
Probabilistic nearest neighbors classification

Bruno Fava Paulo C. Marques F. Hedibert F. Lopes

Northwestern - Illinois Insper - São Paulo Insper - São Paulo

November 2023

Abstract

Analysis of the currently established Bayesian nearest neighbors classification

model points to a connection between the computation of its normalizing constant

and issues of NP-completeness. An alternative predictive model constructed by ag-

gregating the predictive distributions of simpler nonlocal models is proposed, and

analytic expressions for the normalizing constants of these nonlocal models are de-

rived, ensuring polynomial time computation without approximations. Experiments

with synthetic and real datasets showcase the predictive performance of the pro-

posed predictive model.

Keywords: Probabilistic Machine Learning; Nearest neighbors classification; NP-completeness.

1 Introduction

The now classic nearest neighbors classification algorithm, introduced in a 1951 technical

report by Fix and Hodges (reprinted in [1]), marked one of the early successes of machine

learning research. The basic idea is that, given some notion of proximity between pairs

of observations, the class of a new sample unit is determined by majority voting among

its k nearest neighbors in the training sample [2, 3]. A natural question is whether it is

possible to develop a probabilistic model which captures the essence of the mechanism

contained in the classic nearest neighbors algorithm. In a pioneering paper, Holmes and

Adams [4] defined a probabilistic nearest neighbors model specifying a set of conditional

distributions. A few years later, Cucala et al. [5] pointed out the incompatibility of the

conditional distributions specified by Holmes and Adams, which do not define a proper

joint model distribution. As an alternative, Cucala et al. developed their own nearest

neighbors classification model defining directly a proper, Boltzmann-like, joint distribu-

tion. A major difficulty with the Cucala et al. model is the fact that its likelihood function

involves a seemingly intractable normalizing constant. Consequently, in order to perform

a Bayesian analysis of their model, the authors engaged in a tour de force of Monte Carlo

techniques, with varied computational complexity and approximation quality.

In this paper we introduce an alternative probabilistic nearest neighbors predictive

model constructed from an aggregation of simpler models whose normalizing constants

can be exactly summed in polynomial time. We begin by reviewing the Cucala et al.

model in Section 2, showing by an elementary argument that the computational complex-

ity of the exact summation of its normalizing constant is directly tied to the concept of

NP-completeness [6]. The necessary concepts from the theory of computational complex-

ity are briefly reviewed. Section 3 introduces a family of nonlocal models, whose joint

distributions take into account only the interactions between each sample unit and its

r-th nearest neighbor. For each nonlocal model, we derive an analytic expression for its

normalizing constant, which can be computed exactly in polynomial time. The nonlo-

cal models are combined in Section 4, yielding a predictive distribution which does not

rely on costly Monte Carlo approximations. We run experiments with synthetic and real

datasets, showing that our model achieves the predictive performance of the Cucala et

al. model, with a more manageable computational cost. We present our conclusions in

Section 5.

2 A case of intractable normalization

This section sets the environment for the general classification problem discussed in the

paper. We begin in Section 2.1 with the definition of the Cucala et al. Bayesian nearest

neighbors classification model, whose normalizing constant requires an exponential num-

ber of operations for brute force calculation. We indicate the Monte Carlo techniques

used by the authors to sample from the model posterior distribution, as well as the ap-

proximations made to circumvent the computational issues. Section 2.2 reviews briefly

the fundamental concepts of the theory of computational complexity, ending up with the

characterization of NP-complete decision problems, which are considered intractable. Sec-

tion 2.3 establishes by an elementary argument a connection between the summation of

the normalizing constant appearing on the likelihood of the Cucala et al. model and one

of the classical NP-complete problems. In a nutshell, we show that the availability of an

algorithm to exactly compute the general case of the normalizing constant of the Cucala

et al. model in polynomial time in an ordinary computer would imply that all so-called

NP problems could also be solved in polynomial time under equivalent conditions.

Section 2.2 reviews briefly the fundamental concepts of the theory of computational

complexity, ending up with the characterization of NP-complete decision problems, which

are considered intractable. Section 2.3 establishes by an elementary argument a connec-

tion between the summation of the normalizing constant appearing on the likelihood of

the Cucala et al. model and one of the classical NP-complete problems. In a nutshell, we

show that the availability of an algorithm to exactly compute the normalizing constant

of the Cucala et al. model in polynomial time in an ordinary computer would imply

that all so-called NP problems could also be solved in polynomial time under equivalent

conditions.

