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Abstract

The emergence of Big Data raises the question of how to model economic relations when

there is a large number of possible explanatory variables. We revisit the issue by compar-

ing the possibility of using dense or sparse models in a Bayesian approach, allowing for

variable selection and shrinkage. More specifically, we discuss the results reached by Gi-

annone, Lenza, and Primiceri (2020) through a “Spike-and-Slab” prior, which suggest an

“illusion of sparsity” in economic data, as no clear patterns of sparsity could be detected.

We make a further revision of the posterior distributions of the model, and propose three

experiments to evaluate the robustness of the adopted prior distribution. We find that

the pattern of sparsity is sensitive to the prior distribution of the regression coefficients,

and present evidence that the model indirectly induces variable selection and shrinkage,

which suggests that the “illusion of sparsity” could be, itself, an illusion. Code is available

on Github1.

Keywords: Sparsity, Model selection, High Dimensional Data, Shrinkage, Bayesian Econo-

metrics.

1github.com/bfava/IllusionOfIllusion
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1 Introduction

It’s the Big Data Era. While Tech Giants revolution the markets of the U.S. and China,

economists are still adapting to the new flow of data and studying how to incorporate them

in the research agenda. In the presence of many data sources, it’s a common situation

to have a large number of variables that can possibly determine a variable of interest, so

that the number of regressors approximates or exceeds the number of observations itself.

This article addresses the issue of how to deal with the situation, considering whether it

is wiser to use all the available regressors or using methods that define which are the most

important ones.

In datasets in which the regressors outnumber the observations, the use of classical

estimation methods, such as the Ordinary Least Squares (OLS), is not even possible as

the statistical inference would be based on a negative number of degrees of freedom. Even

when there is a small positive number of degrees of freedom, the OLS estimator drives very

poor results, once it’s expected overfitting and high degrees of multicollinearity. Many

methods have been developed to deal with the problem, using classical and Bayesian

statistics, and Machine Learning (ML). One example is the work developed by Medeiros

et al. (2019), in which the authors compare a variety of methods to predict the U.S.

inflation rate, and reach the conclusion that the best suited model is the Random Forest

(RF), a famous ML algorithm that considers nonlinearity and can deal with a large number

of variables, while not using all of them at once.

Even though in the literature it has been identified some classes of models that perform

well for predictions, not everything in Economics is about prediction. A vast class of

articles in Economics focus on the individual impact of some key regressors on a response

variable and, therefore, models like the RF may not be adequate, as they make it difficult

to interpret the individual effects of each regressor, in addition to driving biased estimates

of partial effects.

It is then convenient to look at the so-called sparse models, that in the presence of

many predictors, select the most important ones. The counterpart are the dense models,

that instead of choosing some variables despite the others, consider all of them, shrinking

the estimated coefficients towards a zero mean so that, despite the relatively small sample

size, overfitting is avoided.

A series of models were developed that consider sparsity in explanatory variables,
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for example, the famous Least Absolute Shrinkage and Selection Operator, the LASSO,

introduced by Tibshirani (1996). By defining a constant limit for the sum of the absolute

value of the coefficients in a model, the LASSO shrinks the coefficients towards zero and,

by doing so, estimates some of them to be exactly zero, that is, excludes those variables

from the model. This kind of design does solve the problem of the big number of predictors

by using statistical inference to determine the ones that are the most important, and then

allowing for an easy interpretation of partial effects.

Still, the choice to use sparse models may not be priceless. A recent work developed

by Giannone, Lenza, and Primiceri (2020) – henceforth referred to as GLP – explored

the suitability of sparse modeling for economics series. They took two datasets in Mi-

croeconomics, Macroeconomics and Finance, and defined a “Spike-and-Slab” prior for the

coefficients of linear predictive models, following Mitchell and Beauchamp (1988). This

prior was chosen because, by taking a probability q of inclusion of each predictor as an

unknown parameter with a uniform prior, it allows the model to take both the sparse or

dense designs, hence not assuming one of them, and making inference on which of the

possibilities is more probable.

The results are not encouraging for those who prefer adopting sparse representations:

the model drove a not-sparse design for five of the six applications, baptizing the title of

their article as “Economic predictions with big data: The illusion of sparsity”. The authors

conclude that sparsity should not be simply assumed when modeling an economics series,

as that is uncertain, and therefore should only be used in the presence of strong statistical

evidence.

This work proposes a revision of the methods adopted by GLP. We reproduce the

model they used, a “Spike-and-Slab” prior distribution, that considers, in a linear model,

a probability q of inclusion of each predictor, while the included coefficients are modeled

as draws from a Gaussian distribution. The variance from this distribution is defined

as γ2, that thus controls the degree of shrinkage. By treating both hyperparameters as

random variables, they conducted Bayesian inference on them to visualize whether there

would be greater concentration in small values of q or a more important dependence on

greater shrinkage, that is, if the dataset should be treated mainly as sparse or dense.

