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Abstract

This paper proposes an alternative to combining information available from daily and intraday

data to model and predict the dependence structure of equity returns. The two data sources are

combined via density pooling approach, where the individual joint densities are represented as a

copula function and the pooling weights are potentially time-varying. The dependence structure in

the daily frequency case is extracted from a standard multivariate volatility model while the high-

frequency counterpart is based on additive Inverse Wishart model (AIW). It is evident that while

the AIW model preforms individually best, incorporating low frequency information via density

pooling provides significant gains in predictive model performance. Finally, a portfolio alloca-

tion exercise quantifies the gains in terms of risk measures, such as Value-at-Risk and Expected

Shortfall.
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1 Introduction

Since the advent of the availability of the high frequency financial data, there has been a surge of

research on how to use, model and predict measures extracted from such data (McAleer & Medeiros

2008). As a result, high frequency data based models have proved to be powerful competitors to the

standard modeling approaches, which are based on daily data. This is especially the case for financial

time series volatility and co-volatility modeling.

Alternatively, instead of picking either one or another modeling approach, some authors combine

the best of the both worlds by augmenting the low frequency models with the high frequency informa-

tion, see, for example Engle 2002, Ghysels et al. 2004, 2005, Shephard & Sheppard 2010, Noureldin

et al. 2012, Hansen et al. 2012, 2014. Such combinations rely on a convoluted approach, where the

high frequency measure enters the equation of interest as an exogenous covariate. Continuing with this

line of research, we propose an approach to combine information arising from high and low frequency

data to model and predict daily co-dependence structures between financial assets. Differently from

the previous research, we combine low and high frequency information not through parameters, but

through the combination of densities. In particular, we model the dependence structure of multiple

financial returns as a weighted sum of two predictive densities, the first arising from low frequency

data and the second - from high frequency data. Such combinations are also known as opinion pools

(the name was first proposed by Stone 1961).

Combination of predictive densities is a recent topic and has had a lot of popularity in financial

and macroeconomic literature (Hall & Mitchell 2007, Jore et al. 2010, Geweke & Amisano 2011,

Billio et al. 2013, Aastveit et al. 2014, Del Negro et al. 2016). Hall & Mitchell (2007) and Geweke

& Amisano (2011) rely on log predictive scores to calculate recursive combination weights, which,

in long run, reach some stable equilibrium. Del Negro et al. (2016) also use the log scoring rule for

modeling dynamic combination weights. Alternatively, Billio et al. (2013) consider dynamic weights

that are based on the model residuals and not on the log scores. In order to control for the effect of the

particular weighting scheme, we consider four options for optimal density pooling: equally weighted,

static (Geweke & Amisano 2011), naı̈ve dynamic (Jore et al. 2010) and dynamic (Del Negro et al.

2016). For a general introduction to aggregating probability distributions refer to Clemen & Winkler
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(2007), among others.

We construct each one of the two multivariate distributions using copula functions. This is a con-

venient solution when the focus of the modeling is explicitly on the dependence structure rather then

on the individual series dynamics. Modeling the dependence via copula has also some practical ad-

vantages. It allows to simplify the assessment of the marginal distributions since the copula parameter

and its functional form is of major interest, and avoids dealing with highly parametrized and possibly

nonstandard multivariate density functions. Models where copula parameters are obtained from daily

data are considered a standard approach in the financial times series literature (Dias & Embrechts 2004,

Patton 2006, Rodriguez 2007, Ausı́n & Lopes 2010). On the other hand, models where dependence

structures are obtained from high frequency data are sparse. Fengler & Okhrin (2016) propose a real-

ized copula where the parameter of the assumed copula family is estimated in a method-of-moments

fashion from the intraday data. Okhrin & Tetereva (2017) extend the work of Fengler & Okhrin (2016)

by introducing the realized hierarchical Archimedean copula, which is more flexible and available in

larger dimensions. In addition, Salvatierra & Patton (2015) exploit this idea by introducing a realized

correlation measure in the generalized autoregressive score (GAS) model of Creal et al. (2013) and

using the resulting dynamic correlation as a copula parameter.

In this article, we rely on a Bayesian estimation approach in two stages. In the first stage, con-

ditional on the marginals the joint predictive density is estimated given each individual model. In

particular, the daily data is transformed to the unit interval by standardizing the de-meaned equity re-

turns using the corresponding realized volatility measure and then applying the probability integral

transform. This approach has two advantages. First, by using the readily available realized volatility

the number of parameters to be estimated is significantly reduced. And second, it produces approxi-

mately standard normal marginals which are very easy to handle. Then, we fit a copula model to the

resulting uniformly distributed data to obtain the joint predictive density for the returns. In the second

stage, the density pooling weights assigned to a low and to a high frequency model are obtained.

We use daily and intraday equity return data from 2001-2009 to produce multiple variants of com-

peting density pools differing in (i) the respective underlying low and high frequency modeling strategy

and (ii) the density pooling approach. Empirical results show that pooled models outperform the best

individual model in terms of the entire density forecasts as well in the left tail. We also find that the
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preference for the model arising from the high frequency data is negatively correlated with the market

volatility. Finally, we perform a Global Minimum Variance (GMV) portfolio allocation exercise in

order to quantify the economic gains in using the proposed approach. The results confirm the benefits

of pooling when focusing on the tails.

The paper is organized as follows. Section 2 presents the pooled copula model, estimation approach

and model evaluation. Section 3 contains real data application for a 10-variate dataset. Finally, Section

4 concludes.

2 Methodology

The diagram in Figure 1 summarizes the main contribution of the paper: combining information arising

from high and low frequency data in copula modeling framework. The choice to model the joint distri-

bution via copulas is of pure convenience from the computational as well as from the methodological

perspective. As noted in Opschoor et al. (2021), when the cross-section dimension d is large, specify-

ing and estimating the marginals separately might considerably ease the computational burden. And,

as mentioned before, such approach allows to focus on modeling the dependence structure explicitly,

independently from the marginals. In particular, we are interested in estimating a copula density for

some uniformly distributed data c(ut|MHF,MLF). As seen from the diagram, such approach consists

of three mayor tasks:

• Modeling the dynamics of the covariance matrices arising from low frequency data

via model calledMLF. Such model includes standard specifications for multivari-

ate co-volatilities.

• Modeling the dynamics of the covariance matrices arising from high frequency data

via model calledMHF. We concentrate on additive Inverse Wishart approach (Jin

& Maheu 2013, 2016).

• Modeling the dynamics of the combination weights ωt. Here we consider four

options, covering large part of the variety of linear combination strategies.