2.1 The Cucala et al. model

Suppose that we have a size n training sample such that for each sample unit we know

the value of a vector xi ∈ Rp of predictor variables and a response variable yi belonging

2

to a set of class labels L = {1, 2, . . . , L}. Some notion of proximity between training

sample units is given in terms of the corresponding vectors of predictors. For example, we

may use the Euclidean distance between the vectors of predictors of every pair of training

sample units to establish a notion of neighborhood in the training sample. Given this

neighborhood structure, let the brackets [i]r denote the index of the sample unit in the

training sample which is the r-th nearest neighbor of the i-th sample unit, for i = 1, . . . , n,

and r = 1, . . . , n− 1.

Introducing the notations x = (x1, . . . , xn) and y = (y1, . . . , yn), the Cucala et al.

model [5] is defined by the joint distribution

p(y | x, β, k) = 1

Z(β, k)
exp

(
β

k

n∑
i=1

k∑
r=1

I(yi = y[i]r)

)
,

in which β ≥ 0 and k = 1, . . . , n− 1 are model parameters, and I(·) denotes an indicator

function. The model normalizing constant is given by

Z(β, k) =
∑
y∈L n

exp

(
β

k

n∑
i=1

k∑
r=1

I(yi = y[i]r)

)
.

From this definition, we see that direct (brute force) summation of Z(β, k) would involve

an exponential number of operations (O(Ln)). The much more subtle question about the

possible existence of an algorithm which would allow us to exactly compute Z(β, k) in

polynomial time is addressed in Section 2.3.

In their paper [5], the authors relied on a series of techniques to implement Markov

Chain Monte Carlo (MCMC) frameworks in the presence of the seemingly intractable

model normalizing constant Z(β, k). They developed solutions based on pseudo-likelihood

[7], path sampling [8, 9] (which essentially approximates Z(β, k) using a computationally

intensive process, for each value of the pair (β, k) appearing in the iterations of the under-

lying MCMC procedure) and the Møller et al. auxiliary variable method [10]. Although

there is currently no publicly available source code for further experimentation, at the

end of Section 3.4 the authors report computation times ranging from twenty minutes to

more than one week, for the different methods, using compiled code. We refer the reader

to [5] for the technical details.

2.2 Computational complexity

Informally, by a deterministic computer we mean a device or process which executes the

instructions in a given algorithm one at a time in a single-threaded fashion. A decision

problem is one whose computation ends with a “yes” or “no” output after a certain

number of steps, which is referred to as the running time of the algorithm. The class of

all decision problems, with input size measured by a positive integer n, for which there

exists an algorithm whose running time on a deterministic computer is bounded by a

polynomial in n is denoted by P. We think of P as the class of computationally “easy”

or tractable decision problems. Notable problems in P are the decision version of linear

programming and the problem of determining if a number is prime.

3

A nondeterministic computer is an idealized device whose programs are allowed to

branch the computation at each step into an arbitrary number of parallel threads. The

class of nondeterministic polynomial (NP) decision problems contains all decision prob-

lems for which there is an algorithm or program which runs in polynomial time on a

nondeterministic computer. We think of NP as the class of computationally “hard” or in-

tractable decision problems. Notable problems in NP are the Boolean satisfiability (SAT)

problem and the travelling salesman problem. Every problem in P is obviously in NP.

In principle, for any problem in NP, it could be possible to find an algorithm solving the

problem in polynomial time on a deterministic computer. On the other hand, a proof for

a single NP problem that there is no algorithm running on a deterministic computer that

could solve it in polynomial time would establish that the classes P and NP are not equal.

The problem of whether P is or is not equal to NP is the most famous open question of

theoretical computer science.

Two given decision problems can be connected by the device of polynomial reduction.

Informally, suppose that there is a subroutine which solves the first problem. We say that

the first problem is polynomial-time reducible to the second if both the time required to

transform the first problem into the second, and the number of times the subroutine is

called are bounded by a polynomial in n.

In 1971, Stephen Cook [11] proved that all NP problems are polynomial-time reducible

to SAT, meaning that: 1) No problem in NP is harder than SAT; 2) A polynomial time

algorithm that solves SAT on a deterministic computer would give a polynomial time

algorithm solving every other problem in NP on a deterministic computer, ultimately

implying that P is equal to NP. In general terms, a problem is said to be NP-complete if

it is in NP and all other NP problems can be polynomial-time reduced to it, and SAT was

the first ever problem proven to be NP-complete. In a sense, each NP-complete problem

encodes the quintessence of intractability.