We use five of the six original datasets from GLP (the Micro 1 and 2, Macro 1 and 2,

and Finance 1 datasets) and reproduce the algorithm for estimating the model, first rein-
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terpreting the posterior distributions, and then proposing three experiments to evaluate

how well the model behaves in controlled environments.

First, we analyze the posterior distribution of the coefficients of the linear model,

when included, what was not explored in GLP. It indicates a certain inability of the

model in distinguishing whether a variable should be excluded, or included with a very

small coefficient, what would result in the overestimation of the probability of inclusion,

and could help explain the results achieved. Second, we add completely random variables

as possible predictors to the datasets, and find that the model is able to correctly exclude

them only in a sub-selection of the datasets.

Third, it is proposed a modification to the prior distribution of the parameters of the

linear model, by fitting a t-student distribution instead of a Gaussian, allowing for fatter

tails. The heavier-tailed distribution was more restrictive in selecting possible predictors,

and results once again corroborate with the thesis that the original Spike-and-Slab prior

is unable to correctly allow and distinguish between shrinkage or sparsity. Finally, it is

developed a simulation study to check the performance of the original model and with the

t-student modification in a totally controlled environment. At the same time that both

approaches don’t present great performance, the analysis of the posterior distributions

reinforces the belief that the adopted prior distribution incorrectly induces shrinkage.

All the evidence raised allows this paper to conclude that the Spike-and-Slab approach

does not seem robust, and could lead to the illusion that sparsity is nonexistent, when it

might exist.

Following this first section of Introduction, in Section 2 we explore the article from

GLP, explain thoroughly the model used, and discuss the main results found in the pa-

per. In Section 3 we propose the three experiments: adding random variables to the

datasets, modifying the prior distribution of the coefficients from a normal to a t-student

distribution, and finally a simulation study. In Section 4, we present a conclusion.

2 Revisiting GLP

In this section, we reproduce and explore the analysis made by Giannone, Lenza, and

Primiceri (2020), with a “Spike-and-Slab” prior distribution for a linear predictive model

applied in different economics-related datasets. GLP selected six popular datasets they
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consider “big data”, for the relatively large number of predictors compared to the number

of observations: two in Macroeconomics, two in Microeconomics and two in Finance.

From the six settings, we don’t consider only the Finance 2 dataset.

2.1 The Model

Given a response variable yt, a vector of possible predictors xt, of size k, and a vector of

always-included variables ut, of size l, with generally k � l, the model is defined as:

yt = u
′

tφ+ x
′

tβ + εt

Where εt is an i.i.d. stochastic Gaussian error term with zero mean and variance σ2.

For simplification, all variables included are standardized to have zero mean and variance

one. The vector φ will never contain zeros, as the predictor included in ut are always

taken as relevant to the regression. The vector β, otherwise, is supposed to inform the

suitability of whether a dense or sparse representation. Thus, most of the elements of this

vector may be zero – defining a sparse model –, or non-zero – a dense model. To reflect

the possibility of taking one of both representations, the following prior distribution is

proposed for the unknown parameters σ2, φ, β:

p(σ2) ∝ 1
σ2

φ ∝ flat

βi|σ2, γ2, q ∼

N(0, σ2γ2) with prob. q

0 with prob. 1− q
i = 1, ..., k.

Where the prior for the variance σ2 is the improper Jeffrey’s prior, the prior for φ

is uninformative, and each of the parameters in the vector β can be either zero, with

probability 1 − q, or a draw from a Gaussian distribution with zero mean and variance

σ2γ2, with probability q. The hyperparameter γ2 controls the degree of shrinkage: the

larger γ2, the smaller the shrinkage, as the regression coefficients can be more distant

from zero.

The prior distribution for the hyperparameter γ2 is induced by a prior on a transfor-

mation of the coefficient. Specifically, they set a prior for the coefficient of determination,

R2:
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Figure 1: Probability of inclusion of each predictor

R2(γ2, q) ≡ qkγ2vx
qkγ2vx + 1

Where vx is the sample average variance of the predictors. The prior distribution of

the hyperparameters is then defined by uniform distributions:

q ∼ Beta(1, 1)

R2 ∼ Beta(1, 1)

2.2 Probability of inclusion of each predictor

The heatmaps in figure 1 show the posterior probability of inclusion of each predictor in

the model, that is, the percentage of times that each covariate was included on the Markov
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Chain Monte Carlo estimation of the model. Thus, for example, if a stripe presents a near-

black color, it indicates that such predictor was included on nearly all of the iterations of

the estimation, that is, its probability of inclusion is close to 100%. On the other hand,

if the stripe color is light yellow, its probability of inclusion is small.

