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Summary
This paper considers factor estimation from heterogeneous data, where some of

the variables—the relevant ones—are informative for estimating the factors, and

others—the irrelevant ones—are not. We estimate the factor model within a Bayesian

framework, specifying a sparse prior distribution for the factor loadings. Based on

identified posterior factor loading estimates, we provide alternative methods to iden-

tify relevant and irrelevant variables. Simulations show that both types of variables

are identified quite accurately. Empirical estimates for a large multi-country GDP

dataset and a disaggregated inflation dataset for the USA show that a considerable

share of variables is irrelevant for factor estimation.

1 INTRODUCTION

Factor models based on large datasets have received increasing attention in the macroeconomic literature. Policy-relevant appli-
cations of these models include, for example, the estimation of composite business cycle indicators, forecasting or structural
investigations of shock transmission (Altissimo, Cristadoro, Forni, Lippi, & Veronese, 2010; Bernanke, Boivin, & Eliasz, 2005;
Kose, Otrok, & Whiteman, 2003; Stock & Watson, 2002).

A rarely discussed issue in the literature is the composition of the data used to estimate factors. Economists can in principle
make use of all the information contained in a large macroeconomic dataset, as, for example, principal components (PC) analysis
is available to estimate the factors (Stock & Watson, 2002). Nevertheless, the question as to what extent the whole dataset
is informative for factor estimation usually remains open. One of the few papers that addresses this issue is Boivin and Ng
(2006). In the context of factor estimation by PC, they show that it generally depends on the information content of data whether
their inclusion improves the precision of factor estimates. They illustrate the point with Monte Carlo simulations, where the
data-generating process (DGP) includes variables that depend strongly on the factors and others that are noisy. These data
thus contain heterogeneous information about the factors and imply a factor loading matrix in which a considerable number of
loadings can be restricted to zero.

In the present paper, we propose an estimation framework that takes into account heterogeneous information in the data. We
estimate a parametric factor model with Bayesian methods and choose a sparse, parsimonious specification of the factor loading
matrix. In particular, the loadings are estimated under a sparse prior, which implies that many elements of the factor loading
matrix may equal exactly zero. Such an approach has been pursued in the context of gene expression analysis (Carvalho, 2006;
Carvalho et al., 2008; Lucas et al., 2006; West, 2003). In an economic context, sparse priors have hardly been used before.
An exception is the paper by Frühwirth-Schnatter and Lopes (2010), who estimate a sparse factor model for exchange
rate data. In the majority of macroeconomic applications, normal priors are employed to estimate the loadings (Bernanke
et al., 2005; Kose et al., 2003; Kose, Otrok, & Whiteman, 2010; Mackowiak, Mönch, & Wiederholt, 2009). The sparse
prior we use here is an extension to priors for variable selection in multiple regression (George & McCulloch, 1993, 1997;
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Geweke, 1996) and is more general than the normal prior. The sparse prior on a factor loading concentrates more prior mass
near zero than the normal prior and therefore allows for a sharper distinction between relevant and irrelevant variables.

Based on the posterior distribution of the loadings, we can investigate the relevance or irrelevance of variables in the model. We
define irrelevant variables as having only zero factor loadings, whereas relevant variables are related to at least one factor. Thus
the irrelevant variables are not related to the factors and, vice versa, do not contain information for estimating the unobserved
factors. In the paper, we compare three ways of identifying relevant and irrelevant variables based on the posterior distribution
of the loadings. In particular, we compute univariate and multivariate highest posterior density (HPD) regions to check whether
a row vector of loadings is significantly different from the zero vector. In addition, we directly compute the probability that a
row vector in the loadings matrix equals the zero vector.

The results on the relevance and irrelevance of variables have important implications for empirical applications in which
factors are given a structural interpretation. For example, Francis, Owyang, and Savascin (2012), following Kose et al. (2003),
investigate international business cycles by estimating international factors from a large set of country-specific gross domestic
product (GDP) series. If variables for a certain country are not loaded by the international factors and, vice versa, do not
contain information to estimate them, one could conjecture that these countries are not linked to international business cycles.
Mackowiak et al. (2009) identify common and sector-specific shocks from a factor model estimated for disaggregated US
consumer price index (CPI) inflation data covering many different products and services. In this context, irrelevant variables
cannot be affected by common shocks and thus are only driven by sector-specific shocks.

To assess the quantitative performance of the sparse factor model, we provide Monte Carlo simulations. We simulate DGPs
with different degrees of sparsity. The results show that the common component is estimated more accurately using the sparse
prior rather than the normal prior for the factor loadings. Overall, the performance of the one-layer sparse prior specification
used in Frühwirth-Schnatter and Lopes (2010) is similar to the performance of the hierarchical two-layer prior in Carvalho et al.
(2008). We also compare two ways of identifying relevant and irrelevant variables. Generally, we identify well relevant and
irrelevant variables independently of the degree of sparsity in the DGP and across variations in the simulation design.

To illustrate the empirical properties of the sparse factor model and the methods to find relevant and irrelevant variables, we
estimate a sparse factor model for, respectively, the multi-country GDP dataset used by Francis et al. (2012) and the US sectoral
inflation data used in Mackowiak et al. (2009). Posterior inference on the factor loadings reveals that a considerable share of
time series in both datasets have zero loading rows. In the international data, for example, the vast majority of African countries
are not driven by factors. In the US inflation dataset, we find that more than half of the sectoral inflation rates are not explained
by factors and thus mainly driven by sector-specific determinants.

The paper proceeds as follows. Section 2 introduces the factor model and the specification of sparsity on the loadings, defines
relevant and irrelevant variables, and discusses identification issues. In Section 3, we present the estimation procedure and
expose the different ways we identify relevant and irrelevant variables from the posterior output. Section 4 contains the Monte
Carlo simulation results, and Section 5 the empirical results. Finally, Section 6 summarizes and concludes.

2 SPARSE FACTOR MODEL

2.1 Factor representation and dynamics
Assume that Xt is an N× 1 vector of nontrending series observed in time period t = 1, … ,T . The number of time series N will
typically be large, and to condense data information we work with the factor model

Xt = 𝜆ft + 𝜀t, 𝜀t ∼ N(0,Σ𝜀), (1)

Φ(L)ft = 𝜂t, 𝜂t ∼ N(0,Σ𝜂), (2)

where the (k × 1) factors ft with k ≪ N capture the common dynamics in the series. The factor loading matrix 𝜆 has dimension
(N × k). The vector lag polynomial Φ(L) = I − Φ1L − · · · − ΦpLp is of order p with Ljft = ft−j. The idiosyncratic components
𝜀t are independent of each other, E(𝜀it𝜀jt) = 0, i ≠ j, that is, the matrix Σ𝜀 is diagonal with elements 𝜎2

i for i = 1, … ,N.
Moreover, the factor innovations and the idiosyncratic components are also assumed to be independent, E(𝜂t𝜀t) = 0. This
ensures that, conditional on the true number of factors, any correlation across data is captured by the factors ft. Of course,
if the common dynamics are not sufficient to capture all (uncorrelated) dynamics in the data, one might specify additional
idiosyncratic dynamics; for example, modify Equation 1 to Xt = 𝜆ft + 𝜉t with Ψ(L)𝜉t = 𝜀t, where Ψ(L) is a diagonal vector lag
polynomial of order q. In order to simplify the notation, we focus on the specification in Equation 1 in the following sections.
However, in the empirical exercises we allow for idiosyncratic dynamics.
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2.2 Sparse loading matrix
A sparse factor model is defined in terms of a sparse factor loading matrix (Bhattacharya & Dunson, 2011; Carvalho et al.,
2008; Frühwirth-Schnatter & Lopes, 2010; West, 2003). Assuming a sparse structure on the factor loading matrix 𝜆 implies
that each variable does not have to associate with all the factors. The variable might even be unrelated to all factors. These
parsimonious associations lead to zero elements in the factor loading matrix 𝜆: Some or potentially many of the loadings in
columns are zero, and some rows of the loading matrix might include only zero coefficients. However, the positions of nonzero
values are unknown and have to be estimated.

Following West (2003), Lucas et al. (2006), and Carvalho et al. (2008), we specify a point mass-normal mixture prior to
estimate the sparse structure of the loading matrix:

𝜋
(
𝜆ij
)
= (1 − 𝛽ij)𝛿0

(
𝜆ij
)
+ 𝛽ijN

(
0, 𝜏j

)
, i = 1, … ,N, j = 1, … k, (3)

where 𝛿0(·) represents the Dirac function with point mass at zero and 𝛽 ij is the variable- and factor-specific prior probability of
a nonzero loading. A flexible prior probability distribution 𝜋(𝛽 ij) introduces two hierarchical layers:

𝜋
(
𝛽ij
)
= (1 − 𝜌j)𝛿0

(
𝛽ij
)
+ 𝜌jB(ab, a(1 − b)), (4)

𝜋
(
𝜌j
)
= B(r0s0, r0(1 − s0)). (5)

The prior assumes that some or many loadings will have zero prior probability 𝛽 ij, which is reflected in the point mass-normal
mixture specification (Equation 4), where B(ab, a(1 − b)) is a Beta distribution with mean b > 0 and precision a > 0. The
factor-specific probabilities 𝜌j also follow a Beta distribution, B(r0s0, r0(1− s0)) with mean s0 and precision r0. For each factor,
the prior for 𝛽 ij assigns a variable-specific loading probability, 𝛽ij ∈ [0, 1) including zero. It implies a common probability 1−𝜌jb
of a zero loading on factor j across variables. Given b, which is chosen to lie between 0.75 and 0.9 in Lucas et al. (2006) and
Carvalho et al. (2008), it is mainly s0 that determines the degree of sparsity. Very small values of s0 lead to a high probability
1 − 𝜌jb of a zero loading, and thus a lot of sparsity. Further details on the prior will be provided in Section 3.1.

The prior (Equations 3–5) encompasses a prior often used for variable selection as in George and McCulloch (1993, 1997)
and Geweke (1996):

𝜋
(
𝜆ij
)
= (1 − 𝜌j)𝛿0

(
𝜆ij
)
+ 𝜌jN

(
0, 𝜏j

)
, (6)

𝜋
(
𝜌j
)
= B(r0s0, r0(1 − s0)). (7)

Compared to the two-layer prior (Equations 3–5), the variable selection prior neglects the layer to specify a variable-specific
non-zero loading probability, 𝛽 ij. Frühwirth-Schnatter and Lopes (2010) implement a hierarchical prior, in which the signif-
icance of the factor loading is governed by an indicator 𝛾 ij ∈ {0, 1} with P

(
𝛾ij = 1|𝜌j

)
= 𝜌j, where 𝜌j also follows a Beta

distribution. The expected a priori rate of a nonzero factor loading 𝜌jb in the two-layer specification can also be implemented
in a one-layer specification by constraining 𝜌j to lie in (0, b).