2.3 Z(β, k) and NP-completeness

Let G = (V,E) be an undirected graph, in which V is a set of vertices and E is a set

of edges e = {v, v′}, with v, v′ ∈ V . A cut of G is a partition of V into disjoints sets V0

and V1. Given a function w : E → Z+, we refer to w(e) as the weight of the edge e ∈ E.

The size of the cut is the sum of the weights of the edges in E with one endpoint in V0

and one endpoint in V1. The decision problem known as maximum cut can be stated as

follows: for a given integer m, is there a cut of G with size at least m? Karp [12] proved

that the general maximum cut problem is NP-complete. In what follows, we point to an

elementary link between the exact summation of the normalizing constant Z(β, k) of the

Cucala et al. model and the decision of an associated maximum cut problem.

Without loss of generality, suppose that we are dealing with a binary classification

problem in which the response variable yi ∈ {0, 1}, for i = 1, . . . , n. Define the n × n

matrix A = (aij) by aij = 1 if j is one of the k nearest neighbors of i, and aij = 0 otherwise.

Letting B = (bij) = A+A⊤, this is the adjacency matrix of a weighted undirected graph

G, whose vertices represent the training sample units, and the edges connecting these

4

vertices may have weights zero, one, or two, based on whether the corresponding training

sample units do not belong to each other’s k-neighborhoods, just one belongs to the

other’s k-neighborhood, or both are part of each other’s k-neighborhoods, respectively.

The double sum in the exponent of Z(β, k) can be rewritten as

T (y) =
n∑

i=1

k∑
r=1

I(yi = y[i]r) =
n∑

i,j=1

aij I(yi = yj) =
1

2

n∑
i,j=1

bij I(yi = yj),

for every y ∈ {0, 1}n.

Furthermore, each y ∈ {0, 1}n corresponds to a cut of the graph G if we define the

disjoint sets of vertices V0 = {i ∈ E : yi = 0} and V1 = {i ∈ E : yi = 1}. The respective

cut size is:

cut-size(y) =
1

2

n∑
i,j=1

bij I(yi ̸= yj).

Since, for every y ∈ {0, 1}n, we have that

n∑
i,j=1

bij =
n∑

i,j=1

bij I(yi = yj) +
n∑

i,j=1

bij I(yi ̸= yj),

it follows that

cut-size(y) =

(
1

2

n∑
i,j=1

bij

)
− T (y). (∗)

Figure 1 gives an example for a specific neighborhood structure involving the three nearest

neighbors with respect to Euclidean distance.

By grouping each possible value of T (y) in the sum over y ∈ {0, 1}n appearing in the

definition of Z(β, k), we get an alternative polynomial representation

Z(β, k) =
nk∑
t=0

dtz
t,

in which z = eβ/k and dt =
∑

y∈{0,1}n I(T (y) = t), for t = 0, 1, . . . , nk. Note that dt is the

number of vectors y ∈ {0, 1}n such that T (y) = t. Hence, from (∗) we have that dt is the

number of possible cuts of the graph G with size
(

1
2

∑n
i,j=1 bij

)
− t.

Suppose that we have found a way to sum Z(β, k) in polynomial time on a deter-

ministic computer, for every possible values of β and k, and any specified neighborhood

structure. By polynomial interpolation (see [13]), we would be able to compute the value

of each coefficient dt in polynomial time, thus determining the number of cuts of all pos-

sible sizes, which would solve any maximum cut decision problem associated with the

graph G. In other words: the existence of a polynomial time algorithm to sum Z(β, k)

for an arbitrary neighborhood structure on a deterministic computer would imply that P

is equal to NP.

5

Figure 1: Weighted undirected nonplanar graphs associated with a specific neighborhood struc-

ture, determined by the three nearest neighbors according to Euclidean distance, and the sizes

of three different cuts, obtained by summing the weights of all edges linking two vertices of

different colors. On each graph, light gray and black edges have weights with values one and

two, respectively, according to the adjacency matrix B. Black and white vertices correspond to

class labels being equal to one and zero, respectively.

