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Abstract. We propose a first order integer-valued autoregressive (INAR) model in which

a mixture of Geometric and Poisson distributions is introduced as a means to learn the

appropriate level of overdispersion of the time series as well as capturing inflations of

low-counts in the time series. A data-augmentation scheme allows to obtain the approx-

imated posterior distribution of the model parameters. The forecasting performance of

the Poisson-INAR(1) and the Adaptive-INAR(1) is compared for a data set of crimes in

Pittsburgh.

1. Introduction

Low-count time series arise in a wide range of applications such as epidemiology,

econometrics, environmental studies and public policy. The development of such mod-

els has attracted significant attention over the past decades, mainly motivated by the

seminal integer-valued autoregressive (INAR) model, introduced by [McKenzie, 1985] and

[Al-Osh and Alzaid, 1988]. This model has a simple interpretation and can be applied in

any time series that have a “birth-and-death” structure. Particularly, it has various advan-

tages over the continuous autoregressive (AR) models, especially in “low” count situations

where approximations to Gaussian models may be imprecise.

The INAR(1) structure contains two random components: the number of survivors

(or maturations) at the immediate previous time and the current number of immigrations

(or innovations). The classical Poisson-INAR(1) model assumes the Binomial thinning

operator for the maturations and Poisson distribution for the innovations of the process.

However, the latter assumption may not be suitable especially when the series have a large

number of zeros or extreme observations, which lead to overdispersion [Mullahy, 1997,

Maiti et al., 2015]. In order to overcome the limitations of the Poisson-INAR(1) model,

we propose an adaptive model by using a mixture of Poisson and Geometric distributions

on the innovations to capture adaptively overdispersion in the series. Also, we introduce

a set of latent variables to obtain the posterior distribution of the parameters by means

of an efficient data-augmentation scheme. We apply the proposed model in a data set of

burglary counts in Pittsburgh from 2007 to 2010.
1
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2. The Adaptive-INAR(1) Model

To accommodate a wider range of innovations distributions, we propose a generaliza-

tion of the usual Poisson-INAR(1) model [Al-Osh and Alzaid, 1988] and the Geometric-

INAR(1) model [Aghababaei Jazi et al., 2012] such that the innovations follow a mixture

of Geometric and Poisson distributions. This flexible model allows to learn the appropriate

level of overdispersion from the data in a fully Bayesian fashion as well as inflating the

probability of extremely small values.

Definition. For a time series {Yt}t≥1 of counting data, let the innovations {Zt}t≥2 be a se-

quence of independent random variables, which are also independent of a collection {Bi(t) :

i ≥ 0, t ≥ 1} of independent Bernoulli(α) random variables. The Adaptive-INAR(1) is de-

fined by the functional relation

Yt = α ◦ Yt−1 + Zt, (1)

for t ≥ 2, in which the binomial thinning operator is defined by α ◦ Yt−1 =
∑Yt−1

i=0 Bi(t).

Also, Zt is a mixture of a Geometric and a Poisson distributions such that p(zt | θ, λ, w) =

w Geometric(θ) + (1 − w) Poisson(λ), w ∈ [0, 1]. Notice that if w = 1, we have the

Geometric-INAR(1) model, whereas w = 0 implies the Poisson-INAR(1).

For simplicity, assume that there exists y1 ∈ N such that P (Y1 = y1 | α, θ, λ) = 1.

Also, notice that as w becomes large, the innovation is contaminated by the Geometric

distribution in the mixture, which increases the variability of the process and the total

number of low-counts. As an illustration, Figure 1 shows simulated time series for w = 0.1

and w = 0.9, while the remaining parameters were fixed as (α0, θ0, λ0) = (0.10, 0.15, 5.66).

It is clear that the latter time series is considerably more dispersed than the former.

Furthermore, since the process {Yt}t∈N is Markovian, the joint distribution of (Y1, . . . , YT ),

given α and λ, can be decomposed as its conditional distributions, i.e.,

P (Y1 = y1, Y2 = y2, . . . , YT = yT | α, λ) =
T∏
t=2

P (Yt = yt | Yt−1 = yt−1, α, θ, λ, w).

By applying the functional relation (1), the law of total probability and the independence

of {Bi(t)}i≥0,t≥1 and {Zt}Tt=2, we obtain that
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Figure 1. Typical simulated series for w = 0.1 (y = 6.02 and s.d. = 2.57)
and w = 0.9 (y = 6.08 and s.d. = 5.83).