Macroeconomic applications using Bayesian techniques to estimate factor models typically employ a normal prior for the load-
ings (Bernanke et al., 2005; Kose et al., 2003, 2010; Mackowiak et al., 2009). The sparse prior (Equations 3-5) also encompasses
the normal prior when 𝛽 ij = 1.

By means of Monte Carlo simulations (see Section 4), we will evaluate the performance of the two-layer, one-layer and the
normal prior specification in terms of the estimation precision that is obtained for the common component and in terms of their
ability to discriminate between relevant and irrelevant variables.

2.3 Relevant and irrelevant variables for factor analysis
We address the relevance and irrelevance of variables in the factor model by focusing on the loading matrix 𝜆 in Equation 1. In
particular, we aim at identifying those variables among the N series which are unrelated to the factors. We call these variables
irrelevant. In contrast, relevant variables are loaded by at least one of the factors.

For a particular variable xit ∈ Xt, the factor model is defined by xit = 𝜆i·ft + 𝜀it, where 𝜆i· is the ith (1 × k) row of 𝜆. If all
elements in the row vector 𝜆i· are equal to zero, namely

𝜆i· = (𝜆i1𝜆i2 … 𝜆ik) = (0 0 … 0), (8)

the common factors do not have an impact on variable xit, and only the idiosyncratic component matters, xit = 𝜀it. Thus we
define a variable as irrelevant if its estimated row vector of factor loadings is not significantly different from the zero vector. A
relevant variable has at least one significant nonzero loading element in the corresponding row of the loading matrix.
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The results on the relevance of variables have important implications for empirical applications in which factors are given a
structural interpretation. For example, Francis et al. (2012) discuss the role of global and regional factors based on economic
identification (zero) restrictions. Mackowiak et al. (2009) discuss aggregate versus sectoral factors, where identification is
motivated by economic theory. The conclusions in both studies are based on variance decompositions and impulse response
functions. The importance of identifying relevant and irrelevant variables in structural analyses like these can be highlighted
as follows. Consider, for example, impulse response functions. The factor model (Equations 1–2) has a moving average (MA)
representation:

Xt = 𝜆[Φ(L)]−1𝜂t + 𝜀t, (9)

from which structural (q × 1) shocks �̂�t can be identified by 𝜂t = R�̂�t, using the (k × q) matrix R of contemporaneous identifi-
cation restrictions (Forni, Giannone, Lippi, & Reichlin, 2009). Note that �̂�t are shocks to the common factors, whereas 𝜀t are
idiosyncratic shocks. Obviously, the impulse responses 𝜆[Φ(L)]−1R are convolutions of the loadings, the MA lag polynomials
and the identification matrix. Thus a variable associated with a zero loading row will remain unaffected by the structural shocks
�̂�t, irrespective of the structural identification scheme in R. In this respect, the approach we propose extends the inferential tool-
box of structural factor analysis. By identifying relevant variables we identify those that are significantly affected by structural
shocks �̂�t.

Note that zero rows in the loading matrix also have implications for the estimation of the unobserved factors, given that factors
are typically estimated by solving a signal extraction problem (Carter & Kohn, 1994; Frühwirth-Schnatter, 1994). Koopman
and Harvey (2003) express filtered and smoothed states, in our case factors, as linear functions of the observed data. The
series-specific weight will equal zero if the corresponding row contains only zero loadings.

In the simulations and empirical exercises we will estimate the factor model using Bayesian techniques (see Sections 3.1 and
3.2). The identification of relevant and irrelevant variables based on the posterior output is described in detail in Section 3.3.

2.4 Identification
The assumptions that Σ𝜀 is diagonal and E(𝜂t𝜀t) = 0 are not sufficient to identify model (Equations 1-2). For any nonsingular
(k × k) matrix H, there is an observationally equivalent model:

Xt = 𝜆HH−1ft + 𝜀t H−1Φ(L)HH−1ft = H−1𝜂t

= 𝜆∗f ∗t + 𝜀t Φ∗(L)f ∗t = 𝜂∗t .
(10)

To identify the model—up to sign identification—we have to choose a nonsingular matrix H. As it contains k2 elements, we need
k2 identifying restrictions to pin down 𝜆 and ft (Bai & Ng, 2013; Lawley & Maxwell, 1971). A standard identification scheme
to provide order identification of the factors sets the upper diagonal elements of the k × k leading matrix in 𝜆 equal to zero,
𝜆ij = 0 for j > i (Aguilar & West, 2000; Geweke & Zhou, 1996). This provides us with k(k−1)∕2 restrictions. If we additionally
impose Σ𝜂 equal to the identity matrix, Σ𝜂 = I, we additionally have k(k+ 1)∕2 restrictions. Thus we end up with k2 identifying
restrictions, of which the latter ones, the unit innovation variances, also scale the factors. As an extension, Frühwirth-Schnatter
and Lopes (2010) propose a generalized upper-zero triangular identification scheme, in which l1 < · · · < lk, where lj denotes
the row of the top nonzero entry in 𝜆, such that 𝜆lj,j ≠ 0, and 𝜆ij = 0,∀i < lj.

In the present paper, we work with the identification restrictions Σ𝜂 = I, but we pursue an alternative approach with respect
to the zero restrictions on the loading matrix. Given that we work with the assumption of a sparse loading matrix, that is, a
setting where the prior puts positive mass on a zero loading coefficient, we do not set a priori k(k − 1)∕2 loadings to zero
(Bhattacharya & Dunson, 2011; Knowles & Ghahramani, 2011).2 If sparsity is present in a large dataset, and given that usually
k ≪ N, the posterior inference will usually identify more than k(k − 1)∕2 loadings to be zero. Identification is obtained by first
postprocessing the Gibbs output to identify factor position and factor sign. In a second step, we remove rows and columns of
zero loadings in the identified loading matrix and assess whether the sparse structure fulfills sufficient identification restrictions
given in Bai and Wang (2014). Details on posterior identification are provided in Section 3.2.

Not imposing a priori zero restrictions on specific loading elements is also justified by the fact that we want to identify
irrelevant variables. The rows of zero loadings corresponding to these variables remain zero rows under any rotational scheme.
If we partition the variables in Xt into two (N1 × 1) and (N2 × 1) blocks, Xt = [X′

1,t X′
2,t]

′, where the second block would gather

2Alternative identification restrictions are proposed in Kaufmann and Schumacher (2013), where the sparse estimation of the factor loading matrix is combined
with the identifying restriction of semi-orthogonal loadings, that is, where 𝜆′𝜆 is a diagonal matrix.



KAUFMANN AND SCHUMACHER 5

variables with only zero factor loadings, 𝜆2 = 0, then the rotation with any invertible matrix H

𝜆 = 𝜆H =
(
𝜆1
𝜆2

)
H =

(
𝜆1H
𝜆2H

)
(11)

yields 𝜆2 = 𝜆2H = 0H = 0.

3 BAYESIAN ESTIMATION AND POSTERIOR IDENTIFICATION

3.1 Markov chain Monte Carlo (MCMC) estimation
To derive the posterior distribution of the model parameters 𝜃 = {𝜆,Φ,Σ𝜀} and the factors f T = (fT , fT−1, … , f1), we combine
the prior with the likelihood

𝜋
(
𝜃, f T |XT) ∝ L

(
XT | f T , 𝜃

)
𝜋
(
f T |𝜃)𝜋(𝜃). (12)

The complete-data likelihood can be factorized as

L
(
XT | f T , 𝜃

)
=

T∏
t=1

𝜋
(
Xt|f t, 𝜃

)
, (13)

in which the observation density is multivariate normal 𝜋(Xt|f t, 𝜃) = N(𝜆ft,Σ𝜀). The prior density of the unobserved factors can
also be factorized:

𝜋
(
f T |𝜃) = T∏

t=p+1

𝜋
(
ft|f t−1, 𝜃

)
𝜋
(
f p|𝜃), (14)

where f p contains the initial states f p =
(
f−p+1, … , f−1, f0

)
.

Finally, we assume independent priors for the parameters

𝜋(𝜆,Φ,Σ𝜀) = 𝜋(𝜆)𝜋(Φ)𝜋(Σ𝜀) . (15)

The prior for 𝜆 is specified for each element 𝜆ij either in a hierarchical two-layer or one-layer form (see Equations 3–5 or 6–7),
respectively. The hyperparameter 𝜏 j follows an inverse Gamma distribution, 𝜋

(
𝜏j
)
= IG(g0,G0). In addition, we also work with

a normal prior for the factor loadings, 𝜋
(
𝜆ij
)
= N

(
0, 𝜏j

)
. The vector autoregressive (VAR) parameters Φ = vec

(
[Φ1, … ,Φp]′

)
in Equation 2 obtain a normal prior truncated to the stationary region, 𝜋(Φ) = N(p0,P0) I{Z(Φ) > 1}, where I{·} is the indicator
function and Z(𝛷) > 1 means that the roots of the characteristic equation of the process 𝛷(L) lie outside the unit circle. Given
that Σ𝜀 is diagonal, we assume independent inverse Gamma prior distributions for the variances, 𝜋(𝜎2

𝜀,i) = IG(u0,U0), for
i = 1, … ,N.

To obtain a sample from Equation 12, we iteratively go through five steps:

1. Simulate f T from 𝜋
(
f T |XT , 𝜃

)
. We sample f T in one sweep using the precision-based sampler proposed in Chan and

Jeliazkov (2009).
2. Simulate 𝛷, Σ𝜀 from 𝜋

(
Φ,Σ𝜀| f T ,XT , 𝜆

)
. Given the conjugate priors, the posterior distributions are multivariate normal and

inverse Wishart, respectively.
3. Simulate 𝜆 from 𝜋

(
𝜆| f T ,XT ,Σ𝜀

)
. Under a sparse prior, the posterior of 𝜆ij will be sparse, too (Carvalho et al., 2008).

4. Update the hyperparameters depending on the chosen prior distribution for factor loadings.
5. Perform a random permutation of factor position and factor sign to explore the whole posterior distribution: For each j =

1, … , k, we replace {fjt}T
t=1 and {𝜆ij}N

i=1 by {−fjt}T
t=1 and {−𝜆ij}N

i=1, respectively, with probability 0.5. To permute factor posi-
tion, define 𝜅 to be a random permutation of {1, 2, … , k} and substitute {f𝜅1t, f𝜅2t, … , f𝜅kt}T

t=1 and {𝜆i𝜅1
, 𝜆i𝜅2

, … , 𝜆i𝜅k}
N
i=1

for, respectively, {f1t, f2t, … , fkt}T
t=1 and {𝜆i1, 𝜆i2, … , 𝜆ik}N

i=1. All factor-specific parameters like the VAR parameters have
to be permuted and sign-adjusted accordingly.