3 Nonlocal models are tractable

This section introduces a family of models which are related to the Cucala et al. model

but differ in two significant ways. First, making use of a physical analogy, while the

likelihood function of the Cucala et al. model is such that each sampling unit “interacts”

with all of its k nearest neighbors, for the models introduced in this section each sampling

unit interacts only with its r-th nearest neighbor, for some r = 1, . . . , n− 1. Keeping up

with the physical analogy, we say that we a have a family of nonlocal1 models. Second,

the nice fact about the nonlocal models is that their normalizing constants are tractable;

the main result of this section being an explicit analytic expression for the normalizing

constant of a nonlocal model which is computable in polynomial time. The purpose of

these nonlocal models is to work as building blocks for our final aggregated probabilistic

predictive model in Section 4.

For r = 1, . . . , n− 1, the likelihood of the r-th nonlocal model is defined as

pr(y | x, βr) =
1

Zr(βr)
exp

(
βr

n∑
i=1

I(yi = y[i]r)

)
,

1For the sake of simplicity, we are abusing terminology a little bit here, since the model with r = 1 is

perfectly “local”.

6

Figure 2: Distance matrix D and directed graphs showing the neighborhood structure for the

nonlocal models with r = 1 and r = 2.

in which the normalizing constant is given by

Zr(βr) =
∑
y∈L n

exp

(
βr

n∑
i=1

I(yi = y[i]r)

)
,

with parameter βr ≥ 0.

In line with what was pointed out in our discussion of the normalizing constant Z(β, k)

of the Cucala et al. model, brute force computation of Zr(βr) is also hopeless for the

nonlocal models, requiring the summation of an exponential number of terms (O(Ln)).

However, the much simpler topology associated with the neighborhood structure of a

nonlocal model can be exploited to give us a path to sum Zr(βr) analytically, resulting in

an expression which can be computed exactly in polynomial time on an ordinary computer.

Throughout the remainder of this section, our goal is to derive a tractable closed form

for the normalizing constant Zr(βr). For the r-th nonlocal model, consider the directed

graph G = (V,E) representing the associated neighborhood structure of a given training

sample. For i = 1, . . . , n, each vertex i ∈ V corresponds to one training sample unit, and

the existence of an oriented edge (i, j) ∈ E, represented pictorically by an arrow pointing

from i to j, means that the j-th sample unit is the r-th nearest neighbor of the i-th sample

unit.

An example is given in Figure 2 for the nonlocal models with r = 1 and r = 2.

We see that in general G can be decomposed into totally disconnected subgraphs G′ =

(V ′, E ′), G′′ = (V ′′, E ′′), . . . , meaning that vertices in one subgraph have no arrows point-

ing to vertices in the other subgraphs. If V ′ = {i1, . . . , ik}, we use the notation for the

7

Figure 3: Two impossible directed graphs for a nonlocal model. On the left graph, the white

vertex has outdegree equal to zero. On the right graph, the white vertex has outdegree equal to

two. Both graphs contradict the fact that each training sample unit has exactly one r-th nearest

neighbor. The conclusion is that in a directed graph describing the neighborhood structure of a

nonlocal model each subgraph contains exactly one simple cycle.

Figure 4: Example of the reduction process for the summation on each subgraph.

multiple sum
L∑

yi=1
i∈V ′

:=
L∑

yi1=1

· · ·
L∑

yik=1

.

Since ∑
y∈L n

:=
L∑

y1=1

L∑
y2=1

· · ·
L∑

yn=1

,

the normalizing constant Zr(βr) can be factored as a product of summations involving

only the yi’s associated with each subgraph:

Zr(βr) =

 L∑
yi=1
i∈V ′

exp

(
βr

n∑
i=1

I(yi = y[i]r)

)×
 L∑

yi=1
i∈V ′′

exp

(
βr

n∑
i=1

I(yi = y[i]r)

)× · · · .
For each subgraph, starting at some vertex and following the arrows pointing to each

subsequent vertex, if we return to the first vertex after m steps, we say that the subgraph

has a simple cycle of size m. The outdegree of a vertex is the number of arrows pointing

from it to other vertices; the indegree of a vertex is defined analogously. Figure 3 depicts

the fact that each subgraph has exactly one simple cycle: in a subgraph without simple

cycles, there would be at least one vertex with outdegree equal to zero. Moreover, a

subgraph with more than one simple cycle would have at least one vertex in one of the

simple cycles pointing to a vertex in another simple cycle, implying that such a vertex

would have outdegree equal to two. Both cases contradict the fact that every vertex of

each subgraph has outdegree equal to one, since each sample unit has exactly one r-th

nearest neighbor.