P (Yt = yt | Yt−1 = yt−1, α, θ, λ, w) = P (α ◦ Yt−1 + Zt = yt | Yt−1 = yt−1, α, θ, λ, w)

= P (

Yt−1∑
i=1

Bi(t) + Zt = yt | Yt−1 = yt−1, α, θ, λ, w)

=

min {yt,yt−1}∑
mt=0

P (

yt−1∑
i=1

Bi(t) = mt, Zt = yt −mt | α, θ, λ, w)

=

min {yt,yt−1}∑
mt=0

P (

yt−1∑
i=1

Bi(t) = mt | α)P (Zt = yt −mt | θ, λ, w).

Consequently, the likelihood function of the Adaptive-INAR(1) model is given by

Ly(α, θ, λ, w) =
T∏
t=1

min{yt−1,yt}∑
mt=0

(
yt−1
mt

)
αmt(1− α)yt−1−mt

[
w θ(1− θ)yt−mt + (1− w)

e−λλyt−mt

(yt −mt)!

]
. (2)
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Furthermore, suppose the following independent prior distributions:

w ∼ Beta(a
(w)
0 , b

(w)
0 ), α ∼ Beta(a

(α)
0 , b

(α)
0 ), θ ∼ Beta(a

(θ)
0 , b

(θ)
0 ), λ ∼ Gamma(a

(λ)
0 , b

(λ)
0 ).

By using the Bayes’ Theorem, we have the joint posterior distribution:

π(α, θ, λ, w | y) ∝ Ly(α, θ, λ, w) π(α) π(λ) π(θ) π(w),

which does not seem straightforward to handle computationally. Therefore, we propose

data-augmentation scheme [Tanner and Wong, 1987] which allows to obtain samples from

the joint posterior in a direct manner.

3. Data-augmentation and full conditionals

Data-augmentation stands for constructing efficient sampling methods by introducing

latent variables in the algorithm [Tanner and Wong, 1987, Van Dyk and Meng, 2001]. Our

proposed data augmentation scheme treats the vector of maturations m = (m1, . . . ,mT )

and the indicator variables of the mixture components u = (u2, . . . , uT ) as latent variables.

Specifically, each ut is defined as ut = 1, if zt | θ ∼ Geometric(θ) or ut = 0, if zt | λ ∼
Poisson(λ). Postulate that, for t = 2, . . . , T

p(yt | mt, ut = 1) = θ(1− θ)yt−mtI{mt,mt+1,...}(yt),

p(yt | mt, ut = 0) =
e−λλyt−mt

(yt −mt)!
I{mt,mt+1,...}(yt), (3)

p(mt | yt−1, α) =

(
mt

yt−1

)
αyt−1(1− α)mt−yt−1 .

Also, the model structure implies that:

(1) Mt depends on Yt−1 only through α,

(2) Given Mt = mt and Ut = ut, Yt only depends on the innovation parameter.

(3) Each indicator variable ut, t = 2, . . . , T , is independent of mt, yt−1 , given w.

(4) Since Mt ≤ Yt−1 and Mt ≤ Yt we have Mt ≤ min {yt, yt−1}.
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Figure 2. Graphical representation of the data-augmented Poisson-
INAR(1) Model (w = 0).

The graph in Figure 2 illustrates the proposed data-augmentation for the Poisson-

INAR(1) model by a plate representation where the shaded variables are observable while

open nodes are latent variables and parameters [Jordan et al., 2004].

Hence, the likelihood function of the Adaptive-INAR(1) model can also be written as:

Ly(α, θ, λ, w) =
T∏
t=2

p(yt | yt−1, α, θ, λ, w)

=
T∏
t=2

min {yt,yt−1}∑
mt=0

1∑
ut=0

p(yt,mt, ut | yt−1, α, θ, λ, w)

=
T∏
t=2

min {yt,yt−1}∑
mt=0

1∑
ut=0

p(yt | mt, ut, θut) p(mt | yt−1, α) p(ut | w).

Notice that in the case the conditional distributions p(yt | mt, ut, θ), and p(mt | yt−1, α)

are the postulated probability functions given in 3, we have the same likelihood function

from 2. In addition, from the prior independence assumption, it follows that

p(y,m, u, α, θ, λ, w) = p(y,m, u | α, θ, λ, w) π(α) π(θ) π(λ) π(w),
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where y = (y2, . . . , yT ), m = (m2, . . . ,mT ) and u = (u2, . . . , uT ). It is easy to see that

p(y,m, u | α, θ, λ, w) =
T∏
t=2

p(yt | mt, ut, θut) p(mt | yt−1, α) p(ut | w).

Hence,

p(y,m, u, α, θ, λ, w) =
[ T∏
t=2

p(yt | mt, ut, θut) p(mt | yt−1, α) p(ut | w)
]
π(α) p(θ) p(λ) p(w).