The interested reader will find a detailed derivation of the posterior distributions of the factor loadings and the hyperparameters
underlying Steps 3 and 4 in Appendix A. The conditional posterior distributions in Steps 1 and 2 are standard and thus not
provided in detail here.3

3Detailed derivations of the posteriors can be found in the appendix of the discussion paper Kaufmann and Schumacher (2012).
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3.2 Posterior identification
Given that we randomly switch sign and order of factors and loadings in each iteration of the sampler, the posterior MCMC
output is generally multimodal and not identified. In order to obtain an identified posterior sample, we apply clustering proce-
dures similar to those proposed by Frühwirth-Schnatter (2011) for finite-mixture models. In the sparse factor framework, we use
k-medoids clustering to simultaneously estimate the factor-cluster representatives and allocate each draw uniquely to the esti-
mated clusters (Kaufman & Rousseeuw, 1987). k-medoids clustering attempts to minimize the distance between factor draws
assigned to a cluster and a factor draw designated to be the center of that cluster. k-medoids chooses observed data points, in
our case factor draws, as centers, which are called medoids. As the distance measure, we use the absolute correlation, which
accounts for draws that are subject to sign switches. Due to the presence of sign-switching, k-means clustering as employed
in Frühwirth-Schnatter (2011) cannot be used in our context. In a final step, sign identification is achieved by switching the
sign of each factor and its corresponding loadings to obtain a majority of nonzero positive factor loadings. If of interest, all
factor-specific parameter draws have to be reordered and sign-adjusted accordingly, too.

3.3 Identifying relevant and irrelevant variables from the posterior output
The Gibbs sampler provides us with Geff samples from the posterior distribution of the factor loadings, 𝜆(g), and the factors, f (g)t ,
g = 1, … ,Geff. We use these posterior samples to assess the relevance and irrelevance of variables. In general, using posterior
output for inference on a multivariate object is not a trivial task (Held, 2004; Hanson & McMillan, 2012). We propose three
alternative methods:

1. We derive the 95% highest posterior density (HPD) interval (Bauwens, Lubrano, & Richard, 1999, p. 31) for each loading
individually and evaluate whether zero is included or not. The variable xit is identified as relevant if at least one HPD interval
of its factors loadings 𝜆i· excludes zero. Otherwise, we call the variable irrelevant.

2. We also consider a multivariate method to assess jointly the relevance of a variable’s loadings. We follow Hanson and
McMillan (2012) and estimate a multivariate HPD region based on the Mahalanobis distance of each loading vector:

D(g)
𝜆i·

= (𝜆(g)i· − 𝜆i·)S−1
𝜆i·
(𝜆(g)i· − 𝜆i·)′, (16)

with 𝜆
(g)
i· = (𝜆(g)i1 𝜆

(g)
i2 … 𝜆

(g)
ik ), posterior mean 𝜆i· = (1∕Geff)

∑Geff

g=1 𝜆
(g)
i· and covariance S𝜆i· = (1∕Geff)

∑Geff

g=1 (𝜆
(g)
i· − 𝜆i·)′(𝜆(g)i· −

𝜆i·). For each variable, the joint 95% HPD region of the loadings is defined by the 95% of vectors with the smallest Maha-
lanobis distance. We denote the largest distance among all distances associated with these vectors by D95%

𝜆i·
. A variable is

called relevant if the zero vector with distance D𝜆i·= 01×k is outside the HPD region, that is, if D𝜆i·= 01×k > D95%
𝜆i·

. Otherwise, it
is called irrelevant.

3. Finally, we directly estimate the posterior probability that a loading row is equal to zero using the sampled row vectors of
loadings according to

P(𝜆i· = 01×k|XT ) ≈ 1
Geff

Geff∑
g=1

I{𝜆(g)i· = 01×k}. (17)

The variable xit is identified as relevant if P(𝜆i· ≠ 01×k|XT) = 1 − P(𝜆i· = 01×k|XT) > 0.95 and irrelevant otherwise.

We will compare the methods in simulations to check how effectively they can separate relevant and irrelevant variables.

4 SIMULATIONS

The simulations have two goals: (i) Under different degrees of sparsity in the data, we investigate how precisely we can estimate
the common component using different priors for the factor loadings. (ii) We evaluate to what extent we can identify irrelevant
and relevant variables using the three methods. The DGP will vary with respect to the information content of the data for the
factors, which is implemented by assuming different degrees of sparsity (see Section 4.1). We describe the specification of the
estimated models and the evaluation statistics in Section 4.2. The results are discussed in Section 4.3.
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4.1 Factor DGP
We simulate multivariate data with N = 60 time series of length T = 100, driven by a k = 2-dimensional factor process. The
dataset is simulated in two blocks: The first block of variables, for i = 1, … , 40, is simulated with different degrees of sparsity.
In this block, there are relevant and irrelevant variables, but it is a priori unclear where they are located. The second block
contains variables where the DGP is clear with respect to the location of relevant and irrelevant variables: For i = 41, … , 50,
we simulate 10 irrelevant variables, and for i = 51, … , 60, we simulate 10 relevant variables. After estimation, we can evaluate
which of these variables have been correctly identified.

1. The DGP for the first block of variables, for i = 1, … , 40, is a two-factor DGP, where the factors follow a VAR model with
p = 1. The variables are simulated according to

xit = 𝜆i·ft + 𝜀it, 𝜀it ∼ N(0, 0.74), (18)

ft =
[

0.3 0
0 0.8

]
ft−1 + 𝜂t, 𝜂t ∼ N(0, I). (19)

To sample the loadings 𝜆i·, we rely on the two-layer prior distributions in Equations 3–5. The degree of sparsity is successively
decreased by increasing the hyperparameter s0, namely s0 = {0.1, 0.5, 0.9} (see Equation 5). By setting b = 0.8 in the first
layer, the marginal expected probability of a nonzero factor loading increases from 8% to 72%. As regards precision, we fix
r0 = 30 and a = 30. The nonzero factor loadings are simulated out of the normal distributions N(mj,M) with M = 0.01
and m1 = 0.60,m2 = 0.40. The variance M = 0.01 is relatively tight in order to sharply define nonzero loadings. For each
loading, we additionally sample the sign to be positive or negative with equal probability.

2. The DGP for the second block of variables, i = 41, … , 60, contains 10 irrelevant and 10 relevant variables:

(a) Irrelevant variables for i = 41, … , 50: We simulate 10 completely idiosyncratic variables with DGP xit ∼ N(0, 0.74).
(b) Relevant variables for i = 51, … , 60: The DGP for relevant variables is defined by Equation 18 with 𝜆ij ∼ N(mj,M),

with M = 0.01 and j = {1, 2} randomly drawn. Either m1 = 0.60 or m2 = 0.40, and the other loading equals zero. In
case m1 is drawn, xit will depend on the first factor only, and otherwise on the second only.

Overall, we obtain three specifications for the first block of variables differing in the sparsity degree s0j. The overall sparsity,
of course, is also affected by the mix of the 20 additional variables in the second block of the dataset. For each DGP specification,
we produce R = 65 replications of multivariate data as well as loadings 𝜆(r)i· and factors f T(r), r = 1, … ,R. Note that the data are
simulated such that identification of the factor structure is possible. The relevant variables for i = 51, … , 60 can be regarded as
factor founders, as they load on one of the factors only. Furthermore, the sparse loading structure in the first block of variables
implies additional zero loadings, which also determine factor identification.

4.2 Model estimation and evaluation statistics
The factor model is estimated for k = 2 factors under different sparse prior distributions for the loadings. We compare the results
of the sparse factor model estimated with the two-layer prior (Equations 3–5) to the factor models estimated, respectively, with
the one-layer prior (Equations 6–7) and the normal prior. To estimate the factor model under the sparse priors, we assume that
the true degree of sparsity in the DGP is unknown and choose an intermediate degree of sparsity s0 = 0.5. We additionally fix
r0 = 3 and a = 3, implying low precision a priori when estimating the model compared to the DGP. We set b = 0.8. Furthermore,
𝜏 j is parametrized by an inverse Gamma, 𝜏 j ∼ IG(2, 0.5). Concerning the variances of the idiosyncratic components, we define
𝜎2
𝜀,i ∼ IG(2.0, 1.0), i = 1, … ,N. To specify the hyperparameters of the factor VAR parameters, we implement a Minnesota

prior with variance equal to 𝜗2
0 = 0.09 on the first autoregressive lag and a shrinkage factor of 𝜗2

1 = 0.03 for off-diagonal
parameters (Litterman, 1986).4 According to the discussion in Section 2.4, we will estimate the model without any additional
identifying zero restrictions on the factor loading matrix. To estimate the model for each replication, we draw 6,000 times

4This induces the following prior moments for the elements in the VAR parameters 𝛷l, l = 1, … , p:

E(Φlij) = 0 for all i, j = 1, … , k, 𝑣𝑎𝑟(Φlij) =
⎧⎪⎨⎪⎩

𝜗2
0

l2
for i = j

𝜗2
1
𝜗2

0

l2
otherwise.

(20)
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from the posterior, discard the first 2,000 draws, keep every second one, and evaluate the posterior with Geff = 2, 000 retained
iterations. Posterior identification is then achieved by using k-medoids clustering as outlined in Section 3.2.

To assess the estimation precision of the common components under each setting, we follow Boivin and Ng (2006) and
compute the root mean squared error RMSE(r) by

RMSE(r) = 1
N

1
Geff

N∑
i=1

Geff∑
g=1

√√√√ 1
T

T∑
t=1

(
𝜆
(r,g)
i· f (r,g)t − 𝜆

(r)
i· f (r)t

)2
, (21)

for all R replications with simulated true values 𝜆
(r)
i· , f (r)t and Geff sampled values 𝜆

(r,g)
i· and f (r,g)t . Finally, we average over

replications to obtain the mean RMSE = 1

R

∑R
r=1 RMSE(r).

To evaluate the performance of the alternative methods in identifying the relevant and irrelevant variables discussed in Section
3.3, we proceed as follows. For each replication, we first assess the relevance of each of the variables i = 41, … , 60 based on
the univariate and multivariate HPD regions and the zero-row probability. As a summary statistic, we then compute the ratio of
the correctly identified number of irrelevant and relevant variables, respectively, to the true number in the DGP (10 each).

4.3 Simulation results
Table 1 contains the results for the RMSE of the common component. In particular, three statistics are provided: Panel A contains
the mean RMSE; Panel B shows the relative RMSE of the model estimated under, respectively, the normal and one-layer prior,
to the RMSE of the model estimated with the two-layer sparse prior. Thus, a relative RMSE greater than one indicates a superior
performance of the two-layer prior. Panel C contains the average differences of the RMSE(r) of, respectively, the one-layer and
the normal prior to the RMSE(r) of the two-layer prior. If the average is smaller than zero, the two-layer prior is superior. We
also provide the simulated 95% interval of differences to assess the significance.

