feature that di�ers signi�cantly across campuses is the

high-school grade percentile: campus 1 is composed of students which had better high-school perfor-

mance than those of campus 2 or 3, which are similar in that regard. Generally, the prediction sample

presents a similar feature distribution across treatment groups and campuses, with the exception of

high-school performance for campus 1 and gender for campus 2.

We generate 100 draws from the individual-level posterior distribution which, averaging over ob-

servations, lead to 100 draws from the ATE posterior distribution. Table 8 presents a summary of the

ATE posterior. The distribution is centered at 0.14 with all the posterior mass above zero, indicating

strong evidence for positive e�ects of the probation policy. The 95% credible interval suggests the

average e�ect can be as low as 0.08 and as high as 0.21710.

We now discuss heterogeneity in the BART-RDD posterior distribution. Figure 8 presents a

regression tree �t to posterior point estimates of the individual e�ects as a summarization tool. The

9Because of the sample size of over 40,000 points, we are able to explore the prior reasonably with as few as 10
synthetic samples; for data with smaller sample sizes, more synthetic samples might be necessary to clearly distinguish
between the candidates.

10For comparison, appendix section B presents the ATE results for the other estimators analyzed in the simulation
exercise.
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Table 7: Summary statistics - identi�cation strip

Control Treatment

Sample Mean SD Mean SD

Y

Full 1.896 0.818 2.023 0.787
Campus 1 1.931 0.847 2.007 0.808
Campus 2 1.941 0.846 2.128 0.685
Campus 3 1.823 0.756 1.976 0.819

X

Full -0.042 0.031 0.051 0.026
Campus 1 -0.042 0.031 0.051 0.026
Campus 2 -0.041 0.031 0.053 0.025
Campus 3 -0.041 0.03 0.048 0.027

hsgrade_pct

Full 31.941 22.796 31.234 22.781
Campus 1 42.354 22.233 43.041 22.402
Campus 2 23.399 19.246 20.95 17.759
Campus 3 23.494 19.698 22.475 18.668

totcredits_year1

Full 4.375 0.539 4.418 0.547
Campus 1 4.494 0.459 4.588 0.446
Campus 2 4.367 0.456 4.434 0.457
Campus 3 4.225 0.638 4.184 0.633

age_at_entry

Full 18.715 0.753 18.727 0.745
Campus 1 18.708 0.731 18.701 0.712
Campus 2 18.679 0.71 18.711 0.678
Campus 3 18.746 0.806 18.773 0.826

male

Full 0.387 0.487 0.362 0.481
Campus 1 0.38 0.486 0.396 0.49
Campus 2 0.404 0.492 0.264 0.442
Campus 3 0.387 0.488 0.38 0.486

bpl_north_america

Full 0.861 0.346 0.88 0.325
Campus 1 0.865 0.342 0.865 0.342
Campus 2 0.908 0.289 0.925 0.265
Campus 3 0.828 0.378 0.872 0.335

Sample size (control/treatment):

Total: 1038/719; Campus 1: 466/318; Campus 2: 218/159; Campus 3: 354/242

Table 8: BART-RDD posterior summary for the ATE

Mean SD 2.5% 97.5% Median Min Max

0.140 0.036 0.080 0.217 0.140 0.068 0.253
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summary trees are �t for the full sample and per campus. High-school performance is �agged as

an important moderator for the full sample. Looking into each campus separately reveals more

heterogeneity. For students who performed poorly in high-school in campus 1, we see additional

moderation by birth place and credits attempted in the �rst year. In campus 2, we can see that

the e�ect for women is larger than for men among those who feature above the 31-st percentile of

high-school grades. Finally, for campus 3, the most important moderators are gender, birth place and

age at entry.