Therefore, the full conditional distributions of α, θ, λ, w and u are given by:

p(α | . . .) ∝ p(y,m, u, α, θ, λ, w) ∝
[ T∏
t=2

p(mt | yt−1, α)
]
π(α)

∝ αa
(α)
0 +

∑T
t=2mt−1(1− α)b

(α)
0 +

∑T
t=2(yt−1−mt)

α | . . . ∼ Beta

(
a
(α)
0 +

T∑
t=2

mt, b
(α)
0 +

T∑
t=2

(yt−1 −mt)

)
, (4)

p(θ | . . .) ∝ p(y,m, u, α, θ, λ, w) ∝
[ ∏
{t:ut=1}

p(yt | mt, ut, θ)
]
π(θ)

∝ θa
(θ)
0 +

∑T
t=2 ut−1(1− θ)b

(θ)
0 +

∑T
t=2(yt−mt)I{1}(ut).

θ | . . . ∼ Beta

(
a
(θ)
0 +

T∑
t=2

ut, b
(θ)
0 +

T∑
t=2

(yt −mt)I{1}(ut)

)
, (5)

p(λ | . . .) ∝ p(y,m, u, α, θ, λ, w) ∝
[ T∏
{t:ut=0}

p(yt | mt, ut, λ)
]
π(λ)

∝ λa
(λ)
0 +

∑T
t=2(yt−mt)I{0}(ut)eb

(λ)
0 +T−

∑T
t=2 ut−1

λ | . . . ∼ Gamma

(
a
(λ)
0 +

T∑
t=2

(yt −mt)I{0}(ut), b(λ)0 + T −
T∑
t=2

ut − 1

)
, (6)
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p(w | . . .) ∝ p(y,m, u, α, θ, λ, w) ∝
[ T∏
t=2

p(ut | w)
]
π(w)

∝ wa
(w)+

∑T
t=2 ut−1

0 (1− w)b
(w)
0 +T−

∑T
t=2 ut−1

w | . . . ∼ Beta

(
a
(w)
0 +

T∑
t=2

ut, b
(w)
0 + T −

T∑
t=2

ut − 1

)
, (7)

p∗ = p(ut = 1 | . . .) ∝ p(ut = 1 | w) p(yt |ut = 1,mt, θ) ∝ w θ(1− θ)yt−mt

p(ut = 0 | . . .) ∝ p(ut = 0 | w) p(yt | ut = 0,mt, λ) ∝ (1− w)
e−λλyt−mt

(yt −mt)!
.

ut ∼ Bernoulli(p∗). (8)

p(mt| . . .) ∝ p(mt | yt, α)× p(yt | mt, θ)

∝ 1

(yt−1 −mt)! mt!

(
α

(1− θ)(1− α)

)mt
I{0,1,...,min(yt,yt−1)}(mt), if ut = 1. (9)

p(mt | . . .) ∝ p(mt | yt, α)× p(yt | mt, λ)

∝ 1

(yt −mt)! (yt−1 −mt)! mt!

(
α

λ (1− α)

)mt
I{0,1,...,min(yt,yt−1)}(mt), if ut = 0.

(10)

The proposed Gibbs sampler cycles by sampling from the conditionals given from (4)

to (10) until it reaches convergence.

4. Forecasting

Forecasting is often the main reason for applying time series models. Under the

Bayesian approach, a pointwise forecast is made through a statistical functional of the

(posterior) predictive distribution, whose calculation is described in this section. Let

(α(s), θ(s), λ(s), w(s)), s = 1, . . . ,M, be the posterior parameter samples from the MCMC

output obtained by the Gibbs sampler algorithm proposed in Section 3. To obtain the

k-step ahead predictive distribution of the Adaptive-INAR(1) Model, we generate Y
(s)
t+k

recursively applying the posterior samples on the functional relation (1), that is,

Y
(s)
T+k = α(s) ◦ Y (s)

T+k−1 + Z
(s)
T+k, s = 1, . . . ,M,
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where Z
(s)
T+k ∼ Poisson(λ(s)). Then, we approximate the predictive probabilities p(i |

y1, . . . , yT ) by empirical averages, i.e.,

p̂(i | y1, . . . , yT ) =
1

M

M∑
s=1

I(y(s)T+k = i), i = 0, 1, . . . .