The results can be summarized as follows. Panel A of Table 1 shows that the differences between the RMSEs of the two-layer
and one-layer prior are quite small, whereas both clearly improve over the normal prior; see also the corresponding relative

TABLE 1 Simulation results on the accuracy of estimated common components

under alternative priors for the factor loadings

s0
0.1 0.5 0.9

A. RMSE, mean over replications of common components
Normal prior 0.276 0.394 0.486

One-layer prior 0.179 0.357 0.479

Two-layer prior 0.179 0.357 0.478
B. RMSE, normalized to one for two-layer prior
Normal prior 1.538 1.104 1.017

One-layer prior 1.001 1.001 1.002

Two-layer prior 1.000 1.000 1.000
C. Difference of RMSEs between priors (mean, 95% interval)
Normal minus two-layer 0.097 0.037 0.008

(0.084, 0.115) (0.022, 0.055) (0.003, 0.014)

One-layer minus two-layer 0.000 0.000 0.001

(−0.001, 0.001) (−0.000, 0.002) (−0.003, 0.005)

Note. Panel A contains the root mean squared error (RMSE) based on the differences between esti-

mated and simulated common components averaged over variables, replications and Gibbs draws

according to Equation 21. Results are presented for the one-layer prior of the loadings, the two-layer

prior, the normal prior, and different sparsity parameter values s0 in the DGP. Panel B shows the rel-

ative RMSE of the model estimated under, respectively, the normal and one-layer prior, to the RMSE

of the model estimated under the two-layer prior. Panel C contains the averaged differences of the

RMSEs between the one-layer and two-layer prior as well as the differences of the RMSEs between

the normal prior and the two-layer prior. The simulated 95% intervals of differences are presented in

parentheses.
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TABLE 2 Simulation results on the identification of relevant variables under different priors and

methods to assess relevance

s0
0.1 0.5 0.9

A. Univariate loadings HPD
Ratio of correctly identified variables
Normal prior 0.97 0.99 0.99

One-layer prior 0.93 0.97 0.97

Two-layer prior 0.92 0.97 0.97

Differences between priors (mean, 95% interval)
Normal minus two-layer 0.05 0.02 0.02

(0.00, 0.20) (0.00, 0.10) (0.00, 0.10)

One-layer minus two-layer 0.00 0.00 0.01

(0.00, 0.00) (0.00, 0.00) (0.00, 0.10)

B. Multivariate loadings HPD
Ratio of correctly identified variables
Normal prior 0.96 0.99 0.98

One-layer prior 0.95 0.97 0.97

Two-layer prior 0.95 0.97 0.97

Differences between priors (mean, 95% interval)
Normal minus two-layer 0.01 0.02 0.01

(−0.10, 0.10) (0.00, 0.10) (0.00, 0.10)

One-layer minus two-layer −0.00 0.00 0.00

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

C. Zero-row probability
Ratio of correctly identified variables
Normal prior 1.00 1.00 1.00

One-layer prior 0.93 0.98 0.99

Two-layer prior 0.93 0.98 0.98

Differences between priors (mean, 95% interval)
Normal minus two-layer 0.07 0.02 0.02

(0.00, 0.20) (0.00, 0.10) (0.00, 0.10)

One-layer minus two-layer 0.00 0.00 0.00

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

Note. Panel A contains results on the performance of the univariate loadings HPD intervals as outlined in Section

3.3 with respect to identifying relevant variables, Panel B contains results for the multivariate loadings HPD regions

defined in Equation 16, and Panel C results for zero-row probabilities from Equation 17. For each method, the ratio

of correctly identified relevant variables is shown, computed for different priors on the loadings and different sparsity

parameters s0 in the DGP. For each method, also the averaged differences of the ratios of correctly identified variables

between, respectively, the one-layer and the normal prior to the two-layer prior, are shown. The simulated 95% intervals

of differences are presented in parentheses.

RMSEs in Panel B. However, the efficiency gain decreases as the degree of sparsity decreases in the DGP. The 95% intervals
in Panel C indicate no systematic differences between the two-layer and one-layer prior, whereas the two-layer prior yields a
significantly lower RMSE than the normal prior for all s0.

Tables 2 and 3 contain the results concerning the identification of relevant and irrelevant variables, respectively. The panels
in each table contain the results of the three different methods applied to discriminate between relevant and irrelevant variables:
Univariate HPD intervals are applied in Panel A, multivariate HPD regions in Panel B, and the zero-row probability in Panel C.
In each panel, we show two groups of statistics: The upper part of each panel contains the ratio of correctly identified relevant
(Table 2) or irrelevant variables (Table 3), respectively, to the true number of relevant and irrelevant variables in the DGP. The
ratio is averaged over replications. A value of one indicates that all 10 variables have been correctly identified in all R = 65
datasets. The lower part in the panels contains the average difference of ratios between the one-layer and the two-layer prior, as
well as the averaged difference of ratios between the normal prior and the two-layer prior. If the mean is smaller than zero, the
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TABLE 3 Simulation results on the identification of irrelevant variables under different priors and

methods to assess relevance

s0
0.1 0.5 0.9

A. Univariate loadings HPD
Ratio of correctly identified variables
Normal prior 0.93 0.91 0.92

One-layer prior 1.00 0.99 0.99

Two-layer prior 1.00 0.99 0.99

Differences between priors (mean, 95% interval)
Normal minus two-layer −0.07 −0.08 −0.08

(−0.20, 0.00) (−0.30, 0.00) (−0.20, 0.00)

One-layer minus two-layer 0.00 0.00 0.00

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

B. Multivariate loadings HPD
Ratio of correctly identified variables
Normal prior 0.97 0.96 0.97

One-layer prior 1.00 0.99 0.99

Two-layer prior 1.00 0.99 0.99

Differences between priors (mean, 95% interval)
Normal minus two-layer −0.03 −0.04 −0.03

(−0.10, 0.00) (−0.20, 0.00) (−0.10, 0.00)

One-layer minus two-layer 0.00 0.00 −0.00

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00)

C. Zero-row probability
Ratio of correctly identified variables
Normal prior 0.00 0.00 0.00

One-layer prior 1.00 0.99 0.95

Two-layer prior 1.00 0.99 0.98

Differences between priors (mean, 95% interval)
Normal minus two-layer −1.00 −0.99 −0.98

(−1.00, −1.00) (−1.00, −0.90) (−1.00, −0.90)

One-layer minus two-layer 0.00 0.00 −0.02

(0.00, 0.00) (0.00, 0.00) (−0.10, 0.00)

Note. This table provides results on how well irrelevant variables can be identified by the different methods. The methods

used to identify relevant variables are the same as in Table 2, and further details on how to interpret the entries can be found

in the note to that table.

two-layer prior performs better. We also provide the 95% interval of the differences. If the interval includes zero, the differences
are not significant.

The results for the relevant variables in Table 2 can be summarized as follows. From the ratio of correctly identified variables
we can see that at least 92% of the relevant variables can be identified correctly. The ratio is slightly smaller for very sparse
data with s0 = 0.1 in the DGP compared to the cases s0 = 0.5, 0.9. The two-level and the one-level priors perform equally
well, whereas the normal prior performs slightly better in identifying the relevant variables. However, if we look at the lower
parts of Panels A, B, and C, we see that the differences between the priors are not significant. Zero is included in the 95%
intervals in all cases. Note that the distribution of differences is very skewed with a lot of mass around zero. This leads to
95% intervals with one boundary equal to zero, and a median of zero, too, in the majority of cases (not reported in the table).
Thus no systematic difference is present between the priors’ ability to identify relevant variables. The differences between the
three different methods in Panels A, B, and C to identify relevant variables are also small. Note that under the normal prior
the zero-row probability always identifies all relevant variables. What appears as a strength of the normal prior will be a large
disadvantage when it comes to identifying irrelevant variables.
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TABLE 4 Empirical results on the relevance of variables in international GDP growth data:

share of relevant variables identified by univariate loadings HPD intervals

k 1 2 3 4

A. One-layer prior
All countries 0.47 0.51 0.51 0.51

Africa 0.00 (0 of 6) 0.00 (0 of 6) 0.00 (0 of 6) 0.00 (0 of 6)

Asia 1 0.00 (0 of 6) 0.17 (1 of 6) 0.17 (1 of 6) 0.17 (1 of 6)

Asia 2 0.67 (4 of 6) 0.83 (5 of 6) 0.83 (5 of 6) 0.67 (4 of 6)

Europe 1.00 (18 of 18) 1.00 (18 of 18) 1.00 (18 of 18) 1.00 (18 of 18)

Latin America 0.13 (2 of 16) 0.13 (2 of 16) 0.06 (1 of 16) 0.13 (2 of 16)

North America 1.00 (3 of 3) 1.00 (3 of 3) 1.00 (3 of 3) 1.00 (3 of 3)

Oceania 0.00 (0 of 2) 0.00 (0 of 2) 0.50 (1 of 2) 0.50 (1 of 2)

B. Two-layer prior
All countries 0.42 0.44 0.49 0.46

Africa 0.00 (0 of 6) 0.00 (0 of 6) 0.00 (0 of 6) 0.00 (0 of 6)

Asia 1 0.00 (0 of 6) 0.00 (0 of 6) 0.17 (1 of 6) 0.17 (1 of 6)

Asia 2 0.33 (2 of 6) 0.33 (2 of 6) 0.67 (4 of 6) 0.67 (4 of 6)

Europe 1.00 (18 of 18) 1.00 (18 of 18) 1.00 (18 of 18) 0.89 (16 of 18)

Latin America 0.06 (1 of 16) 0.06 (1 of 16) 0.06 (1 of 16) 0.13 (2 of 16)

North America 1.00 (3 of 3) 1.00 (3 of 3) 1.00 (3 of 3) 0.67 (2 of 3)

Oceania 0.00 (0 of 2) 0.50 (1 of 2) 0.50 (1 of 2) 0.50 (1 of 2)

Note. The table contains the estimated shares of relevant variables under different priors—the one-layer prior

in Panel A and the one-layer prior in Panel B—and different number of factors k, where relevant variables are

identified by using univariate loadings HPD intervals as outlined in Section 3.3. In each panel, the second row

contains the share of relevant variables in the whole set of variables in the data. The remaining rows contain the

shares of relevant variables in different world regions. Absolute numbers of relevant variables and the number of

all variables are shown in parentheses.

In Table 3 we provide the results concerning irrelevant variables. The ratio of correctly identified irrelevant variables is always
greater than or equal to 93%. The exception is the normal prior together with the zero-row probability, as shown in Panel C.
Due to the loss in estimation efficiency under the normal prior, the estimated probability of a row of zero loadings is too low.
The corresponding ratios in the table are all equal to zero. Concerning the differences between the sparse priors and the normal
prior in Panels A and B, we observe that the sparsity priors perform similarly, whereas the normal prior performs worse in
identifying the irrelevant variables. However, the differences are not significant.