Even though both models, high- and low- frequency data based, essentially try to capture the
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c(ut|MHF,MLF) = ωtc(ut|MHF) + (1− ωt)c(ut|MLF)

ωt

Equally weighted, DelNegro’s, Geweke’s, Jore’s

MHF

AIW

MLF

Static, EWMA, DCC

Figure 1: Model ingredients: combining high (MHF) and low (MLF) frequency models via density
pooling with time varying weights ωt.

dependence structure between the standardized returns, they exhibit very different properties. The

low-frequency data based models consider the entire series of historical daily data and the estimated

co-volatility processes are usually smooth. On the other hand, the high frequency data based models

can capture instantaneous changes in co-variation and predict accordingly, however, are more likely to

be “contaminated” by the market micro-structure noise. As noted in Kapetanios et al. (2015), some

models might be useful while the markets are in decline, meanwhile other models might be more in-

formative when the markets are booming. Therefore, the time-varying pooling weights might also

indicate if the preference for one model or another is correlated to the overall market conditions.

We start by defining ri,t as the de-meaned log returns (in %) for day t and asset i such that t =

1, . . . , T and i = 1, . . . , d:

ri,t = 100×
(

log
Pi,t

Pi,t−1
− E

[
log

Pi,t

Pi,t−1

])
,

where Pi,t−1 and Pi,t are the prices at the beginning and at the end of the period, respectively.

Next, we present an approach of how to combine information arising from high and low frequency
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data for dependence modeling between daily financial returns. This can be done by relying on density

combination approach. As noted in Clemen & Winkler (2007), there are two major approaches: linear

and logarithmic pools. Linear opinion pool is a weighted linear combination of predictive probabilities,

meanwhile multiplicative averaging results into a logarithmic opinion pool. It has been shown that

the logarithmic combinations result into unimodal, less dispersed (Rufo et al. 2012) and symmetric

(Kascha & Ravazzolo 2010) densities as compared to the ones obtained through a linear combination

- quite the opposite of empirically observed features of the financial returns. Therefore, in order to

accommodate the possible asymmetries and fat tails in the co-dependence, in this paper we rely on

linear pools only.

Linear combination of individual densities given modelsM is given by:

p(rt) =
N

∑
j=1

ωj p(rt|Mj), t = 1, . . . , T,

where N is a number of alternative models, ωj are the combination weights and p(·) are the candidate

densities, originating from different models. The dependence structure between low frequency returns

ri,t can be modeled by combining (i) a model estimated from daily returns with (ii) a model estimated

from high frequency returns. In other words, there are several alternative models that provide predictive

distributions for d-variate return vector rt = (r1,t, . . . , rd,t)
′.

One convenient way to model the potentially high dimensional joint density p(·) is by separat-

ing the dependence structure from the dynamics of the marginals. Furthermore, the treatment of the

marginal density can be substantially simplified by taking advantage of the available ex post realized

volatility measure defined by RVi,t = ∑J
j=1 r̃2

i,t,j. Here, r̃i,t,j is a l-minute log-return for day t and J

is the number of l-minute intervals in a trading day (Barndorff-Nielsen & Shephard 2002, Andersen

et al. 2003, Barndorff-Nielsen & Shephard 2004). For an excellent review of realized volatility refer

to McAleer & Medeiros (2008). The de-meaned log returns are standardized by the realized volatility

measure and some unconditional standard deviation1 zi,t = ri,t/(
√

RVi,t · σi). As seen in Andersen

et al. (2000, 2001), it is safe assume that zi,t∼N(0, 1)2. Finally, call ui,t = Φ1(zi,t) a probability inte-

1σi is a scaling factor which allows the standard deviation of the returns to deviate from the RV measure, see Jin & Maheu
(2013, 2016).

2Andersen et al. (2000, 2001) find that the distributions of the returns scaled by realized standard deviations are approxi-
mately Gaussian.
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gral transform of the zi,t, where Φ1(·) is a cumulative distribution function for the univariate standard

Normal distribution and the resulting variables are uniformly distributed ui,t
iid∼ U (0, 1)∀i = 1, . . . , d

(serially uncorrelated). This maneuver helps us reduce the number of parameters and computational

burden of the estimation procedure. Moreover, we circumvent the discussion of the numerous possible

modeling approaches for the marginals and focus on the dependence structure instead.

The dependence structure of the resulting probability integral transforms can be easily modeled

using copulas. To define a copula we consider a collection of random variables Y1, . . . , Yd with corre-

sponding distribution functions Fi(yi) = P[Yi ≤ yi] for i = 1 . . . , d and a joint distribution function

H(y1, . . . , yd) = P[Y1 ≤ y1, . . . , Yd ≤ yd]. Then, according to a theorem by Sklar (1959), there exists

a copula C such that

H(y1, . . . , yd) = C(F1(y1), · · · , Fd(yd)).

In other words, it is possible to separate the dependence structure from the marginals. Copulas are

defined in the unit hypercube [0, 1]d, where d is the dimension of the data, and all univariate marginals

are uniformly distributed. For excellent treatment of copulas and areas of applications refer to McNeil

et al. (2005), Nelsen (2006), Joe (2015), Patton (2012).

In this paper we use Gaussian and t copulas, since they are available in high dimensions (d > 2) and

their implementation is straight-forward. Gaussian copula, even though widely used, does not allow

for fat-tailed co-dependence, an assumption that can be relaxed by using the t copula. Nonetheless,

one could also consider even more flexible vine copulas (Brechmann & Czado 2015, Loaiza-maya &

Smith 2018) or inversion copulas (Demarta & McNeil 2005, Smith et al. 2012, Loaiza-Maya & Smith

2020), for example, which are also available in higher dimensions and can capture stylized features,

observed in financial time series, such as heteroscedasticity, pair-wise fat tails and asymmetry.

Call ut = (u1,t, . . . , ud,t)
′ the collection of uniformly distributed data at time t. The d-variate

Gaussian copula has the following distribution and density functions (Joe 2015):

C(ut; R) = Φd(Φ
−1
1 (u1,t), . . . , Φ−1

1 (ud,t); R),

c(ut; R) =
φd(Φ

−1
1 (u1,t), . . . , Φ−1

1 (ud,t); R)

∏d
i=1 φ1(Φ

−1
1 (ui,t))

.
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Here Φd(·; R) and φd(·; R) are a d-variate standard Normal distribution and density functions with a

correlation matrix R.

The d-variate t copula has the following distribution and density functions (Joe 2015):

C(ut; R, η) = Td,η(T−1
1,η (u1,t), . . . , T−1

1,η (ud,t); R),

c(ut; R, η) =
td,η(T−1

1,η (u1,t), . . . , T−1
1,η (ud,t); R)

∏d
i=1 t1,η(T−1

1,η (ui,t))
.

Here T1,η , Td,η(·; R), t1,η and td,η(·; R) are the univariate and d-variate t distribution and density

functions with parameter η > 0 and correlation matrix R. When η → ∞ the t copula becomes a

Gaussian copula.

