
Homework 2 - Solution

Instructor: Hedibert Freitas Lopes
Course: STP 598 Advanced Bayesian Statistical Learning (Class # 31199)
Semester: Spring 2022.

1 Risk analysis

Recall that the risk of an estimator θ̂ is given by

R(θ, θ̂) = Eθ[L(θ, θ̂)] =

∫
L(θ, θ̂)p(x|θ)dx,

while the maximum risk is R(θ̂) = supθ R(θ, θ̂), and the Bayes risk is

r(π, θ̂) =

∫
Θ

R(θ, θ̂)π(θ)dθ,

where π is a prior for θ. Assume that the loss function is squared error, so the risk is just the mean
squared error (MSE):

R(θ, θ̂) = Eθ[(θ̂ − θ)2] = Eθ[(θ̂ − Eθ(θ̂))2 + (Eθ(θ̂)− θ)2] = Vθ(θ̂) + bias2
θ(θ̂).

Now, letX1, . . . , Xn be, conditionally on θ, independent Bernoulli(θ), for θ ∈ (0, 1). Consider squared
error loss and two estimators of θ:

θ̂1 =
X1 + · · ·+Xn

n
and θ̂2 =

X1 + · · ·+Xn + α

α + β + n
,

where α and β are positive constants.

a) Show that

R(θ, θ̂1) =
θ(1− θ)

n

Since θ̂1 = (1/n)sn and sn|θ ∼ Binomial(n, θ), for sn = X1+· · ·+Xn, it follows that E(θ̂1|θ) = θ
and

R(θ, θ̂1) = V ar(θ̂1|θ) =
1

n2
nθ(1− θ) =

θ(1− θ)
n

.

b) Show that

R(θ, θ̂2) =
nθ(1− θ)

(α + β + n)2
+

(
nθ + α

α + β + n
− θ
)2



Similarly,
θ̂2 =

n

α + β + n
θ̂1 +

α

α + β + n
,

so
E(θ̂2|θ) =

nθ + α

α + β + n
and V (θ̂2|θ) =

n2

(α + β + n)2
V (θ̂1|θ) =

nθ(1− θ)
(α + β + n)2

.

For c), d) and e), assume that α = β =
√
n/4.

c) Graphically show that neither estimator uniformly dominates the other. Try n = 1, 10, 50 to see
how the risk functions behave as n increases.

R1 = function(theta,n){
theta*(1-theta)/n

}
R2 = function(theta,n,alpha,beta){
n*theta*(1-theta)/(alpha+beta+n)^2+
((n*theta+alpha)/(alpha+beta+n)-theta)^2

}

thetas = seq(0,1,length=1000)
par(mfrow=c(2,2))
for (n in c(1,10,100,1000)){

alpha = round(sqrt(n/4),1)
beta = round(sqrt(n/4),1)
r1 = R1(thetas,n)
r2 = R2(thetas,n,alpha,beta)
plot(thetas,r1/r2,xlab=expression(theta),

ylab="Relative risk - R1/R2",type="l",lwd=2)
title(paste("n=",n,"\n (alpha,beta)=(",alpha,",",beta,")",sep=""))
abline(h=1,lty=2)

}

d) Show that the maximum risks are R(θ̂1) = 1
4n

and R(θ̂2) = n
4(n+

√
n)2
, so, based on the maximum

risk, θ̂2 is a better estimator. However, when n is large, R(θ̂1) has smaller risk except for a
small region in the parameter space near θ = 1/2, where the risk of θ̂1 is maximum.

It is easy to see that R(θ, θ̂1) is maximized when θ = 1/2 (quadratic function!). From (c), we
graphically see that R(θ, θ̂2) is constant for all values of θ. Therefore, for θ = 0, the results
follows easily and directly.

e) Show that the Bayes risks are r(π, θ̂1) = 1
6n

and r(π, θ̂2) = n
4(n+

√
n)2

, when π is the uniform
prior in the interval (0, 1). For large n (larger than or equal to 20), θ̂1 is a better estimator.
This corroborates with the graphical inspection obtained in c).
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r(π, θ̂1) =

∫ 1

0

θ(1− θ)
n

dθ =
1

n

∫ 1

0

θ2−1(1− θ)2−1︸ ︷︷ ︸
Kernel of a Beta(2,2)

dθ =
1

n

Γ(2)Γ(2)

Γ(4)
=

1

6n
.

Similarly,

r(π, θ̂2) =

∫ 1

0

n

4(n+
√
n)2

dθ =
n

4(n+
√
n)2

.
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2 Stein’s Paradox

Suppose thatX ∼ N(θ, 1) and consider estimating θ with squared error loss. We know that θ̂(X) = X
is admissible. Now consider estimating two, unrelated quantities θ = (θ1, θ2) and supposed that
X1 ∼ N(θ1, 1) and X2 ∼ N(θ2, 1) independently, with loss

L(θ, θ̂) = (θ1 − θ̂1)2 + (θ2 − θ̂2)2.

Not surprisingly, θ̂(X) = X is again admissible where X = (X1, X2). Now consider the generalization
to k normal means. Let θ = (θ1, . . . , θk), X = (X1, . . . , Xk) with Xi ∼ N(θi, 1) (independent) and
loss

L(θ, θ̂) = (θ1 − θ̂1)2 + · · ·+ (θk − θ̂k)2.

Stein astounded everyone when he proved that if k ≥ 3, then θ̂(X) = X is inadmissible. It can be
shown that the James-Stein estimator

θ̂S = (θ̂S1 , . . . , θ̂
S
k )

has smaller risk, where

θ̂Si (X) =

(
1− k − 2

X2
1 + · · ·+X2

k

)+

Xi,

where (z)+ = max{0, z}. This estimator shrinks the Xi’s towards 0. The message is that, when
estimating many parameters, there is great value in shrinking the estimates.
Computer Experiment: Compare the risk of the MLE and the James-Stein estimator by simula-
tion. Try various values of k and various vectors θ. Summarize your results.

ks = c(seq(4,20,by=1),seq(30,300,by=10))
Rep = 1000
Risk = matrix(0,Rep,2)
nk = length(ks)
RR = rep(0,nk)
for (l in 1:nk){

theta = rnorm(ks[l])
for (r in 1:Rep){

x = rnorm(ks[l],theta,1)
th.mle = x
th.js = max((1-(ks[l]-2)/sum(x^2)),0)*x
Risk[r,1] = sum((th.mle-theta)^2)
Risk[r,2] = sum((th.js-theta)^2)

}
RR[l] = mean(Risk[,1])/mean(Risk[,2])

}

plot(ks,RR,xlab="Dimesion of x vector",ylab="Relative Risk",main="")
title("MLE vs James-Stein",type="b")
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