We have carried out a number of alternative simulations to check the robustness of the results. In particular, modifying
the prior specifications for estimating the factor models, working with an alternative identification scheme by Geweke and
Zhou (1996), and using different degrees in persistence of simulated irrelevant variables have been considered. It turns out
that the results remain very similar to those just reported.5 Further checks for robustness include DGPs, where the factor
model has a reduced dynamic rank, as discussed in Forni, Hallin, Lippi, & Zaffaroni (2015). Finally, we have also investi-
gated how to determine the number of factors. Results from simulation experiments using different ways to specify the number
of factors k are provided in Appendix B. The results show that we can properly choose the right number of factors in the
simulations.

To summarize, we find that working with sparse priors generally improves the estimation efficiency of the common compo-
nent when compared to working with the normal prior. The two-layer prior cannot systematically improve over the one-layer
prior; the differences in RMSEs are insignificant. In the vast majority of cases, we can identify more than 90% of the
relevant and irrelevant variables regardless of which sparsity prior or which method to discriminate between relevant and
irrelevant variables is used. The exception is the normal prior, under which the probability of zero rows cannot identify
irrelevant variables.

5These results are reported in the working paper version (Kaufmann & Schumacher, 2012).
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5 EMPIRICAL RESULTS

The methods to identify relevant variables in sparse factor models can be regarded as quite general tools of model assessment.
To illustrate their scope for applications, we provide two empirical examples:

1. We analyze a multi-country GDP growth dataset as in Francis et al. (2012), who investigate the role of global business cycles
in a large factor model.

2. We investigate disaggregated US CPI inflation data taken from Mackowiak et al. (2009) in a sparse factor model setting.
Mackowiak et al. (2009) use a factor model to compare alternative theoretical models of price-setting behavior.

The two datasets differ quite a lot in terms of data coverage, and we can expect to find different degrees of sparsity. We estimate
a sparse factor model for each of these datasets and identify relevant and irrelevant variables. We provide results for different
model specifications concerning the number of factors, the priors, and the methods to identify relevant and irrelevant variables.

5.1 International GDP growth data
The application follows the literature on international business cycles estimated in large factor models (Kose et al., 2003, 2010;
Del Negro & Otrok, 2008). Recently, Francis et al. (2012) estimated global and regional business cycles from a large set of
country-specific annual GDP growth series. We follow these authors and choose the Penn World Tables (PWT) to construct the
dataset. We use version 7.0 (Heston, Summers, & Aten, 2011) and take all GDP series that are available from 1960 onwards to
match the sample period in Francis et al. (2012). We end up with N = 57 countries, and compute growth rates by taking first
differences of the logarithm of the level series.

To specify the sparse factor model, we use p = 2 lags in the factor VAR and q = 1 AR lag in the idiosyncratic components. We
estimate the model with the one- and the two-layer prior. We specify a prior degree of sparsity of s0 = 0.5 with precision r0 = 3.
The other hyperparameters are specified as before in the simulation exercise. We sample 60,000 posterior draws, discard the
first 20,000 replications, and retain every fourth one. To determine the number of factors, we apply different methods. Details
can be found in Appendix B.3. The results regarding the number of factors differ with respect to the methods chosen. The values
for k span a range of between one and four. To account for this uncertainty and check how it affects the identification of relevant
and irrelevant variables, we provide results for one to four factors, k = 1, … , 4. We apply three different methods to separate

TABLE 5 Empirical results on the relevance of variables in international GDP growth data:

share of relevant variables identified by multivariate loadings HPD regions

k 1 2 3 4

A. One-layer prior
All countries 0.53 0.53 0.42 0.39

Africa 0.00 (0 of 6) 0.00 (0 of 6) 0.00 (0 of 6) 0.00 (0 of 6)

Asia 1 0.17 (1 of 6) 0.33 (2 of 6) 0.17 (1 of 6) 0.17 (1 of 6)

Asia 2 0.83 (5 of 6) 1.00 (6 of 6) 0.67 (4 of 6) 0.50 (3 of 6)

Europe 1.00 (18 of 18) 1.00 (18 of 18) 0.89 (16 of 18) 0.83 (15 of 18)

Latin America 0.19 (3 of 16) 0.06 (1 of 16) 0.00 (0 of 16) 0.06 (1 of 16)

North America 1.00 (3 of 3) 1.00 (3 of 3) 0.67 (2 of 3) 0.67 (2 of 3)

Oceania 0.00 (0 of 2) 0.00 (0 of 2) 0.50 (1 of 2) 0.00 (0 of 2)

B. Two-layer prior
All countries 0.53 0.39 0.40 0.35

Africa 0.00 (0 of 6) 0.00 (0 of 6) 0.00 (0 of 6) 0.00 (0 of 6)

Asia 1 0.17 (1 of 6) 0.00 (0 of 6) 0.17 (1 of 6) 0.00 (0 of 6)

Asia 2 0.83 (5 of 6) 0.33 (2 of 6) 0.50 (3 of 6) 0.50 (3 of 6)

Europe 1.00 (18 of 18) 0.89 (16 of 18) 0.89 (16 of 18) 0.83 (15 of 18)

Latin America 0.19 (3 of 16) 0.06 (1 of 16) 0.00 (0 of 16) 0.00 (0 of 16)

North America 1.00 (3 of 3) 0.67 (2 of 3) 0.67 (2 of 3) 0.67 (2 of 3)

Oceania 0.00 (0 of 2) 0.50 (1 of 2) 0.50 (1 of 2) 0.00 (0 of 2)

Note. This table provides empirical shares of relevant variables, where the relevance of variables is assessed by

multivariate loadings HPD regions defined in Equation 16. Table entries can otherwise be interpreted in the same

way as in Table 4, and further details can be found in the note to that table.
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relevant and irrelevant variables: Results based on univariate HPD intervals are provided in Table 4, results using multivariate
HPD regions in Table 5, and results based on the probability of a zero row in Table 6.

In each table, we present the share of identified relevant variables, and the region-specific shares of identified relevant vari-
ables. The definition of geographic regions follows Kose et al. (2003) and Francis et al. (2012), who divide the world into six
regions: Africa, Asia 1 (less developed), Asia 2 (more developed), Europe, Latin America, North America and Oceania. The
detailed country classification can be found in Appendix C.1.

In Table 4 we provide results based on univariate HPD intervals and the one-layer prior in Panel A. For the one-factor model
in the first column we find that 47% (27 out of 57) of the countries are identified as relevant. In other words, more than half of
the countries in the dataset are not related to the factor, indicating that sparsity seems to matter a lot. If we consider geographic
regions, the proportions of relevant variables are as follows: Africa 0% (0 of 6 countries), Asia 1 0% (0 of 6), Asia 2 67% (4 of
6), Europe 100% (18 of 18), Latin America 13% (2 of 16), North America 100% (3 of 3), Oceania 0% (0 of 2). Thus African
countries and almost all countries in Latin America are not explained by the single estimated factor, whereas the majority of
countries in North America, Europe and Asia 2 are linked to it. The results for more factors (k = 2, 3, 4) are similar. In Panel B,
the results obtained under the two-layer prior show a slightly lower number of identified relevant variables. The share of relevant
variables lies between 42% and 49%, whereas the share obtained under the one-layer prior ranges between 47% and 51%. The
results regarding the relevance of variables in the different geographic regions are very similar for the one- and two-layer prior.

The results based on the multivariate HPD regions in Table 5 are overall very similar compared to Table 4. The share of
relevant variables is a bit more dispersed: For the one-layer prior, the ratio ranges between 39% and 53%, and for the two-layer
prior between 35% and 53%. When the number of factor is increased, the share of relevant variables tends to decrease, but not
substantially. The relative results regarding the relevance of variables in the different geographic regions are very similar and
comparable to the results in Table 4 based on univariate HPD intervals.

Results based on the probability of a zero row in Table 6 indicate a larger number of relevant variables, in particular if the
one-layer prior is chosen (Panel A). The overall share of relevant variables varies between 49% and 77%. Concerning the different
geographic regions, however, the results show that still fewer countries in Africa and Latin America are relevant compared to
Europe or North America. In this regard, the findings are in line with the other evidence in Tables 4 and 5.

Overall, if we summarize the evidence from the alternative specifications, we find some uncertainty regarding the relevance
of variables in the international GDP growth data. However, we can also derive robust findings: From the 24 sets of results in

TABLE 6 Empirical results on the relevance of variables in international GDP growth data:

share of relevant variables identified by zero-row probabilities

k 1 2 3 4

A. One-layer prior
All countries 0.58 0.60 0.70 0.77

Africa 0.17 (1 of 6) 0.17 (1 of 6) 0.17 (1 of 6) 0.17 (1 of 6)

Asia 1 0.17 (1 of 6) 0.33 (2 of 6) 0.33 (2 of 6) 0.33 (2 of 6)

Asia 2 0.83 (5 of 6) 1.00 (6 of 6) 1.00 (6 of 6) 1.00 (6 of 6)

Europe 1.00 (18 of 18) 1.00 (18 of 18) 1.00 (18 of 18) 1.00 (18 of 18)

Latin America 0.31 (5 of 16) 0.25 (4 of 16) 0.50 (8 of 16) 0.75 (12 of 16)

North America 1.00 (3 of 3) 1.00 (3 of 3) 1.00 (3 of 3) 1.00 (3 of 3)

Oceania 0.00 (0 of 2) 0.00 (0 of 2) 1.00 (2 of 2) 1.00 (2 of 2)

B. Two-layer prior
All countries 0.49 0.51 0.58 0.67

Africa 0.17 (1 of 6) 0.17 (1 of 6) 0.17 (1 of 6) 0.17 (1 of 6)

Asia 1 0.00 (0 of 6) 0.00 (0 of 6) 0.33 (2 of 6) 0.33 (2 of 6)

Asia 2 0.67 (4 of 6) 0.67 (4 of 6) 1.00 (6 of 6) 1.00 (6 of 6)

Europe 1.00 (18 of 18) 1.00 (18 of 18) 1.00 (18 of 18) 1.00 (18 of 18)

Latin America 0.19 (3 of 16) 0.19 (3 of 16) 0.19 (3 of 16) 0.50 (8 of 16)

North America 1.00 (3 of 3) 1.00 (3 of 3) 1.00 (3 of 3) 1.00 (3 of 3)

Oceania 0.00 (0 of 2) 0.50 (1 of 2) 0.50 (1 of 2) 0.50 (1 of 2)

Note. This table provides empirical shares of relevant variables, where the relevance of variables is assessed by

zero-row probabilities defined in Equation 17. Table entries can otherwise be interpreted in the same way as in

