DAY 1: Basic Bayes + NDLM/SVM + particle filtering Brief overview of key Bayesian ingredients and computation http://hedibert.org/wp-content/uploads/2020/12/toyexample-normal-normal.html Model selection/comparison: Bernoulli, logit/probit regression? http://hedibert.org/wp-content/uploads/2020/02/bernoulli-regression.html http://hedibert.org/wp-content/uploads/2020/02/bernoulli-regression-Rmd.txt Bayes factor and Bayesian model averaging http://hedibert.org/wp-content/uploads/2021/05/bayesfactor-bayesiammodelaveraging.html Normal dynamic linear modeling (NDLM) http://hedibert.org/wp-content/uploads/2013/12/dm.pdf Stochastic volatility model http://hedibert.org/wp-content/uploads/2019/05/stochasticvolatilitymodels.pdf Particle filtering http://hedibert.org/wp-content/uploads/2019/05/SMC-purefilter.pdf DAY 2: Research topics Variable selection and regularization http://hedibert.org/wp-content/uploads/2018/05/multiplelinearregression.pdf The illusion of the illusion of sparsity http://hedibert.org/wp-content/uploads/2020/09/TheIllusionoftheIllusionofSparsity-slides.pdf Dynamic sparsity in dynamic regressions http://hedibert.org/wp-content/uploads/2020/02/talk-ASU-Feb2020.pdf Dynamic ordering learning in multivariate forecasting http://hedibert.org/wp-content/uploads/2021/06/levy-lopes-DynamicOrderingLearning-slides-june2021.pdf