Full sample
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bpl_north_america = 0

male = 1
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Figure 8: Regression tree �t to posterior point estimates of individual treatment e�ects: top number
in each box is the average subgroup treatment e�ect, lower number shows the percentage of the total
sample in that subgroup; the full sample summary �ags high-school performance, birth place, gender,
campus location and credits in �rst year as important moderators; the separate campus �ts indicate
heterogeneity between the campuses: for campus 1, high-school performance, credits attempted and
birth place are �agged as important moderators, while for campus 2, high-school performance and
gender are important and, for campus 3, gender, birth place and age at entry are the important
moderators

The results described so far are consistent with those presented by Lindo et al. (2010), both in

magnitude and, to some degree, in potential sources of treatment e�ect heterogeneity. In particular,

the authors also �nd a greater e�ect for students who performed below average in high-school and for

women. Our posterior predictions however �ag additional features as potential moderators, such as
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age at entry, birth place and campus, which highlights how depending on pre-speci�cation of relevant

subgroups might lead researchers to miss other interesting features of the data. Lindo et al. (2010)

note that interpreting these results as true e�ects requires caution since there is evidence that the

probation policy leads to di�erential dropout rates, which changes the composition of students before

and after the evaluation of �rst-year GPA. However, further discussion on this topic is out of the

scope of this project.

We conclude this section with an illustration of how to perform posterior inference about het-

erogeneity in the e�ects with the results of our model. Based on the moderators �agged by the

summarization trees, we investigate the posterior di�erence in treatment e�ects across some sub-

groups. The �rst panel in �gure 9 presents the posterior di�erence between students in the bottom

43% versus those in the upper 57% of the high-school grade distribution for campus 1. There is

a 92% posterior probability that the treatment e�ect is larger for the former group. The second

panel presents a similar analysis for campus 2, where the threshold was the 31-st percentile of the

high-school grade distribution. There is also strong evidence for a larger e�ect for students lower in

that distribution, with a posterior probability of a larger e�ect of 95%. The third panel presents the

posterior di�erence for students who entered college younger than 19 versus those who entered older

than that in campus 3. There is also strong evidence of a larger e�ect for the former group, with

posterior probability of 84%. Finally, the last panel presents the posterior di�erence in average e�ects

between each campus. The biggest di�erence is between campus 3 and campus 1, in which case there

is a 66% probability of a larger e�ect for the former. There is a 59% posterior probability that the

e�ect is larger for campus 2 than campus 1 and a 54% posterior probability that the e�ect is larger

for campus 3 than campus 2.
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Figure 9: Di�erences in subgroup treatment e�ects: the �rst panel shows the posterior di�erence
between students below and above the 43-rd percentile of high-school grades respectively in campus
1, which has a 92% posterior mass above 0; the second panel performs the same analysis for the 31-st
percentile of high-school grades for students in campus 2, which has a 95% posterior mass above 0;
the third panel presents the posterior di�erence between students that got into college younger versus
older than 19 in campus 3, which has a posterior mass of 84% above 0; the last panel presents the
posterior di�erences in the ATE between each campus: there is a 66% posterior probability of a larger
e�ect for campus 3 compared to campus 1, a 59% probability for a larger e�ect on campus 2 compared
to campus 1 and a 54% probability of a larger e�ect on campus 3 compared to campus 2
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A Prior elicitation experiments

Algorithm 2 describes the procedure in pseudocode form. It is worth emphasizing that the particular

functional form choices and parameter values for the synthetic data can be changed to better �t

certain applications, although we recommend following the same general structure.

Algorithm 2: Prior elicitation procedure

Input: Set of candidate prior parameter values Θ, where θ ∈ Θ is a 3-tuple (h, α,NOmin)
Output: Chooses θ∗ ∈ Θ to �t BART-RDD for the full sample (Y,X,W )
Data: Running variable and additional features, (X,W )

1 Generate S samples of a synthetic outcome as follows:

µ(X,W ) =
1

P

P∑
p=1

Wp +
1

1 + exp(−5X)

τ(X) = τ̄ − log(1 +X)

50
τ̄ = 0.4

Ys = µ(X,W ) + τ(X)Z + εs

εs ∼ N(0, 1)

2 for θ ∈ Θ do
3 for s ∈ S do
4 Fit BART-RDD for sample (Ys, X,W ) with prior parameters θ
5 end
6 Calculate RMSEθ as the root-mean-square error of the ATE point estimates produced

by BART-RDD for each of the S samples
7 end
8 Choose θ∗ which leads to the lowest RMSEθ

To illustrate this procedure, suppose we observe one sample of (X,W ) of size 1000 from the DGP

analyzed in the simulations11. For that sample, we generate S = 20 samples of Ys from a synthetic

DGP constructed as described in algorithm 2. For the set of parameter candidates we consider

h ∈ {0.05, 0.1, 0.15, 0.2}, NOmin ∈ {1, 5, 10} and α ∈ {0.6, 0.75, 0.9}. Figure 10 presents the results of
our exploration.