2.3 GLP Conclusion

After analyzing the posterior distributions, GLP investigate whether a pattern of sparsity

can be identified in the datasets, by measuring the percentage of times each variable was

included in the regression (figure 1). The conclusion is that a clear pattern of sparsity is

found only on the Micro 1 dataset, in which only one variable is included most of times.

For all other datasets it’s not possible to distinguish which variables should be included,

as many have a high estimated probability of inclusion. That indicated that a dense

model, that allows for the selection of many variables while shrinking their coefficients,

should be the most adequate for them.

Thus, even when the estimated number of included variables is small, it might not be

easy to determine what the pattern of sparsity should be, that is, which variables should

be selected. This result allows GLP to conclude that sparsity cannot be assumed for any

economic dataset, unless in the presence of strong statistical evidence, and suggest an

”illusion of sparsity” when using statistical models that assume (and force) sparsity.

2.4 Posterior distribution of βi|(βi 6= 0)

We present the posterior distribution of the coefficients βi|(βi 6= 0) for all possible predic-

tors, which was not presented in GLP. We focus on the Finance 1 and Macro 2 datasets

only, because of the convenience that they present a smaller number of covariates - 16

and 60, respectively. The posterior for Macro 2 is divided in figures 3 and 4, each with

30 predictors. The distributions for the Finance 1 are shown in figure 2.

We evaluate how significant an included predictor is by analyzing how close to zero the

coefficients of the included variables are. In order to clarify the results, on the graphics

we show first the number (index) of the predictor followed by the number of ”Inc”, the

probability of inclusion of that predictor (the same number plotted on figure 1), and

the number of ”G0”, the probability that the predictor is greater than zero, that is, the

percentage of the times that the estimated coefficient was positive, considering only the
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Figure 2: Posterior distribution of beta for the Finance 1 dataset.
”Inc.” means the probability of inclusion and ”G0” the probability of being greater than zero

cases when the variable was included in the model.

At the same time that it is expected that included coefficients be shrunken towards zero

- specifically in a greater rate as the probability of inclusion grows -, if the concentration

of the posterior distribution around zero is too large, it can be argued that the model

can be failing in determining whether a predictor is relevant for fitting the model or not.

That is, if the distribution of βi|(βi 6= 0) is very concentrated around zero, the likelihood

that zi = 1 or zi = 0 will be very close, as the inclusion of the coefficient would have very

small impact on the regression.

Therefore, the probability of inclusion q might be overestimated, and some of the coef-

ficients included on figure 1 with high probability may be performing an almost negligible

role in the model, with the explanatory capacity of the covariates concentrated on a few

predictors. That is, a pattern of sparsity might be hidden on the many selected variables,

what would imply that the prior distributions set are themselves inducing ”density” and

shrinkage, despite the goal of learning statistically whether shrinkage or selection is ideal.

The graphics in figures 2 to 4, reveal some interesting features of the posterior distri-

bution. First, in fact, some predictors included have very concentrated and symmetrical

9



Figure 3: Posterior distribution of beta for the Macro 2 dataset (1/2).
”Inc.” means the probability of inclusion and ”G0” the probability of being greater than zero

posterior distributions around zero, indicating that if an economist were to define a pattern

of predictors to include in a linear model, from the learning of the posterior distribution

of β they would very probably exclude these covariates, even when the plot in figure 1

would indicate the opposite.

This is very clearly the case, for example, in the Finance 1 setting in figure 2, of

the variables 4 and 8, that are very concentrated and symmetrical around zero, with

nearly half of the distribution to each of the sides of zero, despite having a probability of

inclusion of 46% and 44%, respectively. Other variables, on the other hand, do present

a very distinct pattern when included. For example, predictors 2, 3, 9, 12 and 16 have

a large concentration of their coefficients away from zero, at the same time that their

probability of inclusion is not largely superior to the ones of predictors 4 and 8. Predictor

3, for example, is included only 53% of the times, and predictor 2 58%.

Other covariates show a more peculiar and dubious behavior. Predictor 11, for in-

stance, has its coefficient clearly more concentrated to positive values, at the same time

that it is very concentrated around zero, and is included only 47% of times. It is hard

to conclude from figure 2 that a clear pattern of sparsity can be distinguished. Still, it
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Figure 4: Posterior distribution of beta for the Macro 2 dataset (2/2).
”Inc.” means the probability of inclusion and ”G0” the probability of being greater than zero

seems clear the greater importance of a few variables in spite of others, as is the case of

predictors 2, 9, 12, 14 and 16, and a smaller importance of other, such as 4, 5, 6, 8, 11,

13 and 15. Even though there seems to exist a direct relation between these patterns and

the probability of inclusion - the least included predictor among the ”most important”

was included 58% of times, whereas the most included among the ”least important” was

included 51% of times -, interpreting sparsity from the graphic on figure 1 by itself is

misleading, and hides some important information behind each coefficient.

