
Second homework assignment

PhD in Business Economics Course: Advanced Bayesian Econometrics
Professor: Hedibert Freitas Lopes Due date: 12h, February 11th, 2021.

Use, preferably, Rmarkdown (via RStudio) to produce your report in PDF or HTML.

Fitting Gaussian and Student’s t ARMA(1,1) model

Let us assume that some observed time series data {y1, . . . , yn} follows an ARMA(1,1) model

yt = φyt−1 + εt + γεt−1

where ε1, . . . , εn are i.i.d. eitherM0 : N(0, σ2) orM1 : tν(0, τ
2), where τ 2 = (ν − 2)/νσ2. We will

keep ν fixed and known throughout. In addition, in order to simplify the homework, we will assume
that y0 = ε0 = 0. Therefore, it is easy to see that {ε1, . . . , εn} are deterministically obtained from
θ = (φ, γ, σ) and the data yn = {y1, . . . , yn}: ε1 = y1 and εt = yt − φyt−1 − γεt−1, for t = 2, . . . , n.

Likelihood functions. To avoid overloading the notation, let us drop (ε0, y0) in what follows. The
likelihood functions are, therefore,

L(θ|yn,M0) = (2πσ2)−n/2 exp
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Prior distribution. Let us assume that

p(θ) = p(φ, γ, σ2) = p(φ)p(γ)p(σ2),

for

φ ∼ U(−1, 1)

γ ∼ U(−1, 1)

σ2 ∼ IG(5/2, 5(1.4)/2).

Hence, we are constraining our inference to the class of stationary and invertible ARMA(1,1) models.
In additional, prior mean, mode and standard deviation for σ2 is around 2.33, 1 and 3.3, respectively.
Also, Pr(σ2 ∈ (0.33, 26.3)) ≈ 99.9%, so σ < 0.5 or σ > 5 are essentially ruled out as well.



Simulating some data. You should simulate two datasets of size n = 400, one with Gaussian
errors and the other with Student’s t errors where σ = 1, ν = 4, φ = 0.98 and γ = −0.64. Feel free
to use the following R script:

set.seed(12345)
n =400
sig=1.0
nu=4
phi=0.98
theta=-0.64
tau = sqrt((nu-2)/nu)*sig
e.n = sig*rnorm(n)
e.t = tau*rt(n,df=nu)
y.n = rep(0,n)
y.t = rep(0,n)
y.n[1] = e.n[1]
y.t[1] = e.t[1]
for (t in 2:n){

y.n[t] = phi*y.n[t-1]+e.n[t]+theta*e.n[t-1]
y.t[t] = phi*y.t[t-1]+e.t[t]+theta*e.t[t-1]

}
par(mfrow=c(1,1))
ts.plot(cbind(y.n,y.t),col=1:2,main="ARMA(1,1) data")
legend("bottomleft",legend=c("Gaussian","Student’s t"),col=1:2,lty=1,bty="n")

Questions: Answer the following questions for each one of the two datasets generated by the
previous script.

1. Maximum likelihood inference.
What are the maximum likelihood estimates (MLE) of θ under both models? Use the R function
nlm to minimize the negative of the likelihood functions. Are the results similar to the ones
from the R function arima(y,order=c(1,0,1))?

2. Bayesian inference via Monte Carlo methods.

(a) Use sampling importance resampling (SIR) to sample from both posterior distributions of
θ:

p(θ|yn,M0) ∝ L(θ|yn,M0)p(θ)

p(θ|yn,M1) ∝ L(θ|yn,M1)p(θ).

Use these draws whenever necessary in the next several questions.

(b) Compute posterior means, medians and 95% credibility interval for φ, γ and σ2. Are
posterior means (and medians) similar to their MLE counterparts?
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(c) Plot the contours of the posterior density. What are the posterior probabilities that
φ > 0.9 under both models?

3. Prior predictive, Bayes factor and posterior model probability.

(a) Compute both prior predictive p(yn|M0) and p(yn|M1). We can approximate the prior
predictive densities, for j = 0, 1

p(yn|Mj) =
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2,

via Monte Carlo by

p̂(yn|Mj) =
1

M

M∑
i=1
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p(yt|yt−1, φ(i), γ(i), σ2(i)Mj),

where θ(1), . . . , θ(M) are draws from the prior p(θ). Let us use M = 100, 000.

(b) Compute a MC approximation to the Bayes factor:

B01 =
p(yn|M0)

p(yn|M1)
.

(c) Finally, the posterior model odds can be computed as

Pr(M0|yn)

Pr(M1|yn)
=
Pr(M0)

Pr(M1)
×B01,

where Pr(M0) and Pr(M1) are the prior probabilities assigned to modelsM0 andM1,
respectively. Assuming Pr(M0) = Pr(M1), obtain a MC approximation to Pr(M0|yn),
the posterior model probability of the Gaussian model.

Discuss your findings.
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