Figure 4 portrays the reduction process used to perform the summations for one

subgraph. For each vertex with indegree equal to zero, we sum over the correspondent yi

8

Algorithm 1 Count the occurrences of simple cycles of different sizes on the directed

subgraphs representing the neighborhood structures of all nonlocal models.

Require: Neighborhood brackets {[i]r : i = 1, . . . , n; r = 1, . . . , n− 1}.

1: function count simple cycles({[i]r : i = 1, . . . , n; r = 1, . . . , n− 1})
2: c

(r)
m ← 0 for (r,m) ∈ {1, . . . , n− 1} × {2, . . . , n}

3: for r ← 1 to n− 1 do

4: visited← ∅
5: for j ← 1 to n do

6: next if j ∈ visited

7: i← j

8: walk ← empty stack

9: while i /∈ visited do

10: visited← visited ∪ {i}
11: push i into walk

12: i← [i]r
13: end while

14: m← 1

15: while walk not empty do

16: delete top element from walk

17: if top element of walk = i then

18: c
(r)
m ← c

(r)
m + 1

19: break

20: end if

21: m← m+ 1

22: end while

23: end for

24: end for

25: return {c(r)m : r = 1, . . . , n− 1;m = 2, . . . , n}
26: end function

and remove the vertex from the graph. We repeat this process until we are left with a

summation over the vertices forming the simple cycle. The summation for each vertex i

with indegree equal to zero in this reduction process gives the factor

L∑
yi=1

exp(βrI(yi = y[i]r)) = eβr + L− 1,

because – and this is a crucial aspect of the reduction process – in this sum the indicator

is equal to one for just a single term, and it is equal to zero for all the remaining L − 1

terms, whatever the value of y[i]r . Summation over the vertices forming the simple cycle is

done as follows. Relabeling the indexes of the sample units if necessary, suppose that the

vertices forming a simple cycle of size m are labeled as 1, 2, . . . ,m. Defining the matrix

9

S = (sa,b) by sa,b = exp(βrI(a = b)), we have

L∑
y1=1

L∑
y2=1

· · ·
L∑

ym=1

exp(βrI(y1 = y2))× exp(βrI(y2 = y3))× · · · × exp(βrI(ym = y1))

=
L∑

y1=1

L∑
y2=1

· · ·
L∑

ym=1

sy1,y2 × sy2,y3 × · · · × sym,y1 =
L∑

y1=1

(Sm)y1,y1 = Tr(Sm).

By the spectral decomposition [14], we have that S = QΛQ⊤, with QQ⊤ = Q⊤Q = I.

Therefore, Sm = QΛmQ⊤, implying that Tr(Sm) = Tr(ΛmQ⊤Q) = Tr(Λm) =
∑L

ℓ=1 λ
m
ℓ ,

in which we used the cyclic property of the trace, and the λℓ’s are the eigenvalues of S,

which are easy to compute: the characteristic polynomial of S is

det(S − λI) = (eβr − 1− λ)L−1(eβr + L− 1− λ) = 0,

yielding

λ1 = λ2 = · · · = λL−1 = eβr − 1, and λL = eβr + L− 1.

For the r-th nonlocal model, let c
(r)
m be the number of simple cycles of size m, considering

all the associated subgraphs. Algorithm 1 shows how to compute c
(r)
m , for r = 1, . . . , n−

1 and m = 2, . . . , n, in polynomial time. Taking into account all the subgraphs, and

multiplying all the factors, we arrive at the final expression:

Zr(βr) = (eβr + L− 1)n−
∑n

m=2 m×c
(r)
m ×

n∏
m=2

(
(eβr + L− 1)m + (L− 1)(eβr − 1)m

)c(r)m
.

4 Predictive model

The nonlocal models developed in Section 3 will be the building blocks of our probabilistic

nearest neighbors classification model. Introducing a hyperparameter k = 1, . . . , n − 1,

the first k nonlocal models can be combined, the heuristic being that a “superposition” of

nonlocal models could work as a model whose neighborhood structure takes into account

the sets of k nearest neighbors of each sample unit. Section 4.1 explains the aggregation

procedure leading to the predictive distribution of the combined model. The results in

Section 4.2 showcase the computational cost and the predictive performance of the new

model, examining the same synthetic and real datasets explored in [5].