Table 4, and further details can be found in the note to that table.
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TABLE 7 Empirical results for disaggregated US CPI inflation: share of relevant variables identified by

alternative methods

k 1 2 1 2
Prior One-layer One-layer Two-layer Two-layer

A. Univariate loadings HPD
All CPI components 0.37 0.41 0.37 0.37

Apparel 0.36 (4 of 11) 0.36 (4 of 11) 0.36 (4 of 11) 0.36 (4 of 11)

Education and communication 0.25 (1 of 4) 0.25 (1 of 4) 0.25 (1 of 4) 0.25 (1 of 4)

Food and beverages 0.24 (7 of 29) 0.34 (10 of 29) 0.24 (7 of 29) 0.24 (7 of 29)

Housing 0.36 (4 of 11) 0.36 (4 of 11) 0.36 (4 of 11) 0.45 (5 of 11)

Medical care 1.00 (5 of 5) 1.00 (5 of 5) 1.00 (5 of 5) 1.00 (5 of 5)

Other goods and services 0.00 (0 of 2) 0.00 (0 of 2) 0.00 (0 of 2) 0.00 (0 of 2)

Recreation 0.71 (5 of 7) 0.71 (5 of 7) 0.71 (5 of 7) 0.71 (5 of 7)

Transportation 0.30 (3 of 10) 0.30 (3 of 10) 0.30 (3 of 10) 0.20 (2 of 10)

B. Multivariate loadings HPD
All CPI components 0.44 0.42 0.44 0.37

Apparel 0.36 (4 of 11) 0.36 (4 of 11) 0.36 (4 of 11) 0.36 (4 of 11)

Education and communication 0.75 (3 of 4) 0.25 (1 of 4) 0.75 (3 of 4) 0.25 (1 of 4)

Food and beverages 0.28 (8 of 29) 0.34 (10 of 29) 0.28 (8 of 29) 0.21 (6 of 29)

Housing 0.45 (5 of 11) 0.36 (4 of 11) 0.45 (5 of 11) 0.55 (6 of 11)

Medical care 1.00 (5 of 5) 1.00 (5 of 5) 1.00 (5 of 5) 1.00 (5 of 5)

Other goods and services 0.50 (1 of 2) 0.00 (0 of 2) 0.50 (1 of 2) 0.00 (0 of 2)

Recreation 0.71 (5 of 7) 0.71 (5 of 7) 0.71 (5 of 7) 0.71 (5 of 7)

Transportation 0.40 (4 of 10) 0.40 (4 of 10) 0.40 (4 of 10) 0.20 (2 of 10)

C. Zero-row probability
All CPI components 0.39 0.42 0.38 0.39

Apparel 0.36 (4 of 11) 0.36 (4 of 11) 0.36 (4 of 11) 0.36 (4 of 11)

Education and communication 0.25 (1 of 4) 0.25 (1 of 4) 0.25 (1 of 4) 0.25 (1 of 4)

Food and beverages 0.24 (7 of 29) 0.34 (10 of 29) 0.24 (7 of 29) 0.24 (7 of 29)

Housing 0.45 (5 of 11) 0.36 (4 of 11) 0.36 (4 of 11) 0.45 (5 of 11)

Medical care 1.00 (5 of 5) 1.00 (5 of 5) 1.00 (5 of 5) 1.00 (5 of 5)

Other goods and services 0.00 (0 of 2) 0.00 (0 of 2) 0.00 (0 of 2) 0.00 (0 of 2)

Recreation 0.71 (5 of 7) 0.71 (5 of 7) 0.71 (5 of 7) 0.71 (5 of 7)

Transportation 0.40 (4 of 10) 0.40 (4 of 10) 0.40 (4 of 10) 0.40 (4 of 10)

Note. The table contains the estimated share of relevant variables under different priors and different number of factors k.

In Panel A, relevant variables are identified by univariate loadings HPD intervals as outlined in Section 3.3. In Panel B,

multivariate loadings HPD regions as defined in Equation 16 are used, whereas in Panel C, zero-row probabilities as defined

in Equation 17 identify relevant variables. In each panel, the second row contains the share of relevant variables in the

whole set of variables in the data. The remaining rows contain the shares of relevant variables in different groups of CPI

components. Absolute numbers of relevant variables and the number of all variables are shown in parentheses.

Tables 4, 5, and 6, there are 20 cases where the share of relevant variables is not greater than 60%. Thus at least 40% of variables
are not related to the factors in most of the cases, which indicates a relatively high degree of sparsity in the international data.
Furthermore, if we compare the share of relevant variables in the different geographic regions, we find that in all specifications
at most one country in Africa is identified as relevant, whereas more than 80% of European countries and at least two out of
three North American countries are usually identified as relevant.6

In relation to Kose et al. (2003, 2010), Del Negro and Otrok (2008), and Francis et al. (2012), we interpret our results in
the following way. If variables for a certain country, region, or continent are identified as irrelevant, they are unrelated to the
common factors. If these factors represent global or regional common business cycles, this means that countries identified as
irrelevant are not linked to common business cycles. In the data used here, this is often the case for nearly all African and most
Asia 1 countries.

6To check the robustness of the results with respect to Africa further, following a referee’s comment we have also considered an extended dataset including
more African countries than in Kose et al. (2003). The results remain largely the same also in this case.
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5.2 US sectoral inflation data
Mackowiak et al. (2009) estimate a factor model for disaggregated US CPI inflation data to identify sector-specific and aggregate
shocks. By means of impulse response functions for the subindices of the US CPI, the authors discriminate between different
theoretical models of price-setting behavior. Shock identification is obtained by assuming that sector-specific shocks are entirely
idiosyncratic, whereas aggregate shocks are common. The disaggregated US inflation data of Mackowiak et al. (2009) contain
N = 79 subindices of the CPI. A detailed sectoral classification can be found in Appendix C.2.

We apply different criteria to determine the number of factors in the model, and details can be found in Appendix B.3. The
selection criteria find either one or two factors. Note that Mackowiak et al. (2009) prefer a one-factor model. To consider the
uncertainty concerning the specifications, we provide results for both k = 1, 2. Furthermore, we specify p = 4 lags in the factor
VAR and q = 2 lags in the idiosyncratic components. The sparse prior is specified with s0 = 0.5 and precision r0 = 3, and the
rest of the parameters as in the simulations. The results are reported in Table 7. Results based on univariate HPD intervals are
provided in Panel A, results using multivariate HPD regions in Panel B, and results based on the probability of a zero row in
Panel C.

In the 12 specifications, we find that between 37% (29 out of 79) and 44% (35 out of 79) of the CPI subcomponents are
relevant. Thus a majority of variables are not related to the factor(s). If we follow Nakamura and Steinsson (2008) and form
groups of sectoral CPI subindices, we find that almost every group contains at least one series associated with a factor. In
particular, if we look at Panel A with k = 1 and the one-layer prior, the group-specific shares of relevant variables are (absolute
numbers in brackets): apparel 36% (4 of 11 variables), 25% education and communication (1 of 4), food and beverages 24%
(7 of 29), housing 36% (4 of 11), medical care 100% (5 of 5), recreation 71% (5 of 7), and transportation 30% (3 of 10). On the
other hand, other goods and services (0 of 2) are unrelated to the common factor. The results are quite robust to changes in the
model specification regarding the prior and the number of factors.

Note that these results are closely in line with the conclusions drawn by Mackowiak et al. (2009), who find that firms mainly
pay attention to sector-specific rather than aggregate conditions when setting prices. Their conclusion relies on the small role of
common shocks when compared with the role of idiosyncratic or sector-specific shocks based on variance decompositions. In
a sparse factor model, irrelevant variables are not affected by shocks in common factors, as nonzero impulse responses require
nonzero factor loadings. Thus our finding of many irrelevant variables in the data matches the finding of the small role of
common shocks in the analysis of Mackowiak et al. (2009). Finally, note that the identification of irrelevant variables based on
a sparse factor model does not hinge on the identification of structural shocks.

6 CONCLUSION

In this paper, we propose to use a sparse factor model to discriminate between variables containing relevant information to
estimate the unobserved factors and variables which are uninformative. In this context, we define irrelevant variables as those
with only zero or insignificant factor loadings. In this case, the variable is entirely driven by idiosyncratic noise and not by the
common factors. For various economic questions, it might be helpful to know which variables in the data are relevant and which
are irrelevant. For example, any impulse response of a variable to a structural shock in a factor model can only be significant
if at least one factor loading is significantly different from zero. We propose to discriminate between relevant and irrelevant
variables by means of univariate and multivariate HPD regions and the posterior probability of a row with all loadings equal to
zero. To estimate the factor model, we choose a sparse prior distribution for the factor loadings to sharply discriminate between
relevant and irrelevant variables. This prior encompasses the normal prior, which is often used to estimate factor models for
economic datasets. The inference on relevance or irrelevance is then based on identified posterior draws of the factor loadings.

In Monte Carlo simulations we show that estimation efficiency of the common component improves under a sparse prior
specification of the loadings compared with a normal prior specification. In particular, estimates obtained under a sparse prior
are quite robust to different degrees of sparsity in the DGP. The higher the degree of sparsity in the data, the better is the
estimation performance of the sparse prior over the normal prior. Even in the case of little sparsity in the DGP, the sparse prior
generally performs better than the normal prior. The methods to identify relevant and irrelevant variables generally work quite
well, as more than 90% of variables are classified correctly.

To illustrate the methods, we identify relevant variables in two economic datasets. We first estimate a sparse factor model for
an international GDP growth dataset, which has been used by Francis et al. (2012) and Kose et al. (2003) to analyze the role
of global business cycles. We identify between 42% and 77% of the countries as relevant. African countries seem to be—if at
all—only weakly related to international business cycles. This is in contrast to the evidence for European and North American
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countries. An additional application uses disaggregated US CPI inflation data taken from Mackowiak et al. (2009). In these
data, we detect even more sparsity, given that only between 37% and 44% of sectoral inflation rates are informative for the
factors. Most sectoral price developments seem to be driven by idiosyncratic rather than common determinants. Overall, we
find a high degree of sparsity in both datasets. In general, however, results will depend on the data and empirical application
chosen. Overall, the proposed methods seem to be adequate tools to determine relevant and irrelevant variables in the presence
of heterogeneous information in large economic datasets.
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APPENDIX A

POSTERIOR DISTRIBUTIONS OF LOADINGS AND HYPERPARAMETERS
This section provides the conditional posterior distributions used in Steps 3 and 4 of the sampler to update the elements of the
factor loading matrix and the hyperparameters. Subsection A.1 covers the two-layer prior, whereas Subsection A.2 covers the
one-layer prior and the normal prior, respectively.

