The data
Consider the following Gaussian and linear regression model: \[
y_t = \alpha+\beta x_t + u_t
\] where \(u_t\) follows a
Gaussian white noise process with variance one, i.e. \(u_t \sim N(0,\sigma^2)\).
x=c(3.0,3.9,6.0,4.2,5.2,4.7,5.1,4.5,6.0,3.9,4.1,2.2,1.7,2.7,3.3,4.8)
y=c(9.500,12.649,18.794,12.198,14.372,13.909,14.556,14.700,18.281,13.890,10.318,5.473,4.044,6.361,7.036,13.368)
n=length(x)
- Fit the above regression via ordinary least squares (OLS) and
discuss your findings
- Plot the fitted residuals \({\hat
u}_t=y_t-{\hat \alpha}+{\hat \beta} x_t\) and discuss your
findings. For instance, do the residuals look iid?
Likelihood and
prior
Let us assume we would like to entertain a more elaborated model.
More precisely, let us consider a simple and Gaussian linear regression
model where the errors follow a first order autogressive structure,
where, for \(t=1,\ldots,n\), \[\begin{eqnarray*}
y_t &=& \beta x_t + u_t\\
u_t &=& \rho u_{t-1} + \epsilon_t
\end{eqnarray*}\] where \(\epsilon_t\)s follows a Gaussian white
noise process with variance one.
Show that the above model can be written as \[
y_t = \rho y_{t-1} + \beta (x_t-\rho x_{t-1}) + \epsilon_t.
\] So, for the sake of the exercise, assume that the likelihood
is conditional on \(y_1\) and \(x_1\). Therefore \[
L(\beta,\rho|\mbox{data}) \equiv p(y_{2:n}|x_{2:n},\theta) \propto
\exp\left\{-\frac{1}{2}
\sum_{t=2}^n (y_t - \rho y_{t-1} - \beta (x_t-\rho x_{t-1}))^2
\right\},
\] and assume that the prior for \((\beta,\rho)\) is noninformative \[
p(\beta,\rho) \propto 1.
\] This is an improper prior, but the implied posterior is proper
as long as \(n \geq 3\).
Plot \(L(\beta,\rho|\mbox{data})\) for \((\beta,\rho) \in (-5,5) \times (-5,5)\).
Comment the behavior of the likelihood for \(\beta\) for values of \(\rho=-1,0.5,1\).
Posterior
Use the sampling importance resampling algorithm to obtain draws
\[
\left\{(\beta^{(i)},\rho^{(i)})\right\}_{i=1}^N \sim
p(\beta,\rho|\mbox{data}) \propto L(\beta,\rho|\mbox{data}).
\] Suggestion: Use the uniform in the square \((-5,5) \times (-5,5)\) as candidate
distribution. Try \(M=1,000\), \(M=10,000\) and \(M=100,000\) and discuss your
findings
The scatterplot of the posterior draws of \(\beta\)s vs \(\rho\)s resembles the contours of the
likelihood \(L(\beta,\rho|\mbox{data})\)? Comment your
findings.
LS0tCnRpdGxlOiAiVGltZSBTZXJpZXMgLSBIVzIiCnN1YnRpdGxlOiAiUmVncmVzc2lvbiBNb2RlbCBXaXRoIEF1dG9jb3JyZWxhdGVkIEVycm9ycyIKYXV0aG9yOiAiSGVkaWJlcnQgRnJlaXRhcyBMb3BlcyIKZGF0ZTogIjIvMy8yMDIyIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogdHJ1ZQogICAgdG9jX2RlcHRoOiAyCiAgICBjb2RlX2Rvd25sb2FkOiB5ZXMKICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKIyBUaGUgZGF0YQpDb25zaWRlciB0aGUgZm9sbG93aW5nIEdhdXNzaWFuIGFuZCBsaW5lYXIgcmVncmVzc2lvbiBtb2RlbDoKJCQKeV90ID0gXGFscGhhK1xiZXRhIHhfdCArIHVfdAokJAp3aGVyZSAkdV90JCBmb2xsb3dzIGEgR2F1c3NpYW4gd2hpdGUgbm9pc2UgcHJvY2VzcyB3aXRoIHZhcmlhbmNlIG9