4.1 Aggregating the predictions of the nonlocal models

For the r-th nonlocal model, with r = 1, . . . , n− 1, using the information in the training

sample and the analytic expression obtained for Zr(βr) in Section 3, we construct an

estimate β̂r for the parameter βr by maximization of the corresponding likelihood function:

β̂r = arg max
βr∈R+

pr(y | x, βr) = arg max
βr∈R+

(
1

Zr(βr)
exp

(
βr

n∑
i=1

I(yi = y[i]r)

))
.

10

Using this estimate, we define the predictive distribution of the r-th nonlocal model as

pr(yn+1 | xn+1, x, y) := pr(yn+1 | xn+1, x, y, β̂r)

∝ exp

(
β̂r

(
I(yn+1 = y[n+1]r) +

n∑
i=1

I(yi = yn+1, [i]r = n+ 1)

))
,

with
∑L

yn+1=1 pr(yn+1 | xn+1, x, y) = 1.

Finally, we aggregate the predictive distributions of the nonlocal models, introducing

a hyperparameter k = 1, . . . , n− 1, and defining

p(k)(yn+1 | xn+1, x, y) :=
1

k

k∑
r=1

pr(yn+1 | xn+1, x, y).

The value of the hyperparameter k is chosen by leave-one-out cross validation [15] on

the training sample. From now on, we refer to this predictive model as the probabilistic

nearest neighbors classification model (pnnclass, for short).

An open source software library implementing the predictive model described in this

section is publicly available2. It is an R [16] library, having internal routines written in

C++ [17] with the help of Rcpp [18].

4.2 Experiments with synthetic and real datasets

The first example examined in [5] was the simulated dataset proposed by Ripley in his

classic book [19]. It consists of training and testing samples with sizes 250 and 1 000, re-

spectively. The response variable is binary, and we have two generic real valued predictor

variables. The pnnclass predictive model achieves a testing error rate of 8.4%, which is

the same as the best error rate reported in [5] for this dataset. Doing 100 replications, the

median running time using the pnnclass library was 124.45 milliseconds, on a standard

notebook with an Intel i7-11390H processor. Figure 5 shows the training sample and a

heatmap representing the probabilities produced by the pnnclass predictive model. Fig-

ure 6 reports the classifier ROC curve obtained using the testing sample. The annotated

summaries correspond to the probability threshold maximizing the sum of the classifier

sensitivity and specificity.

The second example examined in [5] was the Pima Indian women diabetes dataset,

available in the MASS R library [20], with training and test samples of sizes 200 and 332,

respectively. In this dataset, for each sample unit we have the values of seven numerical

predictors, and the response variable is again binary, indicating the result of the diabetes

diagnosis for the corresponding sample unit. The pnnclass predictive model achieves a

testing error rate of 21.99%, which is close to the best error rate reported in [5] for this

dataset (20.9%). Doing 100 replications, the median running time using the pnnclass

library was 59.04 milliseconds. The ROC curve and summaries for the Pima Indian

dataset are given in Figure 6.

2https://github.com/paulocmarquesf/pnnclass

11

Figure 5: Training sample for the Ripley synthetic dataset. Circles and triangles indicate the

two possible values of the response variable. The heatmap represents the probabilities of class

“triangle” given by the predictive model pnnclass, ranging from pure cyan (probability zero)

to pure orange (probability one).

Figure 6: ROC curves for the Ripley and the Pima Indian datasets. Annotated summaries

correspond to the probability threshold maximizing the sum of the classifier sensitivity and

specificity.

The third and final example considered in [5] was the multi class Forensic Glass

fragments dataset described in [19]. In this dataset we have nine numerical predictors and

the response variable was coalesced into four classes. With randomly split training and

12

Figure 7: Testing sample scores on the first two principal components of the predictors in the

Forensic Glass dataset. The different shapes indicate the four possible values of the response

variable. The colors blue or red mean, respectively, that the corresponding testing sample units

were classified correctly or incorrectly.

Table 1: Confusion matrix for the Forensic Glass testing sample.

Observed class

Predicted class

0 1 3 3

0 29 2 0 5

1 2 27 1 7

2 0 1 14 2

3 7 3 0 7

Table 2: Descriptive summaries for the running times in miliseconds of the pnnclass predictive

model library based on 100 replications.