Although the RMSE patterns observed are speci�c to this sample, close inspection of �gure 10

allows us to observe some trends that can reasonably be expected to hold in many cases. Consider �rst

the setup with small h. In this scenario, the nodes that include the identi�cation strip are likely to be

small unless the sample is well populated with points very close to the cuto�. One consequence is that,

if we allow for nodes with only one point from each side of the cuto� in the strip (i.e. NOmin = 1), we

might end up with nodes that are very small, in which case our estimates are very unlikely to move

away from the prior, which will generally lead to poor ATE estimates unless this parameter is also

very small. Increasing NOmin safeguards against this possibility, as this would ensure the nodes are

not that small. This is made clear by the fact that greater values for NOmin are uniformly better up

11Note that, although there are several variations of the DGP considered in the simulations, the distribution of (X,W )
are always the same

35



0.05 0.10 0.15 0.20

0.
10

0.
15

0.
20

0.
25

0.
30

h

R
M

S
E

NOmin

1 5 10

α
0.6 0.75 0.9

Figure 10: RMSE for each candidate (h, α,NOmin)
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until h = 0.1.

Focusing next on the larger values of h, we see that h = 0.2 is the setup that leads to the most

sensitivity of the prior to the other parameters. Graphically, we see that the lines for each value

of NOmin are less `clumped' together than for the lower values of h, meaning the combinations of

(α,NOmin) lead to more varied results now. Practically, greater h values mean we are using points

that are potentially too far away from the cuto� for the ATE predictions at that point, which could

evidently bias the results. In that case, lower α means we allow even more points far from the cuto�

to in�uence these predictions, since we obtain nodes that may contain many points far from the

identi�cation strip. This can be seen in the �gure since, for h = 0.2, greater values of α generally

produce the best results.

Overall, �gure 10 suggests setting h and NOmin appropriately is crucial, while α can be set to o�set

any bias that might occur for a given combination of the other parameters. For this example, setting

NOmin = 10 and h = {0.1, 0.15} seems reasonable. Then, we can set α accordingly. For example,

if we choose h = 0.1, setting α = 0.6 is best, although the other values lead to very similar results.

In comparison, if we set h = 0.15, greater α is uniformly better, as this value of h seems to be large

enough for this sample that we should trim the outter regions of the identi�cation strip more strictly.

However, the results are again not sensitive to α when h = 0.15. Finally, it is worth noting that,

although the lowest RMSE is achieved with (h, α,NOmin) = (0.2, 5, 0.9), we advise against setting

h = 0.2 for this sample given the much greater sensitivity of the prior to the other parameters in this

case. Since one can never really know how close this synthetic DGP is to the real one, the search for

the lowest RMSE here should be moderated by considering the sensitivity of the prior as well. With

these considerations in mind, we suggest setting (h, α,NOmin) = (0.1, 10, 0.6) for this sample, which

is the setup we use for the simulations.

B Application results for other estimators

This section presents the ATE estimates for the Lindo et al. (2010) data produced by the estimators

studied in our simulations. S-BART and T-BART present evidence of a near zero e�ect and the

polynomial estimators suggest a similar e�ect magnitude to BART-RDD. It is worth noting that

BART-based models have a regularization component, which could explain why the predictions from

this models are more conservative than those of the polynomial estimators (although only slightly so

for BART-RDD).

Table 9: ATE point estimate and 95% con�dence interval for di�erent estimators

BART-RDD S-BART T-BART LLR CGS

0.140 0.074 0.062 0.205 0.176
(0.080,0.217) (-0.013,0.129) (0,0.117) (0.127,0.282) (0.019,0.323)
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