As for the posterior of β for the Macro 2 dataset, similar conclusions can be drawn.

While some predictors are undoubtedly important for the model, such as predictor 1

(included 98% of times always with a negative coefficient), others have a coefficient very

close to zero when included in the model, such as predictors 5, 28, 29, 32, 34, 38, 54 and

57. Still, at the same time that one economist could easily exclude such predictors from

a regression model, some of them are included in the spike-and-slab with a significant

probability, of at least 60%. It is also interesting to notice that, for example, predictor

12 is highly offset from zero, with 75% of the distribution on negative values, but also

presents a relatively small percentage of inclusion, of 66%, while predictor 28 is highly
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symmetric around zero, with 50% of the distribution in positive numbers, and is included

almost at the same rate, 62% of the times.

This analysis let us conclude that even though, in fact, a distinct pattern of sparsity

cannot be identified on the datasets, the spike-and-slab prior, as defined, seems to be itself

inducing density and shrinkage, by including frequently many predictors with a near-zero

coefficient.

3 Experiments

This section is composed of three parts. We first explore the power of selection of the spike-

and-slab prior as specified, by adding random variables as additional predictors in the five

datasets, and checking whether the posterior distribution was able to correctly identify

their exclusion. Second, this article proposes a change in the model, by substituting the

Gaussian prior distribution of the coefficient of the possible predictors for a t-student

distribution. Finally, we develop a simulation study to check the conditions under which

the model correctly selects a sparse model.

The estimation algorithms were reproduced in R with Rcpp (R C++), and all the

estimation code used in this whole session is displayed on Github2.

3.1 Adding Random Variables

In order to further explore the thesis proposed on the last topic – that is, that the Spike-

and-Slab prior might be itself inducing density –, we now propose a further experiment.

We re-run the estimation algorithm for all the five datasets but now include two additional

regressors that were completely randomly generated from a normal distribution, and re-

scaled to have zero mean and standard deviation of one, like all the other predictors.

The goal is to analyze if the model is able to determine the exclusion of such covariates,

that are known to have no predictive power and fitting to the data, having only possibly

spurious correlations.

The graphic in figure 5 brings the probability of inclusion of each predictor, where the

last two stripes are the randomly generated predictors. This graphic is just like the one

of figure 1, re-estimated with the new variables. It is easy to notice that the pattern of
2github.com/bfava/IllusionOfIllusion
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Figure 5: Probability of inclusion of each predictor - two last stripes are random variables

inclusion of the original predictors is very similar between the two figures.

The inclusion of random variables as possible predictors generated different effects

through the datasets. On the Micro 1 approach, as expected, the same pattern of sparsity

was preserved, with the last two predictors included 1.6% and 3.9% of the times, respec-

tively. On the Macro 1 and Micro 2 settings, despite the lack of a pattern of sparsity,

the Spike-and-Slab performed reasonably regarding the inclusion of the random variables.

They were included 12.2% and 21.1% of the times on the Macro 1, and 20.0% and 18.7%

on the Micro2.

On the other hand, the model performed poorly in identifying the irrelevance of the

random variables on the Macro 2 (56.1% and 55.2%) and Finance 1 (71.0% and 48.4%)
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settings. It is interesting to notice, however, that on the Macro 2 the random variables

ranked as 5th and 6th least included variables, from a total of 62. On the Finance 1, one

of the random regressors was the least included among 18, while the other one ranked as

the 3rd more included.

This experiment corroborates, at least for the Finance 1 and Macro 2 datasets, to

the idea that the design of the model is itself inducing a high level of selection and

shrinkage, not fulfilling the goal of allowing for shrinkage or sparsity in order to learn

the best approach. Still, it is important to notice that in this subsection only one set

of simulated variables was generated for each dataset, and that different results can be

drawn depending on the generated predictors. However, the fact that two of the five

settings presented a strong difference between the results and what would be expected

suggest that similar outcomes would be achieved if the experiment was run more times,

or with a different number of random variables.

The graphics in figure 6 bring the posterior distribution of βi|(βi 6= 0), that is, the

estimated density of the value of the coefficients β for all the possible predictors, when

included. Above each graphic is included the number of the regressor, the probability of

inclusion in the model, and the probability of the coefficient to be greater than zero.

It can be noticed that for the original predictors, from 1 to 16, the posterior distri-

butions are extremely similar to the original graphics on figure 2, indicating that the

inclusion of the new variables didn’t interfere on the estimation of the other parameters.

The posterior of predictor 18 is not surprising, given what was already discussed on sec-

tion 3.1.5. Besides the probability of inclusion of 48%, the distribution is concentrated on

very small values of β, symmetric around zero, indicating that the likelihood of including

the variable in the model with a very small coefficient is similar to the likelihood of ex-

cluding it. It once again corroborates with the thesis that the Spike-and-Slab incorrectly

stimulates selection and shrinkage.

