Exercises from Migon and Gamerman (Ch. 2)

Problem 10. Let $X | \theta, \mu \sim N(\theta, \sigma^2), \sigma^2$ known and $\theta | \mu \sim N(\mu, \tau^2), \tau^2$ known and $\mu \sim N(0, 1)$. Obtain the following distributions:

- 1. $(\theta | x, \mu)$
- 2. $(\mu | x)$
- 3. $(\theta | x)$

Problem 11. Let $(X|\theta) \sim N(\theta, 1)$ be observed. Suppose that your prior is such that θ is $N(\mu, 1)$ or $N(-\mu, 1)$ with equal probabilities. Write the prior distribution and find the posterior after observing X = x. Show that

$$E(\theta|x) = \frac{x}{2} + \frac{\mu}{2} \frac{1 - \exp(-\mu x)}{1 + \exp(-\mu x)}$$

and draw a graph of $E(\theta|x)$ as a function of x.

Problem 12. The standard Cauchy density function is

$$p(x|\theta) = (1/\pi) \{ 1/[1 + (x - \theta)^2] \}$$

is similar to the $N(\theta, 1)$ and can be used in its place in many applications. Get the modal equation (the first order condition to the maximum) of the posterior supposing that the prior is $p(\theta) = 1/\pi(1+\theta^2)$.

- 1. Solve it for x = 0 and x = 3.
- 2. Compare with the results obtained assuming that $(x|\theta) \sim N(\theta, 1)$ and $\theta \sim N(0, 1)$.

Problem 17. Let $X = (X_1, \ldots, X_n)$ be a random sample from the $U(\theta_1, \theta_2)$, that is,

$$p(x \mid \theta_1, \theta_2) = \frac{1}{\theta_2 - \theta_1}, \ \theta_1 \le x \le \theta_2.$$

Let $T(X) = (X_{(1)}, X_{(n)})$, obtain its joint distribution and show that it is a sufficient statistic for $\theta = (\theta_1, \theta_2)$.

Problem 22. Let X_1, \ldots, X_n be a random sample from the $N(\mu, \sigma^2)$, with σ^2 unknown. Show, using the classical definition, that the sample mean \overline{X} is a sufficient statistic for μ . *Hint:* It is enough to show that $E(X|\overline{X})$ and $V(X|\overline{X})$ are not functions of μ . Why?

Problem 30. Let X and Y be independent random variables Poisson distributed with parameters θ and ϕ , respectively, and suppose that the prior distribution is

$$p(\theta, \phi) = p(\theta)p(\phi) \propto k.$$

Let $\psi = \theta/(\theta + \phi)$ and $\xi = \theta + \phi$ be a parametric transformation of (θ, ϕ) .

- 1. Obtain the prior for (ψ, ξ) .
- 2. Show that $\psi|x, y \sim Beta(x+1, y+1)$ and $\xi|x, y \sim G(x+y+2, 1)$ are independent.
- 3. Show that the conditional distribution X given X + Y depends only on ψ , that is $p(x|x+y,\psi,\xi) = p(x|x+y,\psi)$ and that the distribution of X + Y depends only on ξ .
- 4. Show that X + Y is a sufficient statistics for ξ , given X + Y, X is a sufficient statistic for ψ and that (X, X + Y) is a sufficient statistic for (ψ, ξ) .
- 5. Obtain the marginal likelihood of ψ and ξ .
- 6. To make inference for ξ a statistician decides to use the fact presented in item (d). Show that the posterior is identical to that obtained em (b). Does it mean that X + Y does not contain information about ψ?

Problem 33. Let (X_1, X_2, X_3) be a random vector with distribution trinomial with parameter $\theta = (\theta_1, \theta_2, \theta_3)$ where $\theta_3 = 1 - \theta_1 - \theta_2$ and assume that the prior for θ is constant.

- 1. Define $\lambda = \theta_1/(\theta_1 + \theta_2)$ and $\psi = \theta_1 + \theta_2$ and obtain their priors.
- 2. Obtain the marginal likelihood of ψ .
- 3. Show that $X_1 + X_2$ is a sufficient statistics for ψ .