Loading [MathJax]/jax/output/HTML-CSS/jax.js

1 Model and likelihood

Assume that we observed the data Dn={0,0,1,0,1,0}, denoted here by x1,,xn, and that we would like to model them as independent and identically distributed Bernoulli trails with sucess probability equal to θ(0,1). Therefore p(xi|θ)=θxi(1θi)1xi,xi=0,1.

  1. Show that yn=ni=1xiBinomial(n,θ), where p(yn|θ)=n!yn!(nyn)!θyn(1θ)nyn,yn=0,1,,n. In the above example, n=5 and yn=2. The likelihood function is, therefore, L(θ)θyn(1θ)nyn,θ(0,1). The normalized likelihood (transforming the likelihood into a density function of θ), exists in this example.

  2. Show that the normalized likelihood is a Beta distribution with parameters yn+1 and nyn+1.

2 Prior distributions

We will entertain two prior specifications:

  1. θ|M1Beta(α0,β0), and
  2. θ|M2N(0,1)(μ0,σ20).

We will use the following hyperparameters: α0=1.667   and   β0=15, and μ0=0.1   and   σ20=(0.2)2.

  1. Plot both prior densities of θ, p(θ|M1) and p(θ|M2), along with the normalized likelihood in the same figure. Comment their similarities and/or differences. Recall that the density of a truncated normal random variable x with location parameters μ, scale parameter σ, and truncation interval A=(a,b), is given by pTN(x|μ,σ,A)=ϕ(xμσ)Φ(bμσ)Φ(aμσ) for xA and <a<b<.

3 Posterior distributions

One might want to compare both models by computing posterior quantities, such as E(θ|Mi) and V(θ|Mi), for i=1,2, and the Bayes factor, i.e. B12=Pr(yn|M1)/Pr(yn|M2).

3.1 Model M1

The Binomial model and the Beta prior for θ conjugate: θ|n,yn,M1Beta(α0+yn,β0+nyn), such that E(θ|n,yn,M1) and V(θ|n,yn,M1) are easily calculated.

3.2 Model M2

The Binomial model and prior 2 for θ do not conjugate! Therefore, there is no closed-form analytical solutions to the posterior quantities or the prior predictive.

p(θ|n,yn,M2)=[pTN(θ|μ0,σ20,A=(0,1))][n!yn!(nyn)!θyn(1θ)nyn]p(yn|M2)=g(θ)p(yn|M2), where pTN(θ|μ0,σ20,A=(0,1))=(2πσ20)1/2exp{12σ20(θμ0)2}10(2πσ20)1/2exp{12σ20(γμ0)2}dγ.

4 Prior predictives

4.1 Model M1

  1. Show that the prior predictive under model M1 is Pr(yn|M1)=n!yn!(nyn)!Γ(α0+β0)Γ(α0)Γ(β0)Γ(α0+yn)Γ(β0+nyn)Γ(α0+β0+n). When α0=β0=1 (Uniform prior for θ), it follows that Pr(yn|M1)=n!yn!(nyn)!Γ(1+yn)Γ(1+nyn)Γ(2+n)=1n+1,yn=0,1,,n.

4.2 Model M2

The prior predictive under model M2 is not analytically available in closed-form: p(yn|M2)=10g(θ)dθ, and needs to be computed numerically, either deterministically (Reimann, quadrature or Laplace approximations, to name a few ones) or via Monte Carlo integration. Notice that the prior is truncated normal, so it needs to be normalized by the normal distribution in the interval (0,1).