Predictor 17, on the other hand, despite being completely random was included 71%

of times, 95% of them with a negative value. Following the discussion on figure 2, it

indicates that in fact a variable cannot be assumed as relevant just because of its degree

of inclusion or lack of symmetry around zero. It interesting, however, to notice that the

distribution is still very concentrated on small values of beta, with 90% of the distribution

being greater than −0.29. This is not the case for other predictors, such as 9, for which
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Figure 6: Posterior distribution of beta for the Finance 1 dataset with additional random
variables.
”Inc.” means the probability of inclusion and ”G0” the probability of being greater than zero.

Predictors 17 and 18 are randomly generated variables.

25% of the distribution of is greater than 0.29, or predictor 12, for which 18% of the

distribution of beta is larger than 0.29. That is, the distribution of these predictors, when

included, is less concentrated around zero than the ones of the random variables.

This experiment suggests, once again, that the design of the model itself is unable to

clearly distinguish the possibilities of shrinkage or sparsity, possibly inducing the former,

depending on the setting. Especially on the cases when the posterior distribution was

closer to the prior distribution, that is, the model had a poor learning, on the Finance 1

and Macro 2 datasets, the model seems to have induced some shrinkage, what is made

explicit by the high probability of inclusion of the randomly generated variables.

3.2 Fatter Tails: Using the t-student Distribution

One possible explanation for the results achieved on the last subsections can be related

to the shape of the distribution of the coefficients of the predictors. By using a Gaussian

distribution, the Spike-and-Slab prior could be inducing the posterior distribution of beta

to be concentrated around zero, thus generating an ambiguity of whether the model should
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include or not a predictor, as both options end up being very similar if the distribution

of βi|(βi 6= 0) is concentrated for very small values of βi.

In their article, GLP recognize that a misspecification of the regression coefficients

distribution can lead to a poor performance:

Our approach relaxes all sparsity and density constraints, and instead imposes

some structure on the problem by making an assumption on the distribution of

the non-zero coefficients. The key advantage of this strategy is that the share

of non-zero coefficients is treated as unknown, and can be estimated. Another

crucial benefit is that our Bayesian inferential procedure fully characterizes

the uncertainty around our estimates, not only of the degree of sparsity, but

also of the identity of the relevant predictors. The drawback of this approach,

however, is that it might perform poorly if our parametric assumption is not

a good approximation of the distribution of the non-zero coefficients. Even if

we take this concern into consideration, at the very least our results show that

there exist reasonable prior distributions of the non-zero regression coefficients

that do not lead to sparse posteriors. (Giannone, Lenza, and Primiceri 2020,

p. 4)

To deal with the problem, they use simulated datasets to show that the model is

capable of learning the degree of sparsity when using the Gaussian distribution for the

regression coefficients, even on different settings for the data-generating process. Also,

they explore the out-of-sample performance of their model, compared to sparse models.

Although they reach interesting results on the simulated datasets, they do not explore the

differences of changing the distribution of the non-zero coefficients on the real datasets.

In order to further explore the question, we propose a change in the model, substi-

tuting the normal distribution in the Spike-and-Slab prior for a t-student distribution. A

desirable feature of the t-student is that it presents fatter tails, that is, its density is higher

for the values more distant to zero than in the normal distribution. Section 3.3.1 describes

how the substitution was implemented, and the changes on the algorithm. Section 3.3.2

brings the results of the estimation, showing the posterior probability of inclusion of each

predictor, and the posterior distribution of the coefficients once included.
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3.2.1 Implementation

The substitution of the Gaussian for a t-student distribution is implemented by adding a

latent variable λi to the model. Specifically, we change the prior distribution of βi|σ2, γ2, q,

as described in section 2.1, for:

βi|σ2, γ2, λ2
i , q ∼

N(0, σ2γ2λ2
i ) with prob. q

0 with prob. 1− q
i = 1, ..., k.

And set an Inverse-gamma prior distribution for λ2
i :

λ2
i ∼ IG

(
ν

2 ,
ν

2

)
It can thus be shown that:

βi|σ2, γ2, q ∼

tν(0, σ
2γ2) with prob. q

0 with prob. 1− q
i = 1, ..., k.

Where

V ar[βi] = ν

ν − 2σ
2γ2

Instead of learning the parameter ν, we estimate the model for the pre-defined values of

4, 10, 30, 100 and 500. Given the shape of the t-student distribution, the prior distribution

of βi|σ2, γ2, q thus has very fat tails for ν = 4, and a very similar shape to the normal

distribution when ν = 500.