uZSwgaS5lLiAkdV90IFxzaW0gTigwLFxzaWdtYV4yKSQuCgpgYGB7cn0KeD1jKDMuMCwzLjksNi4wLDQuMiw1LjIsNC43LDUuMSw0LjUsNi4wLDMuOSw0LjEsMi4yLDEuNywyLjcsMy4zLDQuOCkKeT1jKDkuNTAwLDEyLjY0OSwxOC43OTQsMTIuMTk4LDE0LjM3MiwxMy45MDksMTQuNTU2LDE0LjcwMCwxOC4yODEsMTMuODkwLDEwLjMxOCw1LjQ3Myw0LjA0NCw2LjM2MSw3LjAzNiwxMy4zNjgpCm49bGVuZ3RoKHgpCmBgYAoKYSkgRml0IHRoZSBhYm92ZSByZWdyZXNzaW9uIHZpYSBvcmRpbmFyeSBsZWFzdCBzcXVhcmVzIChPTFMpIGFuZCBkaXNjdXNzIHlvdXIgZmluZGluZ3MKYikgUGxvdCB0aGUgZml0dGVkIHJlc2lkdWFscyAke1xoYXQgdX1fdD15X3Qte1xoYXQgXGFscGhhfSt7XGhhdCBcYmV0YX0geF90JCBhbmQgZGlzY3VzcyB5b3VyIGZpbmRpbmdzLiAgRm9yIGluc3RhbmNlLCBkbyB0aGUgcmVzaWR1YWxzIGxvb2sgaWlkPwoKIyBMaWtlbGlob29kIGFuZCBwcmlvcgpMZXQgdXMgYXNzdW1lIHdlIHdvdWxkIGxpa2UgdG8gZW50ZXJ0YWluIGEgbW9yZSBlbGFib3JhdGVkIG1vZGVsLiAgTW9yZSBwcmVjaXNlbHksIGxldCB1cyBjb25zaWRlciBhIHNpbXBsZSBhbmQgR2F1c3NpYW4gbGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwgd2hlcmUgdGhlIGVycm9ycyBmb2xsb3cgYSBmaXJzdCBvcmRlciBhdXRvZ3Jlc3NpdmUgc3RydWN0dXJlLCB3aGVyZSwgZm9yICR0PTEsXGxkb3RzLG4kLApcYmVnaW57ZXFuYXJyYXkqfQp5X3QgJj0mIFxiZXRhIHhfdCArIHVfdFxcCnVfdCAmPSYgXHJobyB1X3t0LTF9ICsgXGVwc2lsb25fdApcZW5ke2VxbmFycmF5Kn0Kd2hlcmUgJFxlcHNpbG9uX3QkcyBmb2xsb3dzIGEgR2F1c3NpYW4gd2hpdGUgbm9pc2UgcHJvY2VzcyB3aXRoIHZhcmlhbmNlIG9uZS4gIAoKCmMpIFNob3cgdGhhdCB0aGUgYWJvdmUgbW9kZWwgY2FuIGJlIHdyaXR0ZW4gYXMKJCQKeV90ICA9IFxyaG8geV97dC0xfSArIFxiZXRhICh4X3QtXHJobyB4X3t0LTF9KSArIFxlcHNpbG9uX3QuCiQkClNvLCBmb3IgdGhlIHNha2Ugb2YgdGhlIGV4ZXJjaXNlLCBhc3N1bWUgdGhhdCB0aGUgbGlrZWxpaG9vZCBpcyBjb25kaXRpb25hbCBvbiAkeV8xJCBhbmQgJHhfMSQuClRoZXJlZm9yZQokJApMKFxiZXRhLFxyaG98XG1ib3h7ZGF0YX0pIFxlcXVpdiBwKHlfezI6bn18eF97MjpufSxcdGhldGEpIFxwcm9wdG8gXGV4cFxsZWZ0XHstXGZyYWN7MX17Mn0KXHN1bV97dD0yfV5uICh5X3QgLSBccmhvIHlfe3QtMX0gLSBcYmV0YSAoeF90LVxyaG8geF97dC0xfSkpXjIKXHJpZ2h0XH0sCiQkCmFuZCBhc3N1bWUgdGhhdCB0aGUgcHJpb3IgZm9yICQoXGJldGEsXHJobykkIGlzIG5vbmluZm9ybWF0aXZlCiQkCnAoXGJldGEsXHJobykgXHByb3B0byAxLgokJApUaGlzIGlzIGFuIGltcHJvcGVyIHByaW9yLCBidXQgdGhlIGltcGxpZWQgcG9zdGVyaW9yIGlzIHByb3BlciBhcyBsb25nIGFzICRuIFxnZXEgMyQuCgpkKSBQbG90ICRMKFxiZXRhLFxyaG98XG1ib3h7ZGF0YX0pJCBmb3IgJChcYmV0YSxccmhvKSBcaW4gKC01LDUpIFx0aW1lcyAoLTUsNSkkLgpDb21tZW50IHRoZSBiZWhhdmlvciBvZiB0aGUgbGlrZWxpaG9vZCBmb3IgJFxiZXRhJCBmb3IgdmFsdWVzIG9mICRccmhvPS0xLDAuNSwxJC4KCiMgUG9zdGVyaW9yIAoKZSkgVXNlIHRoZSBzYW1wbGluZyBpbXBvcnRhbmNlIHJlc2FtcGxpbmcgYWxnb3JpdGhtIHRvIG9idGFpbiBkcmF3cwokJApcbGVmdFx7KFxiZXRhXnsoaSl9LFxyaG9eeyhpKX0pXHJpZ2h0XH1fe2k9MX1eTiBcc2ltIHAoXGJldGEsXHJob3xcbWJveHtkYXRhfSkgXHByb3B0byBMKFxiZXRhLFxyaG98XG1ib3h7ZGF0YX0pLgokJAoqU3VnZ2VzdGlvbjoqIFVzZSB0aGUgdW5pZm9ybSBpbiB0aGUgc3F1YXJlICQoLTUsNSkgXHRpbWVzICgtNSw1KSQgYXMgY2FuZGlkYXRlIGRpc3RyaWJ1dGlvbi4gIFRyeSAkTT0xLDAwMCQsICRNPTEwLDAwMCQgYW5kICRNPTEwMCwwMDAkIGFuZCBkaXNjdXNzIHlvdXIgZmluZGluZ3MKCmYpIFRoZSBzY2F0dGVycGxvdCBvZiB0aGUgcG9zdGVyaW9yIGRyYXdzIG9mICRcYmV0YSRzIHZzICRccmhvJHMgcmVzZW1ibGVzIHRoZSBjb250b3VycyBvZiB0aGUgbGlrZWxpaG9vZCAkTChcYmV0YSxccmhvfFxtYm94e2RhdGF9KSQ/ICBDb21tZW50IHlvdXIgZmluZGluZ3MuCg==