Homework 2 - Solution

Instructor: Hedibert Freitas Lopes
Course: STP 598 Advanced Bayesian Statistical Learning (Class # 31199)
Semester: Spring 2022.

1 Risk analysis

Recall that the risk of an estimator 0 is given by
R(6.6) = BL(6.0) = [ L(6.0)(al6)do

while the maximum risk is R(0) = sup, R(0, ), and the Bayes risk is

r(m,0) = /@ R(0,0)7(0)do,

where 7 is a prior for #. Assume that the loss function is squared error, so the risk is just the mean
squared error (MSE):

~

R(6,6) = El(6—6)°) = Byl(0 — Eo(0))* + (Eo(0) — 6)°) = Vo(0) + bias}(9).

Now, let X7, ..., X, be, conditionally on 6, independent Bernoulli(#), for 6 € (0, 1). Consider squared
error loss and two estimators of 6:
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where « and (8 are positive constants.
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Since 0, = (1/n)s, and s,|0 ~ Binomial(n, @), for s,, = X;+---+X,, it follows that E(él\ﬁ) =0

and

o(1 — 0)

n

~ - 1
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b) Show that
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For c), d) and e), assume that o = § = /n/4.

c¢) Graphically show that neither estimator uniformly dominates the other. Try n = 1,10, 50 to see
how the risk functions behave as n increases.

R1 = function(theta,n){
theta*(1-theta)/n
}

d) Show that the maximum risks are R(6;) = L

R2 = function(theta,n,alpha,beta){
n*xtheta*(1-theta)/(alphatbeta+n) 2+
((n*thetatalpha)/(alphatbeta+n)-theta) "2

}

thetas seq(0,1,length=1000)
par (mfrow=c(2,2))
for (n in c¢(1,10,100,1000)){

alpha = round(sqrt(n/4),1)
beta = round(sqrt(n/4),1)
rl = R1(thetas,n)

r2 = R2(thetas,n,alpha,beta)
plot(thetas,rl/r2,xlab=expression(theta),

ylab="Relative risk - R1/R2",type="1",1lwd=2)
title(paste("n=",n,"\n (alpha,beta)=(",alpha,",",beta,")",sep=""))

abline(h=1,1ty=2)

4n

and R(0,) =

n

T S0, based on the maximum

risk, 0, is a better estimator. However, when n is large, R(él) has smaller risk except for a
small region in the parameter space near # = 1/2, where the risk of 6; is maximum.

It is easy to see that R((),Aél) is maximized when 6§ = 1/2 (quadratic function!). From (c), we
graphically see that R(,6s) is constant for all values of 6. Therefore, for § = 0, the results

follows easily and directly.

e) Show that the Bayes risks are r(r,0;) = + and r(m,6;) =

TEESYEE when 7 is the uniform

prior in the interval (0,1). For large n (larger than or equal to 20), 6, is a better estimator.
This corroborates with the graphical inspection obtained in c).

2



o fy) = /010“—%9:1 /01 g1 gt = LRI 1

n n
Kernel of a Beta(2,2)

Similarly,
n

50 = || Gty = Tt v



2 Stein’s Paradox

Suppose that X ~ N(0,1) and consider estimating 6 with squared error loss. We know that §(X) = X
is admissible. Now consider estimating two, unrelated quantities 8 = (61, 65) and supposed that
X1~ N(01,1) and Xy ~ N(0s,1) independently, with loss

L(9,6) = (6, — 61)% + (05 — 6,)>.

~

Not surprisingly, 8(X) = X is again admissible where X = (X3, X3). Now consider the generalization
to k normal means. Let 0 = (64,...,60;), X = (X4,..., X)) with X; ~ N(6;,1) (independent) and
loss R R R

L(0,0) = (601 — 01)° + - + (0 — 01)*.

Stein astounded everyone when he proved that if & > 3, then §(X) = X is inadmissible. It can be
shown that the James-Stein estimator

05 = (67,....67)

has smaller risk, where

- k—2 +
b (X) = X)) N

where (z)" = max{0,z}. This estimator shrinks the X;’s towards 0. The message is that, when
estimating many parameters, there is great value in shrinking the estimates.

Computer Experiment: Compare the risk of the MLE and the James-Stein estimator by simula-
tion. Try various values of k and various vectors #. Summarize your results.

ks = c(seq(4,20,by=1),seq(30,300,by=10))
Rep = 1000

Risk = matrix(0,Rep,2)

nk = length(ks)

RR = rep(0,nk)

for (1 in 1:nk){
theta = rnorm(ks[1])
for (r in 1:Rep){
x = rnorm(ks[1] ,theta, 1)
th.mle = x
th.js = max((1-(ks[1]-2)/sum(x~2)),0)*x
Risk[r,1] = sum((th.mle-theta)~2)
Risk[r,2] = sum((th.js-theta)"2)
}
RR[1] = mean(Risk[,1])/mean(Risk[,2])
+

plot(ks,RR,xlab="Dimesion of x vector",ylab="Relative Risk",main="")
title("MLE vs James-Stein",type="b")
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