Note that this model specification for the time series data implies that the dependence structure

captured by the copula function and the dependence parameter R remain the same across all t. By

using the density combination approach, we are able to relax both of these assumptions by allowing R

to vary in time and a copula function c(·) to be a weighted average of two copulas where the weights

change over time.

There is another important reason to focus on Gaussian copula, at least for the high-frequency

model. We make use of a fact that the variance-covariance (or correlation) matrix, estimated from

the de-meaned and standardized log returns zi,t (given they are approximately Normally distributed) is

equivalent to the copula parameter R. This result is valid for the Gaussian copula with standard Nor-

mal marginals only and is a result of Hoeffding’s lemma and Sklar’s theorem, for details see Fengler

& Okhrin (2016). This can be easily seen in the bi-variate case. If we consider two random vari-

ables Y1 and Y2 with standard normal marginal distributions F1(y1) and F2(y2) and a joint distribution

function H(y1, y2), we can find the covariance (in this case also correlation for standardized data)
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Cov(y1, y2) = σ12 by inserting the copula function in Hoeffding’s lemma:

σ12 =

∞∫
−∞

∞∫
−∞

[H(y1, y2)− F1(y1)F2(y2)] dy1dy2

=

∞∫
−∞

∞∫
−∞

[C(F1(y1), F2(y2); R)− F1(y1)F2(y2)] dy1dy2

= κ.

When C(F1(y1), F2(y2); R) corresponds to the above defined Gaussian copula, the resulting scalar

κ is just the off-diagonal element of the matrix R. Therefore, those two copula functions allow the

one-to-one mapping between the copula dependence parameter and the linear dependence measure.

This result is relevant for our work since it permits to use the realized correlation, obtained from high

frequency data, as a copula parameter R.

Finally, given our proposed framework, the resulting density to describe daily dependence structure

at time t can be written in terms of a copula density pool:

c(ut|MLF,MHF) = ωtc(ut|MHF) + (1−ωt)c(ut|MLF), (1)

whereMHF andMLF present the models estimated using high (HF) and low frequency (LF) data.

For example, consider JP Morgan (JPM) and Bank of America (BAC) log return series, used later

in real data application. Left panel of Figure 2 draws the realized correlations (in grey), sample cor-

relation (thick black horizontal line) and rolling-window correlations (a window of 50, black line),

meanwhile middle and left panels draw different dependence structures for calm and more volatile

periods between standardized BAC/JPM returns and pairwise estimated t-copula degrees of freedom.

As we can observe, the dependence structure can be described by using multiple alternative measures,

static and dynamic. Moreover, the dependence structure not only changes in strength, but also in tail

thickness. The proposed mixed frequency pooled copula would allow for all these features observed in

real data.
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Figure 2: Left: BAC and JPM realized correlations, sample correlation (for two sub-samples) and
rolling-window correlation, middle and right: different dependence structures for the first half of the
sample (2001/02/01- 2005/07/20) and the second half of the sample (2005/07/21-2009/12/31) between
the standardized BAC/JPM returns and pairwise estimated t-copula degrees of freedom.

2.1 Choosing the weights

In this paper we attempt to cover a large part of the types of linear pooling schemes by focusing on

four different approaches: equally weighted, static (Geweke & Amisano 2011), naı̈ve dynamic (Jore

et al. 2010) and dynamic (Del Negro et al. 2016).

Geweke & Amisano (2011) propose to maximize the log predictive score function at each point in

time:

ωGew
T+k+1 = arg max

ω
f (ω), such that (2)

f (ω) =
T+k

∑
t=1

log[ωc(ut|MHF) + (1−ω)c(ut|MLF)],

where c(ut|MHF) and c(ut|MLF) are predictive copula densities for ut and k = 1, . . . , K is the out of

sample evaluation period. Even though the weights are recalculated at each time point, this weighting

scheme is considered static because for a large K the weights will reach a stable equilibrium (Del Negro

et al. 2016). Another approach is to use the log-score ’rolling’ weights that are calculated at each time

t using m̃ lags, as defined in Jore et al. (2010):

ω Jore
T+k+1,m̃ =

exp[∑T+k
τ=T+k+1−m̃ log c(uτ|MHF)]

∑r={HF,LF} exp[∑T+k
τ=T+k+1−m̃ log c(uτ|Mr)]

. (3)

We call this a naı̈ve time-varying weighting approach. The main difference between the weights in

Eqs. (2) and (3) is that Geweke’s approach considers the predictive densities from the entire sample,
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meanwhile Jore’s weighting scheme gives importance only to the last m̃ observations.

Finally, similarly as in Del Negro et al. (2016) we allow for persistence in weights by introducing

a latent variable st. This gives rise to a dynamic weighting scheme:

st = βst−1 +
√

1− β2ξt, ξt ∼ N (0, 1) (4)

ωDN
t = Φ(st).

The unconditional mean of st is 0 and the unconditional variance is 1. Parameter β controls the persis-

tence of the weight dynamics and when β = 1 the process reduces to a random walk.

Important to note is that for the sake of simplicity in this paper we consider only a few of the avail-

able linear pools since the main goal is to investigate the potential benefits of high and low frequency

data combinations. By no means we wish to present a horse-race between the pooling methods, and

undoubtedly considering a more flexible/advanced density combination method would most likely re-

sult into better performing models. For example, a similar approach to ours was proposed by McAlinn

(2021), where macroeconomic data from different frequencies were synthesized using Bayesian pre-

dictive synthesis (McAlinn & West 2019). Such approach is particularly powerful and beneficial when

models are dependent, as shown by Takanashi & McAlinn (2021). Finally, since the data is multi-

variate, one can also consider weighing each series separately (McAlinn et al. 2020), a potentially

beneficial route if the marginal distributions form a part of the overall model. Therefore, the use of

Bayesian predictive synthesis in our proposed modelling framework should definitely be pursued in a

follow-up research agenda.

2.2 Low frequency covariance modeling

First, we consider several standard approaches to model the dynamics of the correlation matrix that

arises from the low frequency (daily) data.

Call Ω a variance-covariance matrix of the observed standard Normally-distributed standardized

returns zt = (z1,t, . . . , zd,t)
′. Then the corresponding correlation matrix is R = (diagΩ)−1/2Ω(diagΩ)−1/2.

We start with the most straightforward way to measure dependence is by using a sample correlation

matrix. The dependence between ut is modeled either by fitting a Gaussian or t copula with a static
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correlation matrix R, estimated given the daily data up to time t. Another possible model, a dy-

namic one, is the Exponentially Weighted Moving Average (EWMA) specification, popularized by the

RiskMetrics© (RM) model of J.P. Morgan. The persistence parameter for the RM model can be either

fixed (λ = 0.94, as recommended in the RiskMetrics model for daily data) or estimated:

Ωt = (1− λ)zt−1z′t−1 + λΩt−1.