The estimation algorithm has few changes. Taking as a basis the algorithm developed

in Appendix A of GLP, and preserving the same notation, vx is redefined as:

vx ≡ E[σi,i]
ν

ν − 2

This way, considering the redefinition of vx, the conditional posterior distributions of

R2 and q, φ, z and σ2 are all unchanged. The conditional distribution of β is now induced

by:
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Figure 7: Probability of inclusion of each predictor for the Macro 1 and 2 and Finance
1 datasets. Each columns is a predictor and each row one model, varying the number of
degrees of freedom ν.

βi√
λ2
i

=: β∗
i |Y, φ, σ2, R2, q, z ∼

tν(0, σ
2γ2) with prob. q

0 with prob. 1− q
i = 1, ..., k.

Finally, the conditional distribution of λ2
i is given by:

λ2
i |ν, βi, σ2, R2 ∼ IG

(
ν + 1

2 ,
ν + β2

i /σ
2γ2

2

)
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Figure 8: Probability of inclusion of each predictor for the Micro 1 and 2 datasets. Each
columns is a predictor and each row one model, varying the number of degrees of freedom
ν.

3.2.2 Results

Figures 7 and 8 bring the estimated probability of inclusion of each regressor for all the

five datasets, considering different values for the number of degrees of freedom of the prior

t-student distribution ν.

The graphic is an adaptation of the already used in figures 1 and 5, but now instead

of using a whole stripe for each coefficient, the stripes are divided in rectangles, with

each row representing a different value for ν, while as usual each column represents one

possible predictor. The color of the heatmap is unchanged, using light colors for a small

probability of inclusion, and a darker tone as the probability increases.

It was also included a ”cut-off” indicator, to help interpreting the dimension of the

probability of inclusion. The cutting levels are of 50%, 75% and 90%. Therefore, for

example, on the Finance 1 dataset in figure 7, the first row, corresponding to the heavy-

tailed t-student with only 4 degrees of freedom, contains only two coefficients included

more than 50% of times, and none included more than 75%. In the Macro 2 setting in the

same figure, in the first row only the first predictor is included with a probability higher
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than 90%, and the probability of inclusion of the seventh predictor is between 75% and

90%, while for all others it is smaller than 75%. On the last row, the Normal distribution,

seven predictors are included between 75% and 90% of the times.

As expected, the last two rows are virtually equal for all the settings, reflecting that a

t-student distribution with ν = 500 can be approximated by a normal distribution. Slight

variations between them are due to the limited size of the drawn MCMC. Also, it is not

surprising that as the number of degrees of freedom decrease, the average probability of

inclusion also decreases. It reflects the fact that the distribution’s tails are heavier for

small values of ν, and so there’s a greater distinction between including or not a regressor,

as the likelihood that the coefficient be around zero is relatively smaller. By itself, this

result again endorses the suspicion that the Spike-and-Slab, as originally defined, induces

selection and shrinkage.

Still, it is interesting to notice that, in some cases, the use of the t-student doesn’t seem

to have changed the pattern of variable selection, but only reduced the overall probability

of inclusion. This seems to be the case of the Finance 1 dataset, in figure 7, for which

the probability of inclusion was very similar to the values of ν from 30 to 500, and for the

Macro 2 dataset in the same figure, for which the pattern of the most included variables

seems unchanged through the rows.

The result for the Micro 1 dataset in figure 8 is also not surprising. Since the normal

distribution was enough to identify the dominance of one single variable over the others for

fitting the model, it was expected that the more restrictive t-student distribution wouldn’t

allow for selection of more variables, or block the selection of the single dominant predictor.

Finally, the Macro 1 and Micro 2 settings show an interesting behavior. In Macro 1 in

figure 7, while most of the variables have a probability of inclusion smaller than 50% even

for the normal distribution case, some variables that are included with a high frequency

in the last row are excluded most of the times on the first rows. Moreover, it happens

without changing the probability of inclusion of other variables, that is, there is a change

in the pattern of variable selection. If, say, an economist was to believe in the selection

power of the model with a t-student distribution with 4 degrees of freedom, he would find

that only 7 of 130 available predictors are relevant - that is, included more than 50% of

times -, what could be interpreted as a sparse model.

A similar although weaker effect can be seen in the Micro 2 dataset in figure 8. While
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the normal distribution setting shows no clear pattern of variable selection, the t-student

cases are capable of more clearly selecting some predictors, decreasing the probability

of selection of several variables while preserving a high probability for others, that is, it

changes the pattern of variable selection. So, for example, while for the normal distri-

bution 106 of 138 predictors are selected more than 50% of the times, for the case when

ν = 4 only 30 are selected, and 34 for ν = 10.

Although these results are insufficient to conclude that the Spike-and-Slab with a

t-student distribution can be used to identify whether sparsity or shrinkage should be

chosen for a dataset, they are a strong evidence that the use of the normal distribution

is insufficient to draw such conclusion, as the use of this prior distribution induces high

levels of variable selection with shrinkage.