Dataset median (ms) min (ms) max (ms)

Ripley 124.45 118.83 182.34

Pima Indian 59.04 52.68 114.97

Forensic Glass 9.15 8.80 16.38

testing samples of sizes 89 and 96, respectively, the pnnclass predictive model achieves a

testing error rate of 28.04%, which is better than the error rate of 29% reported in [5] for

this dataset. Doing 100 replications, the median running time using the pnnclass library

was 9.15 milliseconds. Since in this dataset the predictor space is nine dimensional, in

Figure 7 we use Principal Component Analysis (PCA) as a visualization tool to depict the

predictive performance on the the testing sample (PCA played no role in the modeling

process). The confusion matrix for the Forensic Glass testing sample is given in Table

1. Table 2 gives more detailed summaries for the running times on the three datasets.

Table 3 summarizes the predictive performance comparison between the pnnclass and

the Cucala et al. models for the three datasets.

13

Table 3: Testing errors for the three datasets. In the third column we report the smallest errors

achieved in [5] considering all Monte Carlo approximations implemented by the authors.

Dataset pnnclass Cucala et al.

Ripley 8.4% 8.4%

Pima Indian 21.99% 20.9%

Forensic Glass 28.04% 29%

5 Concluding remarks

This work can be seen as the construction of a probabilistic predictive model based on

the concept of nearest neighbors, wherein we shifted the algorithmic complexity of the

solution from an intractable class into the realm of polynomial-time computation. It

would be interesting to explore how the ideas discussed in the paper could be adapted to

assist in the analysis of spatial data models or models with graph-type data in general,

since these models may pose similar challenges related to the presence of intractable

normalizing constants in the corresponding likelihood functions.

References

[1] E. Fix and J. L. Hodges, “Discriminatory analysis - nonparametric discrimination:

Consistency properties,” International Statistical Review, vol. 57, no. 3, pp. 238–247,

1989.

[2] L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern recognition,

vol. 31. Springer Science & Business Media, 2013.

[3] G. Biau and L. Devroye, Lectures on the nearest neighbor method, vol. 246. Springer,

2015.

[4] C. Holmes and N. Adams, “A probabilistic nearest neighbour method for statistical

pattern recognition,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 64, no. 2, pp. 295–306, 2002.

[5] L. Cucala, J.-M. Marin, C. P. Robert, and D. M. Titterington, “A Bayesian re-

assessment of nearest-neighbor classification,” Journal of the American Statistical

Association, vol. 104, no. 485, pp. 263–273, 2009.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.

[7] J. Besag, “Spatial interaction and the statistical analysis of lattice systems,” Journal

of the Royal Statistical Society. Series B (Methodological), vol. 36, no. 2, pp. 192–236,

1974.

[8] Y. Ogata, “A Monte Carlo method for high dimensional integration,” Numerische

Mathematik, vol. 55, pp. 137–157, 1989.

14

[9] A. Gelman and X.-L. Meng, “Simulating normalizing constants: From importance

sampling to bridge sampling to path sampling,” Statistical Science, vol. 13, no. 2,

pp. 163–185, 1998.

[10] J. Møller, A. N. Pettitt, R. Reeves, and K. K. Berthelsen, “An efficient Markov

chain Monte Carlo method for distributions with intractable normalising constants,”

Biometrika, vol. 93, no. 2, pp. 451–458, 2006.

[11] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the

Third Annual ACM Symposium on Theory of Computing, STOC ’71, (New York,

NY, USA), pp. 151–158, Association for Computing Machinery, 1971.

[12] R. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer

Computations (R. Miller and J. Thatcher, eds.), pp. 85–103, Plenum Press, 1972.

[13] T. Rivlin, An Introduction to the Approximation of Functions. Blaisdell Publishing

Company, 1969.

[14] G. Strang, Linear algebra and its applications. Thomson, Brooks/Cole, 2006.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, 2nd ed., 2009.

[16] R Core Team, R: a language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria, 2017.

[17] B. Stroustrup, The C++ Programming Language. Addison-Wesley Professional,

4th ed., 2013.

[18] D. Eddelbuettel, Seamless R and C++ integration with Rcpp. Springer Publishing

Company, Incorporated, 2013.

[19] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge University Press,

1996.

[20] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. New York:

Springer, fourth ed., 2002. ISBN 0-387-95457-0.

15