This model is very simple and easy to justify: the covariance at time t depends on the previous period’s

covariance adjusted by the most recent shock. Finally, one can generalize the EWMA model to include

an intercept term, resulting into is a Dynamic Conditional Correlation (DCC) model (Tse & Tsui 2002,

Engle 2002):

Ωt = Ω� (ιι′ − A− B) + A� zt−1z′t−1 + B′ �Ωt−1,

where � is the Hadamard product of two equally-sized matrices (element-by-element multiplication),

ι is a vector of ones, parameter matrices A, B can be replaced with scalars a, b and Ω is a sample

variance covariance matrix. Naturally, the model choice for daily variance-covariance matrix is not

limited to the models outlined above. For extensive reviews of existing multivariate volatility models

refer to Asai et al. (2006), Bauwens et al. (2006), Silvennoinen & Teräsvirta (2009), among others.

2.3 High frequency covariance modeling

As mentioned before, Fengler & Okhrin (2016) show that Gaussian copula’s parameter Rt can be esti-

mated using the correlation matrix of the original data (log returns in our case). In the high frequency

data setting, the correlation matrix of the returns can be estimated via Rcort - realized correlation

measure, obtained from intraday data (Noureldin et al. 2012):

Rcort = (diag Rcovt)
−1/2Rcovt(diag Rcovt)

−1/2,

where Rcovt is a realized covariance measure. Modeling the dynamics of the realized covariance ma-

trices is a notoriously difficult task due to high dimensions and positive-definite restrictions on the
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matrices. One way to do it is to decompose/transform the variance-covariance matrix and use some

standard time-series techniques to model the transformed series. Such approach is employed by Bauer

& Vorkink (2011), Chiriac & Voev (2011), among others. Another way is to model the dynamics of

the realized variance covariance matrices directly by using Wishart distributions (Gourieroux et al.

2009, Jin & Maheu 2013, 2016). In Jin & Maheu (2013) the scale matrix in the Wishart distribu-

tion follows either additive or multiplicative component structure, and the authors find that the addi-

tive structure performs better. They compare their proposed model to multiple other models, such as

Cholesky-VARFIMA of Chiriac & Voev (2011), Wishart auto-regressive of Gourieroux et al. (2009),

vec-MGARCH of Ding & Engle (2001), DCC of Engle (2002). The authors find that the additive

Wishart model produces superior density forecasts for all forecast horizons. The work of Jin & Maheu

(2016) extends their previous work by considering infinite mixtures of Inverse Wishart distributions for

covariance modeling. Such additive models capture strong persistence in the covariances and fat-tailed

distributions of the returns.

Next, we present the additive component model, introduced in Jin & Maheu (2013, 2016). Consider

a sequence of realized covariance matrices Rcovt of dimension d × d, t = 1, . . . , T. The additive

component Inverse Wishart AIW(L) model is given by:

Rcovt ∼ IW((ν− d− 1)Vt, ν),

Vt = B0 +
L

∑
j=1

Bj � Γt−1,lj , (5)

Bj = bjb′j, j = 1, . . . , L,

Γt−1,lj = 1/lj

lj

∑
i=1

Rcovt−i.

Here, IW(A, b) is the Inverse-Wishart distribution with scale matrix A and degrees of freedom b. We

set l1 = 1 and further ljs indicate how many past observations are used to form a component Γt−1,lj

and L is the number of autoregressive components. B0 is a symmetric positive definite matrix and

is set to B0 = (ιι′ − B1 − . . . − BK) � Rcov so that the long-run mean of the covariances is equal

to the sample mean. This model is similar to the well-known Heterogeneous Autoregressive model

of Realized Volatility (HAR-RV) of Corsi (2009), where the log realized volatility is modeled as an
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AR(22) process.

3 Posterior Inference and Model Selection

3.1 Posterior inference

For posterior inference and prediction we rely on Bayesian computation, in particular, Markov Chain

Monte Carlo (MCMC) methods. In order to estimate the model in Eq. (1), we first sample from the

posterior of the individual modelsMHF andMLF. Conditional on those samples the density pooling

weights in Eqs. (2)-(4) can be obtained. Next, we describe in short the posterior sampling details for

each of the models presented in Sections 2.2 and 2.3.

Static model. Consider an Inverse-Wishart prior on the unconditional variance covariance matrix

π(Ω) = IW(Ω; Id(ν0− d− 1), ν0), ν0 ≥ d + 1, so that E[Ω] = Id and Id id the d-dimensional unit

matrix. Given the observed standardized approximately Normally distributed data zt = (z1,t, . . . , zd,t)
′,

where z1:T = (z′1, . . . , z′T)
′, the parameter Ω can be sampled directly from the posterior p(Ω|z1:T) =

IW(z1:Tz′1:T + Id(ν0 − d− 1), ν0 + T), see Appendix A in the Online Supplementary Material3 for

derivations. The correlation matrix that is used as a copula parameter is obtained as R = (diagΩ)−1/2

Ω(diagΩ)−1/2.

RiskMetrics. The estimated RiskMetrics (RMe) model contains only one parameter λ ∈ (0, 1). We

assume a Beta prior π(λ) = B(λ; aλ, bλ) so that 0 < λ < 1. Given that the data is Normally

distributed, the likelihood can be easily written as a function of Ωt (or Rt). Our target density is the

posterior p(λ|ut) ∝ ∏T
t=1 c(ut|Rt)π(λ), which is of a non-standard form. Therefore, we can sample

from p(λ|ut) via Random Walk Metropolis Hastings (RWMH) step, for m = 1, . . . , M, where M is

the length of the MCMC chain, and given some starting value λ(0):

1. At iteration m draw a new value of λ̃ from a Normal proposal distributionN (λ(m−1), Vλ).

2. Accept the new draw with probability α = max
{

1, p(λ̃)/p(λ)
}

.

3. If the draw is accepted, set λ(m) = λ̃, if not, set λ(m) = λ(m−1).
3Available at https://sites.google.com/view/audravirbickaitephd.
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Tuning the parameter Vλ allows to control the acceptance ratio.

DCC and DCC-t. Similarly as in the RMe model above, the parameters for the scalar DCC and

DCC-t models (a, b, η) can be sampled via RWMH. The priors for the parameters (a, b) are assumed

Beta so that 0 < a, b < 1, and the prior for the degrees of freedom of the Student-t distribution, η,

is exponential. We sample (a, b, η) jointly in one step from a trivariate Normal proposal distribution

given some starting values (a, b, η)(0). The algorithm iterates via M-H steps and we always reject the

draws for which a + b > 1 in order to ensure for the process to be mean-reverting. For a DCC model

we have only parameters (a, b).

