Second homework assignment

Professional Master in Economics Hedibert Freitas Lopes Bayesian Learning Due date: 7:30pm, May 21st, 2024.

Please submit either your handwritten or typed file in PDF or HTML. In case of typing, it is suggested to use Rmarkdown. The file must be a single PDF/HTML document for submission to the TA's email at luizatv@insper.edu.br. Students should follow the deadlines for submissions. This homework assignment should be done individually.

SIR for Bayesian inference

For some likelihood $p(\mathtt{data}|\theta)$ and prior $p(\theta)$, we have the following posterior for $\theta \in (0, 1)$:

$$p(\theta|\text{data}) \propto (1+\theta)^{125} (1-\theta)^{38} \theta^{34}.$$

Use sampling importance resampling (SIR) to obtain Monte Carlo-based approximations to the following posterior quantities:

- 1. $E(\theta | \texttt{data})$
- 2. $\sqrt{V(\theta|\texttt{data})}$
- 3. $Pr(\theta < 0.6 | \text{data})$
- 4. $q_{0.05}$, where $Pr(\theta < q_{0.05} | \text{data}) = 0.05$.
- 5. $q_{0.95}$, where $Pr(\theta < q_{0.95} | \texttt{data}) = 0.95$.

As $\theta \in (0, 1)$, the simplest proposal distribution would be the $q_1(\theta) \equiv U(0, 1)$. However, if you draw $p(\theta)$ you will notice that virtually all posterior density of θ lies in the interval (0.5, 0.9), so a "better" proposal would be $q_2(\theta) \equiv U(0.5, 0.9)$. Compare both approximations when computing the above 5 summaries. In order to make your life easier, let us assume first that i) M = 10,000 and N = 10,000. Repeat everything with iii) M = 100,000 and N = 10,000, and then with iii) M = 1,000,000 and N = 10,000. Here M is the sample size from the proposal and N is the resample size from the M proposal draws, so N is always less than or equal to M.

	$q_1 \equiv U(0,1)$			$q_2 \equiv U(0.5, 0.9)$		
	$M = 10^4$	$M = 10^{5}$	$M = 10^{6}$	$M = 10^4$	$M = 10^{5}$	$M = 10^{6}$
$E(\theta \texttt{data})$						
$\sqrt{V(heta \texttt{data})}$						
$Pr(\theta < 0.6 \texttt{data})$						
$q_{0.05}$						
$q_{0.95}$						