  1. Use a simple Reimann approximation to obtain p(yn|M2). Now you have all the ingredients to compute the Bayes factor, B12.
LS0tCnRpdGxlOiAiSG9tZXdvcmsgMSAtIEJheWVzaWFuIGxlYXJuaW5nIgpzdWJ0aXRsZTogIkJpbm9taWFsIHRyaWFscywgdHdvIGNvbXBldGluZyBwcmlvcnMiCmF1dGhvcjogIkhlZGliZXJ0IEZyZWl0YXMgTG9wZXMiCmRhdGU6ICIxLzIzLzIwMjIiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZGVwdGg6IDIKICAgIGNvZGVfZG93bmxvYWQ6IHllcwogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgojIE1vZGVsIGFuZCBsaWtlbGlob29kCgpBc3N1bWUgdGhhdCB3ZSBvYnNlcnZlZCB0aGUgZGF0YSAkRF9uPVx7MCwwLDEsMCwxLDBcfSQsIGRlbm90ZWQgaGVyZSBieSAkeF8xLFxsZG90cyx4X24kLCBhbmQgdGhhdCB3ZSB3b3VsZCBsaWtlIHRvIG1vZGVsIHRoZW0gYXMgaW5kZXBlbmRlbnQgYW5kIGlkZW50aWNhbGx5IGRpc3RyaWJ1dGVkIEJlcm5vdWxsaSB0cmFpbHMgd2l0aCBzdWNlc3MgcHJvYmFiaWxpdHkgZXF1YWwgdG8gJFx0aGV0YSBcaW4gKDAsMSkkLiAgVGhlcmVmb3JlCiQkCnAoeF9pfFx0aGV0YSkgPSBcdGhldGFeeF9pKDEtXHRoZXRhX2kpXnsxLXhfaX0sIFxxcXVhZCB4X2k9MCwxLgokJAoKYSkgU2hvdyB0aGF0ICR5X249XHN1bV97aT0xfV5uIHhfaSBcc2ltIFxtYm94e0Jpbm9taWFsfShuLFx0aGV0YSkkLCB3aGVyZQokJApwKHlfbnxcdGhldGEpID0gXGZyYWN7biF9e3lfbiEobi15X24pIX1cdGhldGFee3lfbn0oMS1cdGhldGEpXntuLXlfbn0sIFxxcXVhZCB5X249MCwxLFxsZG90cyxuLgokJApJbiB0aGUgYWJvdmUgZXhhbXBsZSwgJG49NSQgYW5kICR5X249MiQuICBUaGUgbGlrZWxpaG9vZCBmdW5jdGlvbiBpcywgdGhlcmVmb3JlLAokJApMKFx0aGV0YSkgXHByb3B0byBcdGhldGFee3lfbn0oMS1cdGhldGEpXntuLXlfbn0sIFxxcXVhZCBcdGhldGEgXGluICgwLDEpLgokJApUaGUgbm9ybWFsaXplZCBsaWtlbGlob29kICh0cmFuc2Zvcm1pbmcgdGhlIGxpa2VsaWhvb2QgaW50byBhIGRlbnNpdHkgZnVuY3Rpb24gb2YgJFx0aGV0YSQpLCBleGlzdHMgaW4gdGhpcyBleGFtcGxlLiAgCgpiKSBTaG93IHRoYXQgdGhlIG5vcm1hbGl6ZWQgbGlrZWxpaG9vZCBpcyBhIEJldGEgZGlzdHJpYnV0aW9uIHdpdGggcGFyYW1ldGVycyAkeV9uKzEkIGFuZCAkbi15X24rMSQuCgojIFByaW9yIGRpc3RyaWJ1dGlvbnMKV2Ugd2lsbCBlbnRlcnRhaW4gdHdvIHByaW9yIHNwZWNpZmljYXRpb25zOgoKMS4gJFx0aGV0YXxNXzEgXHNpbSBCZXRhKFxhbHBoYV8wLFxiZXRhXzApJCwgYW5kCjIuICRcdGhldGF8TV8yIFxzaW0gTl97KDAsMSl9KFxtdV8wLFxzaWdtYV8wXjIpJC4KCldlIHdpbGwgdXNlIHRoZSBmb2xsb3dpbmcgaHlwZXJwYXJhbWV0ZXJzOgokJApcYWxwaGFfMCA9IDEuNjY3IFwgXCBcIFxtYm94e2FuZH0gXCBcIFwgXGJldGFfMCA9IDE1LAokJAphbmQgCiQkIApcbXVfMCA9IDAuMSBcIFwgXCBcbWJveHthbmR9IFwgXCBcIFxzaWdtYV8wXjIgPSAoMC4yKV4yLgokJAoKYykgUGxvdCBib3RoIHByaW9yIGRlbnNpdGllcyBvZiAkXHRoZXRhJCwgJHAoXHRoZXRhfE1fMSkkIGFuZCAkcChcdGhldGF8TV8yKSQsIGFsb25nIHdpdGggdGhlIG5vcm1hbGl6ZWQgbGlrZWxpaG9vZCBpbiB0aGUgc2FtZSBmaWd1cmUuICBDb21tZW50IHRoZWlyIHNpbWlsYXJpdGllcyBhbmQvb3IgZGlmZmVyZW5jZXMuICBSZWNhbGwgdGhhdCB0aGUgZGVuc2l0eSBvZiBhIHRydW5jYXRlZCBub3JtYWwgcmFuZG9tIHZhcmlhYmxlICR4JCB3aXRoIGxvY2F0aW9uIHBhcmFtZXRlcnMgJFxtdSQsIHNjYWxlIHBhcmFtZXRlciAkXHNpZ21hJCwgYW5kIHRydW5jYXRpb24gaW50ZXJ2YWwgJHtcY2FsIEF9PShhLGIpJCwgaXMgZ2l2ZW4gYnkKJCQKcF97VE59KHh8XG11LFxzaWdtYSx7XGNhbCBBfSkgPSBcZnJhY3tccGhpXGxlZnQoXGZyYWN7eC1cbXV9e1xzaWdtYX1ccmlnaHQpfXtcUGhpKFxmcmFje2ItXG11fXtcc2lnbWF9KS0KXFBoaShcZnJhY3thLVxtdX17XHNpZ21hfSl9CiQkCmZvciAkeCBcaW4ge1xjYWwgQX0kIGFuZCAkLVxpbmZ0eSA8IGEgPCBiIDwgXGluZnR5JC4KCiMgUG9zdGVyaW9yIGRpc3RyaWJ1dGlvbnMKCk9uZSBtaWdodCB3YW50IHRvIGNvbXBhcmUgYm90aCBtb2RlbHMgYnkgY29tcHV0aW5nIHBvc3RlcmlvciBxdWFudGl0aWVzLCBzdWNoIGFzIAokRShcdGhldGF8TV9pKSQgYW5kICRWKFx0aGV0YXxNX2kpJCwgZm9yICRpPTEsMiQsIGFuZCB0aGUgQmF5ZXMgZmFjdG9yLCBpLmUuCiRCX3sxMn09UHIoeV9ufE1fMSkvUHIoeV9ufE1fMikkLgoKIyMgTW9kZWwgJE1fMSQKVGhlIEJpbm9taWFsIG1vZGVsIGFuZCB0aGUgQmV0YSBwcmlvciBmb3IgJFx0aGV0YSQgY29uanVnYXRlOgokJApcdGhldGF8bix5X24sTV8xIFxzaW0gQmV0YShcYWxwaGFfMCt5X24sXGJldGFfMCtuLXlfbiksCiQkCnN1Y2ggdGhhdCAkRShcdGhldGF8bix5X24sTTEpJCBhbmQgJFYoXHRoZXRhfG4seV9uLE0xKSQgYXJlIGVhc2lseSBjYWxjdWxhdGVkLiAgCgojIyBNb2RlbCAkTV8yJApUaGUgQmlub21pYWwgbW9kZWwgYW5kIHByaW9yIDIgZm9yICRcdGhldGEkIGRvIG5vdCBjb25qdWdhdGUhClRoZXJlZm9yZSwgdGhlcmUgaXMgbm8gY2xvc2VkLWZvcm0gYW5hbHl0aWNhbCBzb2x1dGlvbnMgdG8gdGhlIHBvc3RlcmlvciBxdWFudGl0aWVzIG9yIHRoZSBwcmlvciBwcmVkaWN0aXZlLgoKJCQKcChcdGhldGF8bix5X24sTV8yKSA9IFxmcmFje1xsZWZ0W3Bfe1ROfShcdGhldGF8XG11XzAsXHNpZ21hXzBeMix7XGNhbCBBfT0oMCwxKSlccmlnaHRdXGxlZnRbXGZyYWN7biF9e3lfbiEobi15X24pIX1cdGhldGFee3lfbn0oMS1cdGhldGEpXntuLXlfbn1ccmlnaHRdfXtwKHlfbnxNXzIpfSA9IFxmcmFje2coXHRoZXRhKX17cCh5X258TV8yKX0sCiQkCndoZXJlCiQkCnBfe1ROfShcdGhldGF8XG11XzAsXHNpZ21hXzBeMix7XGNhbCBBfT0oMCwxKSkgPSBcZnJhY3soMlxwaVxzaWdtYV8wXjIpXnstMS8yfVxleHBcbGVmdFx7LVxmcmFjezF9ezJcc2lnbWFeMl8wfShcdGhldGEtXG11XzApXjJccmlnaHRcfX17XGludF8wXjEgKDJccGlcc2lnbWFfMF4yKV57LTEvMn1cZXhwXGxlZnRcey1cZnJhY3sxfXsyXHNpZ21hXjJfMH0oXGdhbW1hLVxtdV8wKV4yXHJpZ2h0XH1kXGdhbW1hfS4KJCQKCiMgUHJpb3IgcHJlZGljdGl2ZXMKCiMjIE1vZGVsICRNXzEkCgpkKSBTaG93IHRoYXQgdGhlIHByaW9yIHByZWRpY3RpdmUgdW5kZXIgbW9kZWwgJE1fMSQgaXMKJCQKUHIoeV9ufE1fMSkgPSBcZnJhY3tuIX17eV9uIShuLXlfbikhfVxmcmFje1xHYW1tYShcYWxwaGFfMCtcYmV0YV8wKX17XEdhbW1hKFxhbHBoYV8wKVxHYW1tYShcYmV0YV8wKX0KXGZyYWN7XEdhbW1hKFxhbHBoYV8wK3lfbilcR2FtbWEoXGJldGFfMCtuLXlfbil9e1xHYW1tYShcYWxwaGFfMCtcYmV0YV8wK24pfS4KJCQKV2hlbiAkXGFscGhhXzA9XGJldGFfMD0xJCAoVW5pZm9ybSBwcmlvciBmb3IgJFx0aGV0YSQpLCBpdCBmb2xsb3dzIHRoYXQKJCQKUHIoeV9ufE1fMSkgPSBcZnJhY3tuIX17eV9uIShuLXlfbikhfQpcZnJhY3tcR2FtbWEoMSt5X24pXEdhbW1hKDErbi15X24pfXtcR2FtbWEoMituKX09XGZyYWN7MX17bisxfSwgXHFxdWFkIHlfbj0wLDEsXGxkb3RzLG4uCiQkCgoKIyMgTW9kZWwgJE1fMiQKVGhlIHByaW9yIHByZWRpY3RpdmUgdW5kZXIgbW9kZWwgJE1fMiQgaXMgbm90IGFuYWx5dGljYWxseSBhdmFpbGFibGUgaW4gY2xvc2VkLWZvcm06CiQkCnAoeV9ufE1fMik9XGludF8wXjEgZyhcdGhldGEpZFx0aGV0YSwKJCQKYW5kIG5lZWRzIHRvIGJlIGNvbXB1dGVkIG51bWVyaWNhbGx5LCBlaXRoZXIgZGV0ZXJtaW5pc3RpY2FsbHkgKFJlaW1hbm4sIHF1YWRyYXR1cmUgb3IgTGFwbGFjZSBhcHByb3hpbWF0aW9ucywgdG8gbmFtZSBhIGZldyBvbmVzKSBvciB2aWEgTW9udGUgQ2FybG8gaW50ZWdyYXRpb24uICBOb3RpY2UgdGhhdCB0aGUgcHJpb3IgaXMgdHJ1bmNhdGVkIG5vcm1hbCwgc28gaXQgbmVlZHMgdG8gYmUgbm9ybWFsaXplZCBieSB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbiBpbiB0aGUgaW50ZXJ2YWwgJCgwLDEpJC4KCmUpIFVzZSBhIHNpbXBsZSBSZWltYW5uIGFwcHJveGltYXRpb24gdG8gb2J0YWluICRwKHlfbnxNXzIpJC4gIE5vdyB5b3UgaGF2ZSBhbGwgdGhlIGluZ3JlZGllbnRzIHRvIGNvbXB1dGUgdGhlIEJheWVzIGZhY3RvciwgJEJfezEyfSQuCgo=