AIW. For estimation of the AIW model, same as in Jin & Maheu (2013, 2016), we use MH within

Gibbs. We assume L = 2 and call b = (b′1, b′2). The priors for the model parameters are

π(ν, b1, b2, l2) = Eν>d+1(ν; ξν) · N2d(b; 0, Vb) · UZ(l2; al , bl).

Here E(·) is Exponential distribution, N2d(·) is a 2d-variate Normal distribution and UZ(·) is a dis-

crete Uniform distribution. Given some starting values (l2, ν, b)(0) the algorithm iterates through the

following for m = 1, . . . , M:

1. Sample ν via RWMH from the conditional posterior:

p(ν|l2, b, Rcov1:T) ∝ π(ν)∏t gIW(Rcovt|l2, ν, b)., where gIW is the density func-

tion of the Inverse-Wishart distribution.

2. Sample b = (b′1, b′2) via RWMH jointly from the 2d-variate Normal proposal,

where the first elements of each vector are truncated to be positive for identification

purposes. Same as in Jin & Maheu (2016) we reject such draws of b where B0 is

not positive definite or the absolute value of any element of ∑2
i=1 Bi is not less than

1.

3. Sample l2 via RWMH using Poisson increments that can be either positive or neg-

ative with equal probability.
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Pooling weights. Estimation of the static and naı̈ve time-varying weights is straightforward and can

be done by applying the formulas in Eqs. (2) and (3) on the log predictive scores at each MCMC

iteration after the estimation is carried out for all models individually. As for the time-varying persistent

weights ωDN
t , we employ a variant of Particle MCMC called Particle Marginal Metropolis-Hastings

sampler (Andrieu et al. 2010). In particular, we use a bootstrap filter of Gordon et al. (1993) for

the latent state st filtering and a standard MH step with Normal prior truncated at (-1,1) π(β) =

T N (−1,1)(β; mβ, Vβ) with a random walk proposal for the persistence parameter β.

3.2 Model selection

In order to compare model performance we consider 1-step-ahead density prediction. 1-step-ahead

horizon was also considered by Billio et al. (2013), for example 4. For that purpose, we calculate

the correlation matrices for t + 1. For the static and fixed-parameter RiskMetrics (RMf) model, the

marginal predictive is available analytically:

pstatic(ut+1|z1:t) = x−1td

(
zt+1|0,

Id(ν0 − d− 1) + z′1:tz1:t

ν0 + t− d + 1
, ν0 + t− d + 1

)
,

pRMf(ut+1|z1:t) = x−1φd(zt+1|Rt+1(λ)),

where zt+1 = (Φ−1(u1,t+1), . . . , Φ−1(ud,t+1))
′, x = ∏d

i=1 φ1(zi,t+1) and Rt+1(λ) is a correlation

matrix from the fixed-parameter RiskMetrics model with known parameter λ. Note, that the marginal

predictive for the static model is the Student-t density, which is a result of the Normal- Inverse Wishart

conjugacy.

For DCC and estimated parameter RiskMetrics (RMe) models, described in Section 2.2, the poste-

rior predictive distributions are given by

pDCC(ut+1|z1:t, θDCC) = x−1φd(zt+1|Rt+1(θDCC)),

pDCCt(ut+1|z1:t, θDCCt) =

(
d

∏
i=1

t1,η(T−1
1,η (ui,t+1))

)−1

td,η(ut+1|Rt+1(θDCCt)),

pRMe(ut+1|z1:t, θRMe) = x−1φd(zt+1|Rt+1(θRMe)).

4As a robustness check we also consider 5-step-ahead prediction, see Online Supplementary Material for results.
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Here θDCC = (Ω, a, b), θDCCt = (Ω, a, b, η) and θRMe = λ are the estimated parameters for DCC,

DCC-t and RMe models.

Finally, the posterior predictive density for the AIW model is:

pAIW(ut+1|z1:t, θAIW) =x−1td

(
zt+1|0,

v− d− 1
v− d + 1

Vt+1, v− d + 1
)

,

where θAIW is a vector of the parameters in the AIW model.

The marginal predictive densities that account for parameter uncertainty for DCC, DCC-t, RMe

and AIW models p(ut+1|z1:t) can be obtained using the MCMC output:

p(ut+1|z1:t) =
∫

p(ut+1|z1:t, θ)p(θ|z1:t)dθ ≈ 1
M

M

∑
m=1

p(ut+1|z1:t, θ(m)),

where (θ(1), . . . , θ(M)) are the M posterior samples obtained from the MCMC.

The model comparison is carried out via predictive Bayes Factors (BF) given K out of sample

observations. The BF between model 0 (M0) and model 1 (M1) is defined as (West 1986, Kass &

Raftery 1995):

BFT:T+K =
p(uT:T+K|z1:T,M0)

p(uT:T+K|z1:T,M1)
,

where p(uT:T+K|z1:T,Mr) = ∏K
j=1 p(uT+j|z1:T+j−1,Mr). The exact calculation of p(uT:T+k|z1:T,Mr)

might be time consuming due to expanding time horizon, i.e., the model has to be re-estimated k times.

For notational convenience we drop the conditioning on the modelMr and instead of conditioning on
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z1:T we can condition on u1:T because ui,t = Φ(zi,t). Then we can write:

p(uT:T+k|u1:T) =
k

∏
j=1

p(uT+j|u1:T+j−1)

=
k

∏
j=1

∫
p(uT+j|θ)p(θ|u1:T+j−1)dθ

T large
≈

k

∏
j=1

∫
p(uT+j|θ) p̂(θ)dθ, where θ(1), . . . , θ(M) ∼ p̂(θ),

≈
k

∏
j=1

1
M

M

∑
m=1

p(uT+j|θ(m)).

The marginal predictive distribution of uT:T+k can be approximated using a posterior sample of

estimated model parameters p̂(θ) up till time T (instead of re-estimating the model k times).

Another necessary measure, that is used for calculating the pooling weights, is the log predictive

score (LPS):

LPS =
T+k−1

∑
t=T

log p(ut+1|z1:t). (6)

Finally, we also compare the predictive model performance for the lower q∗ percentile. Similar

metrics were also considered by Delatola & Griffin (2011) and Opschoor et al. (2021), among others.

Define the log predictive tail score (LPTS) measure as follows:

LPTSq∗ =
T+k−1

∑
t=T

I[ut+1 < q]× log p(ut+1|z1:t),

where q is a d× 1 vector and I[ut+1 < q] = ∏d
i=1 I[ui,t+1 < qi] with qi ∈ [0, 1]. Here I[a] denotes the

indicator function which equals 1 if condition a is fulfilled and 0 otherwise. We select q = [q1, . . . , qd]

such that K−1 ∑T+k−1
t=T I[ut+1 < q] = q∗, for q∗ = 0.5, 0.25, 0.10 (Opschoor et al. 2021). In other

words, we look at the LPS from Eq.(6) only when the d-variate data is jointly in the lower region

[0, q1]× . . .× [0, qd].
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4 Real Data Application

4.1 Data description

The daily and intraday equity return data as well as the realized variance and covariance data is from

Heber, Gerd, Asger Lunde, Neil Shephard and Kevin Sheppard (2009) ”Oxford-Man Institute’s re-

alized library”, Oxford-Man Institute, University of Oxford5, from the Multivariate HEAVY Paper

of Noureldin et al. (2012). The data is from 2001/02/01 till 2009/12/31, 2242 data points in total.