A.1 Factor loadings with the two-layer prior
The posterior 𝜋

(
𝜆ij| f T ,XT ,Σ𝜀

)
is obtained by first integrating out the variable-specific prior probability of a nonzero loading

for each factor j. The prior in Equations 3–5 implies a common base rate of a nonzero factor loading of E
(
𝛽ij
)
= 𝜌jb across

variables. The marginal prior becomes

𝜋
(
𝜆ij|𝜌j

)
∼ (1 − 𝜌jb)𝛿0(𝜆ij) + 𝜌jbN

(
0, 𝜏j

)
. (A1)

For each factor j, transform the variables to

x∗it = xit −
k∑

l=1,l≠j
𝜆ilflt = 𝜆ijfjt + 𝜀it, (A2)

https://doi.org/10.1002/jae.2566
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which basically isolates the effect of factor j in variable i. Combine the marginal prior with data information to sample
independently across i from

𝜋
(
𝜆ij|·) = T∏

t=q+1

𝜋(x∗it|·){(1 − 𝜌jb)𝛿0(𝜆ij) + 𝜌jbN
(
0, 𝜏j

)}
(A3)

= P
(
𝜆ij = 0|·) 𝛿0(𝜆ij) + P

(
𝜆ij ≠ 0|·)N

(
mij,Mij

)
, (A4)

with observation density 𝜋(x∗it|·) = N
(
𝜆ijfjt, 𝜎2

𝜀,i

)
and where

Mij =

(
1

𝜎2
𝜀,i

T∑
t=1

f 2
jt +

1
𝜏j

)−1

, mij = Mij

(
1

𝜎2
𝜀,i

T∑
t=1

fjtx∗it

)
. (A5)

To obtain the posterior odds P
(
𝜆ij ≠ 0|·) ∕P

(
𝜆ij = 0|·) we update the prior odds of nonzero factor loading:

POij =
P
(
𝜆ij ≠ 0|·)

P
(
𝜆ij = 0|·) =

𝜋
(
𝜆ij
) |𝜆ij=0

𝜋
(
𝜆ij|·) |𝜆ij=0

𝜌jb
1 − 𝜌jb

=
N
(
0; 0, 𝜏j

)
N
(
0;mij,Mij

) 𝜌jb
1 − 𝜌jb

. (A6)

We choose 𝜆ij ≠ 0 if U ⩽ POij∕(1 + POij), where U is a draw from the uniform distribution over [0, 1]. If the binary decision
leads to 𝜆ij ≠ 0, 𝜆ij is drawn from N

(
mij,Mij

)
, otherwise it is set equal to zero.

Conditional on 𝜆ij, we can update the hyperparameters of the two-layer prior: To update the variable specific probabilities
𝛽 ij, we sample from 𝜋(𝛽 ij|𝜆ij, ·). Conditional on 𝜆ij = 0:

𝜋(𝛽ij|𝜆ij = 0, ·) ∝ (1 − 𝛽ij)
[
(1 − 𝜌j)𝛿0(𝛽ij) + 𝜌jB(ab, a(1 − b))

]
, (A7)

P(𝛽ij = 0|𝜆ij = 0, ·) ∝ (1 − 𝜌j), P(𝛽ij ≠ 0|𝜆ij = 0, ·) ∝ (1 − b)𝜌j. (A8)

That is, with posterior odds (1−b)𝜌j∕(1−𝜌j)we sample from B(ab, a(1−b)+1) and set otherwise 𝛽 ij equal to zero. Conditional
on 𝜆ij ≠ 0, we obtain

𝜋(𝛽ij|𝜆ij ≠ 0, ·) ∝ 𝛽ijN
(
𝜆ij; 0, 𝜏j

) [
(1 − 𝜌j)𝛿0(𝛽ij) + 𝜌jB (ab, a(1 − b))

]
, (A9)

P(𝛽ij = 0|𝜆ij ≠ 0, ·) = 0, P(𝛽ij ≠ 0|𝜆ij ≠ 0, ·) = 1. (A10)

In this case we sample 𝛽 ij from B(ab + 1, a(1 − b)).
The posterior update of the hyperparameters 𝜏 j and 𝜌j is sampled from an inverse Gamma, 𝜋

(
𝜏j|·) ∼ IG

(
gj,Gj

)
, and a Beta

distribution, 𝜋
(
𝜌j|·) ∼ B

(
r1j, r2j

)
, respectively, with

gj = g0 +
1
2

N∑
i=1

I{𝜆ij ≠ 0}, Gj = G0 +
1
2

N∑
i=1

𝜆ij
2, (A11)

r1j = r0s0 + Sj, r2j = r0(1 − s0) + N − Sj,where Sj =
N∑

i=1

I{𝛽ij ≠ 0}. (A12)

A.2 One-layer and normal prior
Updating the one-layer prior from Equations 6–7 and the normal prior work in a similar way as in the previous section, as the
priors are nested in the two-layer prior.
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The one-layer prior consisting of 𝜋
(
𝜆ij
)
= (1− 𝜌j)𝛿0

(
𝜆ij
)
+ 𝜌jN

(
0, 𝜏j

)
, and 𝜋

(
𝜌j
)
= B(r0s0, r0(1− s0)) assumes that there is a

common probability across units of a zero loading on factor j. The posterior for 𝜆ij is basically governed by the same moments
as derived above for the two-layer prior, but with adjusted posterior odds of zero factor loading:

POij =
P
(
𝜆ij ≠ 0|·)

P
(
𝜆ij = 0|·) =

𝜋
(
𝜆ij
) |𝜆ij=0

𝜋
(
𝜆ij|·) |𝜆ij=0

𝜌j

1 − 𝜌j
=

N
(
0; 0, 𝜏j

)
N
(
0;mij,Mij

) 𝜌j

1 − 𝜌j
. (A13)

The posterior of the hyperparameter 𝜌j is in this case 𝜋
(
𝜌j|·) ∼ B

(
r1j, r2j

)
with

r1j = r0s0 + Sj, r2j = r0(1 − s0) + N − Sj,where Sj =
N∑

i=1

I{𝜆ij ≠ 0}. (A14)

Under a normal prior 𝜋(𝜆i·) ∼ N(0, 𝜏0) with 𝜏0 = diag (𝜏1 … 𝜏k) and 𝜋
(
𝜏j
)
∼ IG(g0,G0), we can sample independently over

i from the posterior:

𝜋(𝜆i·|·) = N(mi,Mi), (A15)

Mi =

(
1

𝜎2
𝜀,i

F′F + 𝜏−1

)−1

, mi = Mi

(
1

𝜎2
𝜀,i

F′xi

)
, (A16)

where F and Xi are, respectively, defined as F = (f ′1 , … , f ′T )
′ and xi = (xi1, … , xiT )′.

The posterior of the hyperparameter 𝜏 j is 𝜋
(
𝜏j|·) = IG

(
gj,Gj

)
with gj = g0 + 0.5N and Gj = G0 + 0.5

∑N
i=1 𝜆ij

2.

APPENDIX B

DETERMINING THE NUMBER OF FACTORS

B.1 Methods
To determine the number of factors, we will vary the number of estimated factors and infer on the number of columns con-
taining more than two nonzero factor loadings (Anderson & Rubin, 1956; Conti, Frühwirth-Schnatter, Heckman & Piatek,
2014, Theorem 1). We set a maximum number kmax of estimated factors, which is chosen to be considerably larger than the
expected number of factors in the DGP. We estimate the factor model for k = 1, 2, … , kmax, and apply three different methods
to determine the number of factors:

1. Implied posterior number of factors: For each posterior sample g, we obtain a loadings matrix 𝜆(g), and the implied number
of factors for this draw is equal to the number of columns in 𝜆(g) containing more than two nonzero factor loadings:

k̂imp,(g)(k) =
k∑

j=1

I
{(∑N

i=1
I{𝜆(g)ij ≠ 0}

)
> 2

}
. (B1)

Based on Geff draws, we can investigate the posterior samples for the implicit number of factors {k̂imp,(g)(k)}Geff

g=1. The mode

of the distribution denoted by k̂imp(k) is a point estimate of the number of factors. Note that this statistic depends on the
number k of estimated factors, and we can estimate the implicit number of factors for each k = 1, 2, … , kmax. Thus we are
able to check whether the implicit number of factors changes with the number k of estimated factors.

2. Permutations in k -medoids: For each k, we take all the posterior samples of the factors { f T(g)}Geff

g=1 and remove those draws

for which k̂imp,(g)(k) differs from k̂imp(k), retaining G̃eff draws. We apply k-medoids clustering to the G̃eff × k̂imp(k) draws
of factors with k̂imp(k) clusters. For each draw of the factor series { f (g)1t , f

(g)
2t , … , f (g)

k̂imp(k),t
}T

t=1, we obtain a new classification

to clusters with index �̃�(g), with elements �̃�
(g)
j ∈ {1, … , k̂imp(k)}, j = 1, … , k̂imp(k). If this classification equals a per-

mutation of {1, … , k̂imp(k)}, we keep the draw and reorder factors { f (g)
�̃�
(g)
1 ,t

, f (g)
�̃�
(g)
2 ,t

, … , f (g)
�̃�
(g)
k̂imp (k)

,t
}T

t=1. Otherwise, the draw is

discarded (Frühwirth-Schnatter, 2011). We compute the share of retained permutations G0(k) to the overall number of
draws, G0(k)∕Geff, and repeat this for all k = 1, 2, … , kmax. The number of factors is determined by the largest k for which
G0(k)∕Geff > 0.95. This procedure is adopted from the framework of mixture models. Frühwirth-Schnatter (2011) shows
that nonpermutations of classifications to clusters are indicators of overfitting with respect to the number of components.
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TABLE B1 Simulation results for alternative methods to determine the number of factors under different

priors

k k̂
1 2 3 4 5 10 15

A. One-layer prior
k̂imp(k) 5% 1.000 2.000 2.000 2.000 2.000 3.000 4.000 —

Mean 1.000 2.000 2.015 2.123 2.308 3.520 4.739 —

Median 1.000 2.000 2.000 2.000 2.000 3.000 5.000 —

95% 1.000 2.000 2.000 3.000 3.000 4.250 6.000 —

G0(k)∕Geff 5% 1.000 1.000 0.581 0.326 0.216 0.054 0.014 2.000

Mean 1.000 1.000 0.746 0.580 0.450 0.116 0.033 2.000

Median 1.000 1.000 0.778 0.617 0.493 0.123 0.028 2.000

95% 1.000 1.000 0.831 0.701 0.585 0.191 0.058 2.000

BIC(k)(×e4) 5% 2.325 2.225 2.252 2.281 2.310 2.472 2.657 2.000

Mean 2.364 2.288 2.315 2.343 2.372 2.532 2.716 2.000

Median 2.367 2.295 2.321 2.349 2.378 2.538 2.722 2.000

95% 2.400 2.352 2.375 2.402 2.431 2.588 2.771 2.000

B. Two-layer prior
k̂imp(k) 5% 1.000 2.000 2.000 2.000 2.000 3.000 4.000 —

Mean 1.000 2.000 2.015 2.139 2.242 3.569 4.723 —

Median 1.000 2.000 2.000 2.000 2.000 4.000 5.000 —

95% 1.000 2.000 2.000 3.000 3.000 5.000 6.000 —

G0(k)∕Geff 5% 1.000 1.000 0.580 0.291 0.218 0.046 0.013 2.000

Mean 1.000 1.000 0.744 0.575 0.423 0.111 0.034 2.000

Median 1.000 1.000 0.779 0.609 0.477 0.098 0.029 2.000

95% 1.000 1.000 0.832 0.699 0.580 0.187 0.057 2.000

BIC (k)(×e4) 5% 2.325 2.225 2.252 2.281 2.310 2.472 2.657 2.000

Mean 2.366 2.288 2.315 2.343 2.372 2.532 2.716 2.000

Median 2.367 2.295 2.321 2.349 2.378 2.537 2.722 2.000

95% 2.398 2.352 2.376 2.403 2.430 2.588 2.773 2.000

Note. The table contains results on the choice of the number of factors, when the factor model is estimated on simulated data

under the one-layer (Panel A) and the two-layer prior (Panel B). In each panel, the table compares three methods to estimate

the number of factors: the implicit number of factors k̂imp(k) for different k, the relative number of permutations in k-medoids

clustering G0(k)∕Geff, and the BIC(k) (multiplied by e4 for better readability of the entries), as outlined in Appendix B.1. For

each method, the mean, the median, as well as the 5th and 95th percentiles of its distribution across R = 65 replications from

the DGP are shown for different k. The final column for G0(k)∕Geff and BIC(k) shows the mean and percentiles of the number

of factors k̂ chosen from the results for different k.