Additional to the variable selection pattern, figure 9 updates figure 2, for the Finance 1

dataset, with the t-student as the prior distribution. It compares the posterior distribution

of the coefficients beta for each predictor once they are included. The title of each graphic

brings first the index of the variable - the same used in figures 7 and 8 -, the probability

of inclusion ”Inc.” - the same from the last figures - and ”G0”, the percentage of the

distribution concentrated in positive values, respectively to the case when ν = 4 and

ν = 500 (the approximation to the normal distribution).

The figure reveals that the probability of inclusion of all the variables decrease signif-

icantly, and the distribution with ν = 4 becomes more asymmetric and skewed for all of

the predictors. Concerning the selection problem discussed in section 3.1.5, the t-student

by itself, even in the extreme case of only four degrees of freedom, still doesn’t seem

enough to solve the ambiguity in the model for choosing whether a predictor should be

included or not. It happens because even when a variable is included in the model, its

estimated value if very close to zero has almost the same impact in the model, thus re-

sulting in a similar likelihood for both inclusion in the model with a very small coefficient

or exclusion. This effect appears to be overestimating the probability of inclusion of the

regressors, thus resulting in a difficulty in identifying the presence of sparsity, that is, the

set prior distributions seem to be inducing density and shrinkage, and underestimating

the possibility of sparsity.
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Figure 9: Posterior distribution of beta for the Finance 1 dataset for the t-student prior
distribution.
”Inc.” means the probability of inclusion and ”G0” the probability of being greater than zero.

The first value is for the case ν = 4, and the second for ν = 500.

3.3 A Simulation Study

Based on the results from section 3.2, which showed a poor performance of the model

in excluding completely randomly generated predictors for some of the datasets, and the

new model proposed in section 3.3, this section proposes a simulation study. We simulate

a dataset with the same dimensions of the Finance 1 setting, with 68 observations and

16 covariates. We predefine the value of the coefficient beta for the first three predictors,

and set the other 13 to be exactly equal to zero. Therefore, the model would perform

accurately if correctly included only the first three regressors.

The data generating process is as follows. We first draw a random vector ε from a

normal distribution and set the values for β1, β2 and β3. Moreover, we calculate the

response variable as the sum of the first three covariates multiplied by their respective

coefficients plus an error term, and consider six scenarios, varying the variance of the error

term, σ2
ε . That is, given that X is the dataset, where Xi,j is the value of predictor j for

individual i, draw:

Xi,j ∼ N(0, 1)
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ε∗
i ∼ N(0, 1)

Set:

β1 = −0.86, β2 = 0.64, β3 = 0.89

Calculate:

y
(s)
i = β1Xi,1 + β2Xi,2 + β3Xi,3 + σ(s)

ε ε∗
i

For s ∈ {1, ..., 6} and i ∈ {1, ..., 68}. We define:

σ(s)
ε = 0.75s

That is, for example, σ(1)
ε = 0.75, σ(3)

ε = 2.25, and so on. This number represents

the uncertainty on the dataset: if σε is very small, any model that allows for variable

selection should perform reasonably in selecting only the three first predictors; if σε is

large, different models should perform differently in selecting the appropriate variables,

some better than others. After y and X are defined, they are all scaled to have exactly

zero mean and standard deviation one, repeating the same approach developed in GLP

and in the previous sections.

The graphics in figure 10 follow the same approach as the one in figures 7 and 8,

described in section 3.3.2. As expected, when the variance of the error term is small,

such as in the case where σε = 0.75, the model easily selects the three truly relevant

predictors with almost 100% of probability, and all others with virtually zero. As this

variance increases, when σε = 1.50, the model is still accurate in selecting correctly only

the relevant variables most of the times, but it can also be seen that the other predictors

are included with higher probability, but that never reach 50%.

The model starts failing for σε = 2.25, when all three models fail in selecting the

third predictor more than 75% of times. The predictors of number 4 and 16 are also

incorrectly selected more than 50% of times for the normal and ν = 15 settings, what

doesn’t happen for the ν = 4 case. On the other hand, this more restrictive model also

fails more than the other in selecting the third variable, what happens less than 50% of

times. A similar effect happens as the standard deviation of the error term increases.

For σε = 4.5, for example, the three settings fail in the selection, and for ν = 15 and

the normal distribution, predictor 16 becomes almost as important as predictors 1 and 2,
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Figure 10: Probability of inclusion of each predictor for simulated datasets. Each columns
is a predictor and each row one model, varying the number of degrees of freedom ν. Each
block represents one dataset, varying the standard error of the error term, σε.

while predictor 3 is rarely selected. For ν = 4, all the variables are selected with a very

low rate, with predictors 1, 2 and 16 being the most selected.