High frequency returns and the realized covariance measures are extracted as described in Noureldin

et al. (2012), using 5-minute returns with subsampling. The dataset contains some of the most liquid

stocks in the Dow Jones Industrial Average (DJIA) index. These are: Alcoa (AA), American Express

(AXP), Bank of America (BAC), Coca Cola (KO), Du Pont (DD), General Electric (GE), International

Business Machines (IBM), JP Morgan (JPM), Microsoft (MSFT), and Exxon Mobil (XOM). Online

Supplementary Material contains the descriptive statistics for all assets. For the ease of exposition, the

first set of descriptive plots is for BAC and JPM returns. Figure 3 draws the log returns together with

the realized standard deviations, QQ-plots for the standardized returns (z1,t, z2,t) against the Normal

distribution and histograms for the probability integral transforms (PITs) against the Uniform distribu-

tion. The corresponding plots for all ten assets can be found in the Online Supplementary Material. As

seen from the plots, the time series data includes calm and volatile episodes. The QQ-plot indicates

that the data, standardized by the RV measure, is approximately Normally distributed, as shown by An-

dersen et al. (2000, 2001). This is confirmed by the probability integral transforms of the standardized

returns ui,t = Φ(zi,t) which are uniformly distributed.

4.2 Prior specification and estimation

The prior hyperparameters for the variance-covariance matrix in the static model are set to IW(Ω; Id, 10).

For the RiskMetrics model the prior is π(λ) = B(λ; 10, 3), for the DCC is π(a, b) = B(a; 3, 10)B(b; 10, 3),

and for the DCC-t is π(a, b, η) = B(a; 3, 10)B(b; 10, 3)E(η; 0.1). The priors for the AIW model are

π(ν) = Eν>d+1(ν; 0.1) and π(b) = ∏10
j=1N (b1,j; 0, 10)N (b2,j; 0, 10). In general, all priors are rather

uninformative but proper. The size of the MCMC chain is M = 50k for all models, retaining the first

5Available at Oxford-Man Institute of Quantitative Finance Realized Library

19



2002 2004 2006 2008 2010

−
20

−
10

0
10

20

BAC: rt and RVt

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

BAC: QQ−plot BAC: ut

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

2002 2004 2006 2008 2010

−
10

0
10

20

JPM: rt and RVt

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

JPM: QQ−plot JPM: ut

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Figure 3: First column: log returns (open-to-close, in gray) and square root of realized volatilities (in
black); Second column: QQ-plots of the standardized returns against the Normal distribution; Third
column: histograms of the probability integral transforms against the Uniform density for BAC (top
row) and JPM (bottom row) assets.

half as burn-in and thinning every 25th observation from the second half, resulting into posterior sam-

ples of 1000 observations. For the RWMH steps the proposal variances were adjusted such that the

acceptance rate is around 0.5 for univariate parameter vectors and around 0.10 - 0.30 for multivariate

parameter vectors. For sampling l2 Poisson increments have the rate parameter equal to either 1.5 or

2, depending on the acceptance probability. All MCMC chains have converged after 50k iterations.

Appendix B in the Online Supplementary Material contains parameter estimations results and trace

plots for the parameters for all models. Appendix B also contains the robustness check study, where all

models are re-estimated using different hyper-parameter values resulting into more vague priors. The

results for all the models using different hyperparameter values have remained virtually identical.

4.3 Full model results

For estimation we have used almost all available data, retaining the last year for the out-of-sample

performance evaluation. In particular, the data used for estimation is from 2001/02/01 till 2008/12/31

(1990 data points) and out-of-sample evaluation period is from 2009/01/02 till 2009/12/31 (252 data

points). Table 1 presents the average LPS for the K = 252 out of sample observations for five low

frequency data based models and a high frequency model. Based on the LPS we can see that the DCC-t
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model performs the best among the low frequency data based models and AIW is the best overall. Fig-

ure 4 draws expanding-window log predictive Bayes Factors for each of the models, where the static

model is the benchmark. Bayes Factors that are positive means that the model outperforms the static

specification. AIW, DCC and DCC-t provide superior out of sample density forecasts, meanwhile the

more restrictive RiskMetrics models are comparable to the static model. At the beginning of the eval-

uation period, when the markets are in turmoil, the HF data based model is clearly superior, however,

when the markets are not so volatile, the DCC-t model can be a comparable alternative (e.g. around

2009/05).

Table 1: 1-step-ahead log predictive scores (LPS) for all individual models: Static, RiskMetrics fixed
(RMf), RiskMetrics estimated (RMe), Dynamic conditional correlation with Gaussian and t copulas
(DCC and DCC-t) and Additive Inverse Wishart (AIW) for 2009/01/02-2009/12/31 out-of-sample pe-
riod (K = 252 observations).

Static RMf RMe DCC DCC-t AIW
-3134.07 -3135.31 -3134.72 -3125.25 -3119.98 -3111.74
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Figure 4: Expanding-window predictive log Bayes Factors with a Static model as a benchmark for
all individual models: RiskMetrics fixed (RMf), RiskMetrics estimated (RMe), Dynamic conditional
correlation with Gaussian and t copulas (DCC and DCC-t) and Additive Inverse Wishart (AIW) for
2009/01/02-2009/12/31 out-of-sample period (K = 252 observations). Average standardized realized
volatility (in gray) in the background.

Next, we perform the predictive density combination exercise, described in Section 2.2. As seen
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from the Figure 4, model preference is non-constant and some models, that might appear “universally”

the best, in certain periods are outperformed by others (e.g. AIW vs DCC-t). So, instead of choosing a

single model for density prediction, we combine predictive densities using several alternative weighting

schemes. For illustration purposes, we combine DCC-t and AIW models only, them being the best

models in LF and HF model classes. However, this can be easily extended in calculating the weights

for all possible models.