We adopt here a generalized median as the k-step ahead pointwise forecast, denoted as

ŷT+k, which is defined by:

ŷT+k = arg max
yT+k≥0

|0.5−
yT+k∑
r=0

p(r | y1, . . . , yT )|, k ≥ 1. (11)

5. Application

We consider time series of weekly counts of burglary in Pittsburgh from 2007 to 2010

(available in http://forecastingprinciples.com/index.php/crimedata). The dataset

is grouped by clusters of neighborhoods with a total of 34 time series. Our objective lies in

comparing the forecasting performance of the Adaptive-INAR(1) model and the Poisson-

INAR(1) model. We use a training set, composed by the first T = 94 observations, to

fit the model and a test set, with the remaining h = 50 observations, to evaluate how

well the model is to forecast future data. Let ytraining = (y1, . . . , yT ) be the training set

and ytest = (yT+1, . . . , yT+h) the test set. First we approximate the predictive distribution

associated to the Poisson-INAR(1) and Adaptive-INAR(1) models. Recall that the Mean

Absolute Error (MAE) for the k-step ahead forecasts is given by:

MAE(k) =
T+h∑
i=T+k

|yi − ŷi|,

where ŷi is the generalized median (11) of the predictive distribution at time i, i = T +

1, . . . , T+h. We present in Table 1 the Mean Absolute Error (MAE) for both the Adaptive-

INAR(1) and the Poisson-INAR(1) models calculated to each cluster of neighborhood.

According to this criterion, the Adaptive-INAR(1) is the favoured model in most of the

clusters. As an example, Figure 3 shows the one-step ahead pointwise forecasts for the

Poisson-INAR(1) and the Adaptive-INAR(1) in the 54 th district of Pittsburgh. Notice

that the Adaptive-INAR(1) outperforms the Poisson-INAR(1) especially in forecasting

low-count observations.

http://forecastingprinciples.com/index.php/crimedata
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Figure 3. One-step ahead forecasts for the burglary time series in the 54th
district of Pittsburgh. The black lines represent the observed values in the
test set; the yellow line depicts the generalized median of the predictive
distribution for the Adaptive-INAR(1) in each time point, and the red line
indicates the generalized median according to the Poisson-INAR(1).

6. Conclusions

The proposed data-augmentation algorithm allows us to develop a simple Gibbs sam-

pler for the Adaptive-INAR(1) model. Also, such model captures inflation of zeros and

low-counts in the process which is not the feature of the classical Poisson-INAR(1). Conse-

quently, the forecasting performance of the proposed model may be improved as illustrated

in a burglary data set in Pittsburgh.
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Table 1. Mean Absolute Errors (MAE) of the Poisson-INAR(1) Model and
the Adaptive-INAR(1) Model for the one, two and three-step ahead forecasts
for the burglary dataset in Pittsburgh (divided by clusters of neighbours)

Poisson-INAR(1) Adaptive-INAR(1)

cluster k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
11 1.21 1.43 1.43 1.23 1.43 1.43
12 3.83 3.87 3.85 3.92 4.40 4.93
13 2.79 3.06 3.35 2.81 2.77 2.89
14 2.25 2.51 2.52 2.23 2.28 2.46
15 2.73 3.11 3.24 3.04 3.21 3.33
16 2.40 2.21 2.22 2.33 2.21 2.22
17 2.33 2.36 2.37 2.31 2.49 2.33
21 1.58 1.60 1.59 1.50 1.23 1.24
22 2.29 2.30 2.33 2.10 2.06 2.11
23 3.21 3.23 3.28 3.15 3.40 3.46
24 2.15 2.32 2.76 1.83 2.11 2.02
25 1.58 1.68 1.63 1.48 1.45 1.41
26 2.75 3.70 3.78 2.46 2.74 3.04
27 1.46 1.62 1.61 1.40 1.40 1.63
28 0.83 0.81 0.80 0.88 0.81 0.80
29 2.56 2.77 2.78 2.48 2.81 2.78
31 3.67 3.43 3.61 3.56 3.53 3.52
32 3.27 3.36 3.37 3.17 3.38 3.41
33 2.19 2.30 2.30 1.96 2.23 2.30
34 3.15 3.34 3.39 3.04 3.38 3.39
35 1.10 1.11 1.13 1.10 1.11 1.13
41 2.33 2.36 2.28 2.33 2.30 2.28
42 3.10 3.11 3.22 3.08 3.26 3.20
43 2.06 2.04 2.09 2.04 2.17 2.09
44 1.67 1.64 1.63 1.63 1.64 1.63
45 2.40 2.43 2.50 2.40 2.47 2.52
46 2.46 2.45 2.46 2.46 2.38 2.48
47 2.23 2.17 2.15 2.23 2.17 2.17
51 2.69 2.53 2.54 2.79 2.57 2.50
52 4.52 4.60 4.74 4.35 4.36 4.57
53 2.77 2.83 2.74 2.90 3.26 3.33
54 2.92 3.38 3.52 2.54 2.89 3.22
55 5.81 5.36 5.37 4.79 4.49 4.76
56 2.56 3.06 3.26 2.15 2.62 2.57
57 1.96 2.04 2.07 2.08 2.06 2.07
58 3.25 3.49 3.74 3.21 3.74 3.85
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