These results might indicate that the model has limited capacity in distinguishing

patterns of sparsity, or at least that the datasets considered might have an elevated level

of uncertainty (portion of the response variable explained by unobservables), such that few

can be learned from the use of econometric models. Even though making effort to make

statistical learning even in difficult settings is a major task of statisticians and economists,

it is worth mentioning that an extreme scenario can be the case in at least some of the

datasets considered, as they are very ”small” considering the number of observations, and
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Figure 11: Posterior distribution of beta for three simulated datasets with Gaussian
regression coefficients, varying σε.
”Inc.” means the probability of inclusion and ”G0” the probability of being greater than zero.

The order of the values follow the order of sigma eps.

”big” if considered the large number of possible predictors.

The graphics in figure 11 bring the posterior density distribution of the coefficients beta

for the 16 simulated predictors, in the same approach as figure 9. It is interesting to notice

that the distributions for predictors 1 to 3, for the cases σε = 0.75 and σε = 1.50, are very

offset from zero, correctly identifying the true predefined parameters. It is interesting to

notice, though, that as uncertainty grows, also grows shrinkage, and all the distributions

converge towards zero. This is especially the case for regressor 3, whose distribution

concentrates around zero, what also leads to a great drop in the probability of inclusion

in the model. This result once again corroborates with the thesis that the model creates

an ambiguity between inclusion with shrinkage or exclusion, as the likelihood of both

becomes very similar, and the model fails in learning the correct approach.

As for the other regressors, we notice that the concentration of the posteriors in one

of the sides of zero is uninformative. For example, predictor 12, when included, has more

than 80% of its distribution concentrated only in positive values of beta for all of the three

settings evaluated. Still, no inference can be made about this feature of the shape of the
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distribution, as the coefficient β12 is known to be exactly zero. It also collaborates with the

hypothesis previously presented that the fact that the distribution is very concentrated

on small values of beta, close to zero, is a more important indicator than how offset from

zero the distribution is, showing the unimportance of a predictor for the model. The fact

that the distributions for virtually all of the unimportant variables are very concentrated

around zero implies, again, that the probability of inclusion is probably overestimated

due to the similar likelihood of excluding the predictor or including it with a very small

coefficient (high degree of shrinkage).

4 Conclusion

This paper reassessed the model proposed in GLP, through a more detailed look into

the posterior distributions, and the proposition of three experiments. First, after adding

random variables to the datasets and reevaluating the model, it was found that in some of

the settings the model was unable to distinguish a completely random regressor from the

other available economic series, even privileging a random predictor in one of the settings

in spite of others.

Second, a modification was proposed to the model, substituting the prior Gaussian

distribution of the coefficients of the model for a t-student distribution. It was shown

that, depending on the the number of degrees of freedom of the distribution, a sparse

model is naturally distinguished among the predictors for one of the datasets, unlike the

result obtained with the normal distribution. For the other datasets, the effect was not

homogeneous, but the model with the t-student showed overall an improvement on the

pattern of what variables should be excluded. Finally, the simulation study indicates

that the Spike-and-Slab is biased towards selecting more predictors and shrinking their

coefficients.

All the experiments corroborate with the idea that the model is, itself, inducing vari-

able selection and shrinkage. The mechanism through which it happens could be that the

likelihood of excluding an irrelevant predictor, or including it with a very small coefficient,

is very similar. Thus, the evidences suggest that the Spike-and-Slab prior distribution is

itself inducing density, and thus does not fulfill the objective of GLP of evaluating whether

density or sparsity is more adequate for a given dataset.
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It is important to notice that this paper does not contradict the conclusion achieved

by GLP, but brings evidence to show that the model proposed is not robust to find the

conclusion that economic datasets are not informative enough to identify a conclusive

pattern of sparsity among many possible predictors. It was indeed shown that an unique

set of a few relevant predictors was identified for the Micro 1 dataset, for all approaches

considered, and also for the Finance 1 dataset, if a heavy-tailed t-student is used in the

prior distribution of the coefficients. For other cases, such as the Micro 2 dataset, the

t-student also had a much better performance in excluding irrelevant predictors. Still,

our findings corroborate with GLP conclusion that, without statistical evidence, sparsity

should not be simply assumed in an economics dataset.

But even more than that, the evidence brought by this paper shows that the setting of

the prior distribution can drastically improve the performance of the model in detecting

sparsity, and it thus indicates that further methods can help answer the question of

whether sparsity can be used to model a given economics dataset or not.

Finally, we conclude that the use of the Spike-and-Slab prior, such as proposed, is mis-

leading if the goal is to find evidence of sparsity in an economics dataset. The model, by

inducing shrinkage and selection, incorrectly provokes an illusion that sparsity is nonex-

istent: the illusion of the illusion of sparsity.
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