Figure 5 draws the posterior average of the weights for the HF component (AIW model) for the

four weighting schemes: equally weighted, Geweke’s as in Eq. (2), Jore’s with m̃ = {1, 5, 10} as in

Eq. (3) and Del Negro (DN) as in Eq. (4). Jore’s weights are more volatile because they take into con-

sideration only the last m̃ observations, meanwhile Geweke’s weight takes into consideration the entire

out of sample period up till the time when the weights are calculated and reach a seemingly stable level

of around 0.6. Drawing the 95% credible intervals around Geweke’s weight indicate that the HF com-

ponent weight is almost always different from 0.5. DN weights are not as volatile as Jore’s, however,

after careful inspection, one can notice that they both follow a similar pattern. The only difference

is that Jore’s weight is a few lags behind, meaning that DN weight capture the changes in external

environment instantaneously. Overall, DN weights fluctuate around 0.5, which is not surprising given

that both models, DCC-t and AIW, perform rather similarly, especially during the calm period.

The bottom plot of the Figure 5 draws expanding-window predictive log Bayes Factors for den-

sity combinations and individual models, with AIW model as the benchmark. All four combination

schemes outperform the best individual AIW model. Geweke’s and equally-weighted performs the

worst, mainly because it does not re-balance the weights to adjust to rapidly changing environment.

Surprisingly, Del Negro’s scheme performs as good as Geweke’s and equal weights. Overall, all four

weighting schemes produce significant improvement in 1-step-ahead density prediction as compared

to individual LF and HF models. As a robustness check, we have performed 5-step-ahead density

forecasts, see Appendix C in the Online Supplementary Material. We found that generally the results

hold.

As a robustness check, we have also considered three other pools: two best low-frequency models,

some other two low-frequency models and the AIW plus some other low frequency model. We found

that both low frequency combinations perform rather poorly, meanwhile the AIW plus some other
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low frequency model presents substantial gains. Therefore, we argue that the observed gains are from

pooling different frequencies rather than from the pooling itself. The details of this exercise can be

found in the Appendix C in the Online Supplementary Material.
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Figure 5: Results for pooling the high-frequency AIW-Gaussian and low-frequency DCC-t copulas.
Top plot: posterior mean of the high-frequency component weight for the five different weighting
schemes. Bottom plot: expanding-window predictive log Bayes Factor for density combinations and
individual models, with Additive Inverse Wishart (AIW) as benchmark, for 2009/01/02-2009/12/31
out-of-sample period (K = 252 observations). Average standardized realized volatility (in gray) in the
background.

Next, Figure 6 draws the posterior densities for the average per observation out-of-sample LPS and

LPTSq∗ for lower 10, 25 and 50% quantiles only for some individual and some of the pooled models

(to ease the readability of the graph). Note that ideally one would look at 5% or even 1% quantiles,

however, with the out-of-sample period being rather short (K = 252), the resulting sample size would
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be very small6. The posterior densities also tell us if the differences in these average LPS and LPTS are

statistically significant or not. Top left plot indicates that the differences between average overall LPS

is statistically significant, with pooled models providing the best predictive out of sample performance,

and DCC-t model being the worst. The results change somewhat if we look only at the 50% lower

quantile (top right plot). Here we see that the preference for the high-frequency based model is not so

clear, because the DCC-t and AIW intervals overlap. Pooled models remain the best, with Jore’s 1-

period mixing weights on the top. If we look at the first quartile (bottom left) instead of the lower half,

we see that the model ordering stays the same but the differences between the models decrease even

further. Finally, in the 10% lower quantile (bottom right plot) both single component models and two of

the pooled models perform virtually the same, where only Jore’s pooling scheme is significantly better

than the rest. These results show that different models perform differently depending on the metric

being used (whole distribution vs the tail of the distribution), therefore, conceptually it is impossible

to find such model that is universally ”the best”. In this paper the best model is characterized as the

one which provides the highest log predictive score, because we are interested in the entire predictive

distribution of the returns. Nonetheless, if one is interested exclusively in the tails for example, the log

predictive tail score would be a more appropriate metric to be used in calculating the pooling weights.

For example, Kapetanios et al. (2015) propose to model weights being dependent on some variable of

interest, which could be some metric related to the lower region of a predictive density.

Finally, we are interested to see if the preference for the high-frequency model is correlated to

overall market conditions. The preference for the high-frequency model is measured as the pooling

weight of the high-frequency component in various pooling schemes. We also consider the difference

between the predictive log likelihoods between the two best models: AIW and DCC-t. Positive values

would mean that the AIW model is preferred, meanwhile negative values mean that the AIW model

is outperformed by the DCC-t. As a proxy for the market volatility we take the average standard-

ized realized volatility (that was obtained using the 5-minute returns with subsampling, see Noureldin

et al. 2012) over the 10 assets. As alternative proxies, we also consider the equally weighted market

portfolio realized volatility, the MCap7 weighted market portfolio volatility and daily VIX index8 for

6There are 12.6 observations in the 5% quantile and only 2.52 in the 1% quantile.
7Market capitalization (MCap) data is from June of 2021.
8VIX is the Chicago Board Options Exchange’s Volatility Index, based on S&P500 index options.
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Figure 6: Posterior densities for the average per observation 1-step-ahead log predictive score and log
predictive tail scores for the lower 50%, 25% and 10% quantiles for 2009/01/02-2009/12/31 out-of-
sample period (K = 252 observations). Additive Inverse Wishart (AIW) and Dynamic conditional
correlation with t copula (DCC-t) are the high and low frequency models, meanwhile the pooled mod-
els are according to Geweke’s, Jore’s and equally weighted schemes.

the corresponding period. Table 2 reports the posterior medians of the sample correlation coefficients

between the preference for the high-frequency weight and the market volatility proxies. Except for

Geweke’s weights, the rest are negatively correlated, meaning that the preference for the HF model is

negatively correlated with the market volatility. The correlations are relatively small, however, their

95% posterior credible intervals almost never include zero (except for Del Negro’s weights). We argue

that when the market volatility increases the realized variance-covariance, used in the AIW model, be-

comes more contaminated by the market microstructure noise. Hansen & Lunde (2006), for example,

have found that the noise is negatively correlated with the returns. Therefore, the preference for the

high-frequency component might decrease because of less reliable estimators during the volatile times.
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Table 2: Posterior medians of sample correlations between the preference for high-frequency model
and four proxies for the market volatility for 2009/01/02-2009/12/31 out-of-sample period (K = 252
observations). The preference for the high-frequency model is measured as a high-frequency com-
ponent weight in various pooling schemes as well as the difference between the daily log likelihood
(diff:logLik) between the AIW and DCC-t models. The proxies for the market volatility are: aver-
age standardized realized volatility (avrg RV), equally weighted market portfolio realized volatility
(Mkt:eql), MCap weighted market portfolio realized volaltity (Mkt:MCap) and VIX index.