3. Bayesian information criterion (BIC): We estimate the BIC for all k = 1, 2, … , kmax and pick the specification with the
lowest BIC (see Lopes & West, 2004). The number of parameters in the factor model used here is equal to Nk+Nq+N+k2p,
where q is the number of idiosyncratic lags, whereas p is the number of factor VAR lags. The likelihood is estimated as the
average over all MCMC draws.

The first method using the posterior of the implicit number of factors has been used in Frühwirth-Schnatter and Lopes (2010)
and Bhattacharya and Dunson (2011). However, this method has not been applied to large economic datasets. The number of
permutations has not been used in the context of large factor models before, either. In contrast, the BIC is often used for model
selection. Simulations will show whether the methods adapted from the literature on mixture models are helpful in the present
context.

B.2 Simulation results
Table B1 contains results based on the simulated data with two factors and s0 = 0.5 in the DGP as outlined in Section 4.1.
The sparse factor model is estimated on each simulated dataset conditional on k = 1, 2, 3, 4, 5, 10, 15. In Table B1, we provide
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TABLE B2 Empirical results for alternative methods to determine the number of factors

k
1 2 3 4 5 6 7 8 9 10 15

A. International GDP growth
G0(k)∕Geff One-layer 1.000 0.999 0.984 0.937 0.559 0.160 0.111 0.145 0.047 0.038 0.013

Two-layer 1.000 0.999 0.951 0.990 0.551 0.165 0.156 0.135 0.048 0.044 0.006

BIC(k)(×e4) One-layer 0.662 0.671 0.680 0.697 0.723 0.752 0.782 0.814 0.848 0.883 1.084

Two-layer 0.662 0.672 0.681 0.696 0.723 0.751 0.782 0.814 0.848 0.883 1.084

B. US CPI inflation
G0(k)∕Geff One-layer 1.000 1.000 0.754 0.565 0.445 0.372 0.323 0.312 0.241 0.191 0.090

Two-layer 1.000 1.000 0.802 0.545 0.495 0.318 0.358 0.298 0.279 0.213 0.109

BIC(k)(×e5) One-layer 1.266 1.268 1.271 1.274 1.278 1.283 1.289 1.296 1.304 1.312 1.361

Two-layer 1.266 1.268 1.271 1.275 1.278 1.283 1.289 1.296 1.304 1.312 1.361

Note. The table contains results on the choice of the number of factors, when the factor model is estimated on international GDP growth data (Panel A) and US CPI

inflation data (Panel B) 2. In each panel, the table compares two methods to estimate the number of factors explained in Appendix B.1: the relative number of permutations

in k-medoids clustering G0(k)∕Geff and the BIC(k) multiplied by e4 in Panel A and multiplied by e5 in Panel B for better readability of the entries. The entries in the table

are the estimated statistics G0(k)∕Geff and BIC(k) for different k and the one- and the two-layer priors.

results for factor models estimated using the one- and two-layer priors with means s0 = 0.5, b = 0.8 and precision r0 = a =
0.03. Compared to the applications in the main text, the precision has been decreased to account for the additional uncertainty
regarding the number of factors. We apply the three methods to determine the number of factors above in the following way. We
determine the implicit number of factors k̂imp(k) for each k and report percentiles and the mean obtained from the R = 1, … , 65
replications. We hope to find numbers close to two for estimated models with different numbers of factors k. Considering
permutations in k-medoids, we provide the statistic for each k and report percentiles and the mean of G0(k)∕Geff estimated
across replications. We pick the largest k for which G0(k)∕Geff > 0.95. This estimate of the number of factors is denoted by k̂
and shown in the last column of Table B1, where we provide the percentiles and the mean of k̂ across the R simulation samples.
With respect to the BIC, we proceed in the same way as for the number of permutations.

The empirical results can be summarized as follows. The implicit number of factors k̂imp(k) can be used to detect the number
of factors, when the estimated number of factors is not strongly overfitting, that is, when k ⩽ 5. For k = 10, 15 there are signs
of overfitting, as the median of the implicit number of factors equals three and five, and the lower 5% bounds of the distribution
are greater than the true number of factors. The mean of the distribution is greater than the true number of factors already
for k ⩾ 3. The reason for the performance is that some column draws of the loadings matrix contain more than two nonzero
elements as required in Equation B1. In the relatively large datasets with N = 60, we often find cases where up to eight loadings
elements are unequal zero. Given the DGP, we can identify these spurious columns: When looking at the posterior samples of
the corresponding factors, they typically are not significantly different from zero. In the simulations, the ratio of permutations
G0(k)∕Geff is equal to 1.0 for k = 1, 2 and then decreases below 0.95 for all samples. Thus in all cases the true number of
factors is determined. The BIC also determines the right number of factors. We find no big differences between the one- and the
two-layer priors. Thus, given the number of permutations and the BIC, it is possible to well determine the number of factors.
This justifies the choice of fixed k = 2 in the simulation experiments.

B.3 Empirical results
Based on the simulation results in the previous section, we determine the number of factors for the two datasets used for the
empirical applications. Owing to their relatively good performance, we focus on the relative number of permutations G0(k)∕Geff

and the BIC to determine the number of factors. We estimate models with k = 1, 2, … , 9, 10, 15 factors under the one- and
two-layer prior specifications as above. The results can be found in Table B2.

For the international GDP growth data, we find that the ratio of permutations is greater than 0.95 for k ⩽ 4 when using the
two-layer prior and thus indicates k̂ = 4. Based on the one-layer prior, the number of factors is three according to the ratio of
permutations. The BIC indicates a very parsimonious specification with one factor for both priors. For the US CPI inflation
data, the ratio of permutations indicates two factors, whereas BIC identifies one factor. The results for the one- and the two-layer
priors lead to the same number of factors.

Overall, some uncertainty remains regarding the number of factors in the two empirical datasets. As the main focus of the
paper is the identification of relevant and irrelevant variables, we provide a wide range of results for different numbers of factors.
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Given the findings in this section, we provide empirical results for k = 1, … , 4 when estimating the model on the international
GDP growth data, and results for k = 1, 2 when estimating the model on US CPI inflation data.

APPENDIX C: DATA

C.1 Country coverage in the international GDP growth dataset
Below, the countries covered in the international GDP growth dataset used in Section 5 above are shown. Each country belongs
to one of the geographical regions: Africa, Asia 1 (less developed), Asia 2 (more developed), Europe, Latin America, North
America, and Oceania. The definition of geographical regions follows Kose et al. (2003):

1. Africa: Cameroon, Kenya, Morocco, Senegal, South Africa, Zimbabwe
2. Asia 1: Bangladesh, India, Indonesia, Pakistan, Philippines, Sri Lanka
3. Asia 2: Hong Kong, Japan, Korea, Malaysia, Singapore, Thailand
4. Europe: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands,

Norway, Portugal, Spain, Sweden, Switzerland, UK
5. Latin America: Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, Honduras,

Jamaica, Panama, Paraguay, Peru, Uruguay, Venezuela
6. North America: Canada, Mexico, USA
7. Oceania: Australia, New Zealand

C.2 Sector coverage in the US CPI inflation dataset
Below, the sectors covered in the US CPI inflation dataset used in Section 5 are shown. Each sector belongs to one of the groups
defined in Nakamura and Steinsson (2008):

1. Apparel: Men’s suits, sport coats, and outerwear; Men’s furnishings; Men’s pants and shorts; Boys’ apparel; Women’s
outerwear; Women’s dresses; Girls’ apparel; Men’s footwear; Boys’ and girls’ footwear; Women’s footwear; Infants’ and
toddlers’ apparel

2. Education and communication: Admissions; Educational books and supplies; College tuition and fees; Elementary and high
school tuition and fees

3. Food and beverages: Flour and prepared flour mixes; Breakfast cereal; Rice, pasta, cornmeal; Cakes, cupcakes, and cookies;
Other bakery products; Uncooked ground beef; Ham; Pork chops; Other meats; Eggs; Cheese and related products; Ice cream
and related products; Apples; Bananas; Potatoes; Lettuce; Tomatoes; Other fresh vegetables; Carbonated drinks; Coffee;
Sugar and artificial sweeteners; Soups; Frozen and freeze-dried prepared foods; Snacks; Spices, seasonings, condiments,
sauces; Beer, ale, and other malt beverages at home; Distilled spirits at home; Wine at home; Alcoholic beverages away from
home

4. Housing: Rent of primary residence; Housing at school, excluding board; Other lodging away from home including hotels and
motels; Owner’s equivalent rent of primary residence; Fuel oil; Electricity; Utility (piped) gas service; Water and sewerage
maintenance; Garbage and trash collection; Bedroom furniture; Clocks, lamps, and decorator items

5. Medical care: Prescription drugs and medical supplies; Internal and respiratory over-the-counter drugs; Nonprescription
medical equipment and supplies; Physicians’ services; Dental services

6. Other goods and services: Postage; Cosmetics, perfume, bath, nail preparations and implements
7. Recreation: Televisions; Audio equipment; Sports vehicles including bicycles; Sports equipment; Pets and pet products;

Photographic equipment and supplies; Toys
8. Transportation: New vehicles; Used cars and trucks; Gasoline (all types); Tires; Motor vehicle body work; Motor vehicle

maintenance and servicing; Motor vehicle insurance; Airline fare; Other intercity transportation; Intracity transportation
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