Geweke Jore1 Jore5 Jore10 DelNegro diff:logLik
avrg RV 0.624 -0.028 -0.076 -0.108 -0.053 -0.031
Mkt:eql 0.604 -0.024 -0.069 -0.099 -0.046 -0.027

Mkt:Mcap 0.624 -0.016 -0.067 -0.097 -0.042 -0.020
VIX 0.722 -0.011 -0.026 -0.035 -0.005 -0.015

4.4 Portfolio allocation exercise

We wish to quantify how the use of one model versus another translates into a better performing

portfolio in terms of economic gains. Note that even though we have the explicit form of the K 1-

step-ahead predictive densities for the 10-variate return series at each MCMC iteration, the closed-

form expressions for the variance-covariance matrix for the pooled models are analytically unavailable.

Therefore, we employ a similar approach as in Ausı́n & Lopes (2010) and Opschoor et al. (2021),

where at each MCMC iteration and for each out-of-sample point we draw N replications from the

10-variate predictive distribution, where N is some large number9. Given this simulated data, we then

can calculate the 1-step-ahead variance covariance matrix and perform the portfolio weight calculation.

The procedure can be summarized as follows. For each m = 1, . . . , M and for each k = 1, . . . , K:

1. Simulate N replications of u(m)
T+k from p(uT+k|z1:T+k−1) and transform the uni-

formly distributed data to predictive returns r∗(m)
T+k via the corresponding quantile

function. Since we wish to be able to discriminate the models based on their pre-

dictive performance of the dependence structure only, all predictive returns have

the same marginals with the ex-post realized variance as the volatility.

2. Calculate the empirical 1-step-ahead variance-covariance matrix Σ
(m)
T+k of the pre-

dictive returns and obtain the solution to the quadratic programming problem ana-

9N = 10, 000 in our case.
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lytically:

w(m)
T+k = min w′(m)

T+kΣ
(m)
T+kw(m)

T+k s.t.w′(m)
T+kι = 1, with w(m)

T+k =
Σ
−1(m)
T+k ι

ι′Σ
−1(m)
T+k ι

.

3. Given the estimated predictive optimal portfolio weights w(m)
T+k and the actual ex-

post observed returns rT+k and realized variance-covariance matrices RcovT+k, we

can calculate various ex-post portfolio metrics of interest. Since we have M of

such weight vectors for each time period, we can also have the entire posterior

distributions of these quantities.

In particular, we calculate the K = 252 sequence of realized portfolio returns, portfolio volatilities

and Sharpe ratios. Given the K = 252 realized portfolio returns, we can also calculate the empirical 5

or 10% quantiles or the expected value in these quantiles, which is the GMV portfolio Value-at-Risk

(VaR) and the Expected Shortfall (ES). Finally, same as in Opschoor et al. (2021), we also calculate

portfolio turnover (TO), concentration (CO) and short position (SP):

TO(m)
T+k =

d

∑
i=1

∣∣∣∣∣w(m)
i,T+k+1 − w(m)

i,T+k
1 + ri,T+k

1 + w
′(m)
T+krT+k

∣∣∣∣∣ ,

CO(m)
T+k =

d

∑
i=1

(
w(m)2

i,T+k

)1/2
,

SP(m)
T+k =

d

∑
i=1

w(m)
i,T+k × I[w(m)

i,T+k < 0].

Here w(m)
i,T+k is the ith element of the GMV portfolio weight vector at iteration m = 1, . . . , M for

out-of-sample period k = 1, . . . , K. The portfolio turnover measures the value of portfolio that is

bought/sold when passing from time T + k to T + k + 1. An investor would prefer smaller values of

the TOt because it implies less transaction costs. Portfolio concentration and portfolio short position

measures how extreme the portfolio weights are. An investor would prefer such model that provides

the smallest concentration and the largest short position measures.

Table 3 reports the posterior medians of various GMV portfolio metrics based on the 1-step-ahead

predictions for the competing models. The high-frequency data based AIW model provides the smallest
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variance producing 1-step-ahead portfolios. A similar result was observed in Opschoor et al. (2021),

where the authors note that ”(...) for economic criteria (GMV portfolio), simpler models prevail”.

The authors attribute this result to the nature of the global minimum variance criterion: the increased

estimation uncertainty of more complex models, such as pooled models in our case, might overpower

the differences in minimum variance, which are typically very small. Therefore, a more comprehensive

criteria, based on the full density forecasts, reflects better the gains in using pooled models.

Additionally, Jore’s pooled model provides the best results in terms of 5 and 10% Value-at-Risk

and Expected Shortfall of the 1-step-ahead portfolio returns. In terms of portfolio turnover, DCC-t

model performs the best, with Jore’s pool being the second best. Meanwhile, in terms of portfolio

concentration and short position, AIW performs the best with Geweke’s pool being the second best.

Table 3: GMV portfolio results based on 1-step-ahead predicitons for 2009/01/02-2009/12/31 out-of-
sample period (K = 252 observations). The table reports the posterior medians of various Global
Minimum Variance portfolio metrics for the pooled models: Geweke’s, Jore’s and equally weighted,
as well as two best individual models, Additive Inverse Wishart (AIW) and Dynamic Conditional
Correlation with t copula (DCC-t).

Geweke Jore1 Equal AIW DCC-t
VaR5% -1.285 -1.267 -1.285 -1.289 -1.281

VaR10% -0.924 -0.910 -0.926 -0.926 -0.922
ES5% -1.969 -1.965 -1.991 -1.967 -2.018

ES10% -1.525 -1.521 -1.539 -1.522 -1.557
var 0.742 0.747 0.748 0.737 0.758

mean 0.032 0.036 0.035 0.033 0.037
Sharpe 0.087 0.090 0.089 0.090 0.088

TO 3.598 3.140 3.522 3.969 3.066
CO 0.671 0.672 0.672 0.664 0.680
SP -0.178 -0.180 -0.180 -0.171 -0.189

5 Discussion and Conclusion

In this work we propose a mixed frequency copula-based approach that allows to model dependence

between equity returns by using information arising from data sampled at different frequencies. We rely

on density pooling approach to combine alternative copula models to describe the daily dependence

structure.

In particular, we pool two copula densities, where parameters are obtained from low and high
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frequency data. For high frequency copula parameter we use a realized correlation measure. We

model the dynamics of the realized variance-covariance matrices via additive Inverse Wishart model

with Gaussian copula, meanwhile for the low-frequency dependence structure we have considered

five standard models: static, RiskMetrics fixed, RiskMetrics estimated and DCC, all with Gaussian

copula, and DCC with t copula. As expected, DCC-t model always performed the best among the

low frequency data based models. In the real data application, even though the overall log predictive

scores favor the AIW model, incorporating information arising from the low frequency data improves

the predictive model performance. We show that the gains arise not from density pooling itself, but

from pooling different frequencies, also, that the results also hold for longer prediction horizons.

For future research one could consider an infinite component mixture for high-frequency data based

models (Jin & Maheu 2016). Also, a more flexible pooling scheme, such as Bayesian predictive syn-

thesis would result in overall better models. Finally, the use of more flexible copulas, such as inversion

copula for example, should also be considered.
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