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It is well known that parameter estimates and forecasts are sensitive to assumptions about
the tail behavior of the error distribution. In this article, we develop an approach to
sequential inference that also simultaneously estimates the tail of the accompanying error
distribution. Our simulation-based approach models errors with a t�-distribution and, as
new data arrives, we sequentially compute the marginal posterior distribution of the tail
thickness. Our method naturally incorporates fat-tailed error distributions and can be
extended to other data features such as stochastic volatility. We show that the sequential
Bayes factor provides an optimal test of fat-tails versus normality. We provide an empirical
and theoretical analysis of the rate of learning of tail thickness under a default Jeffreys prior.
We illustrate our sequential methodology on the British pound/U.S. dollar daily exchange
rate data and on data from the 2008–2009 credit crisis using daily S&P500 returns. Our
method naturally extends to multivariate and dynamic panel data.
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1. INTRODUCTION

Fat-tails are an important statistical property of time series prevalent in many fields,
particularly economics and finance. Fat-tailed error distributions were initially introduced
by Edgeworth (1888) and explored further by Jeffreys (1961) who once remarked that
“� � � all data are t4.” They can be incorporated into dynamic models as latent variable Q1
scale mixtures of normals (Carlin et al., 1992). In this article, we develop a simulation-
based sequential inference procedure for estimating the tail behavior of a time series using
the t�-distribution. This family is attractive for this purpose due to its flexibility with
normality (� = ∞) and Cauchy (� = 1) errors as special cases. Our method complements
the existing literature by estimating the set of sequential posterior distributions p(�|yt)
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Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lecr.



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

2 H. F. LOPES AND N. G. POLSON

for data yt = (y1, � � � , yt) and t = 1, � � � , T , as opposed to Markov chain Monte Carlo Q2
(MCMC) which estimates � given the full data history p(�|yT ) (see Geweke, 1993; Eraker,
Jacquier, and Polson (JPR), 1998; Jacquier et al., 2004; Fonseca et al., 2008). In other
words, our methodology allows the researcher to estimate and update the tail-thickness
of the error distribution as new data arrives.

The novel feature of our approach are the on-line estimates of the tail thickness of
the error distribution using the marginal posterior distribution of the degrees of freedom
parameter �. Being able to sequentially assess the degree of tail-heaviness is particularly
important for dynamic portfolio and risk management strategies. For instance, p(�|yt0) and
p(�|yt1) might resemble standard normal and t4 distributions, respectively, for say t0 much
smaller than t1, which in turn would potentially affect decision making at both time points.

Our method is based on particle learning (PL, see Carvalho et al., 2010, and Lopes
et al., 2010). We analyze two cases in detail: In the first observations yt follow the
independent and identically distributed (iid) standard t�-distribution, i.e., yt ∼ t�(0, 1) (iid-
t case), and in the second observations follow a non-identically distributed stochastic
volatility model with fat-tails (SV-t case), i.e., yt|ht ∼ t�(0, exp�ht�) are conditionally
independent given the T -dimensional latent vector of log-volatilities hT = (h1, � � � , hT ), see
JPR (2004) and Chib et al. (2002).

Our posterior distribution p(�|yt) on the tail thickness is sensitive to the choice of
prior distribution, p(�). We model the prior on the degrees of freedom � using a default
Jeffreys prior (Fonseca et al., 2008) . In this setting, we show that the Jeffreys prior
has desirable properties. Primarily, it reduces bias for estimating the tail thickness in
small sized data sets. Moreover, it is well known that more data helps to discriminate
similar error distributions. Hence a priori we know that we will need a larger dataset to
discriminate a t20-distribution from a normal distribution than a t4-distribution from a
normal. We develop a metric based on the asymptotic Kullback–Liebler rate of learning
of tail thickness that can guide the amount of data required to discriminate two error
distributions. Given the observed data, we then develop an empirical and theoretical
analysis of the sequential Bayes factor which provides the optimal test of normality versus
fat-tails in our sequential context.

Recent estimation approaches for fat-tails use approximate latent Gaussian models
(McCausland, 2012). We use the traditional data augmentation with a vector of latent
scale variables �t to avoid evaluating the likelihood (a T -dimensional integral). We
develop a particle learning algorithm for sampling from the sequential set of joint
posterior distributions p(�t, �|yt), for the iid-t case, and from p(�t, ht, �|yt), for the SV-t
case, for t = 1, � � � , T . The marginal posterior distribution p(�|yt) provides estimates of
the tail-thickness of the error distribution. The purpose for developing new estimation
methods is apparent from a remark of Smith (2000) who warns that the likelihood for
non-Gaussian models can have several local maxima, be very skewed, or have modes
on the boundary of the parameter space, making estimating tail behavior a complex
statistical problem.



87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

PARTICLE LEARNING FOR FAT-TAILED DISTRIBUTIONS 3

The rest of the article is outlined as follows. Section 2 describes how to sequentially
learn the tail of the t�-distribution under iid-t and SV-t models. Section 3 discusses our
particle learning implementation. We focus on using a default Jeffreys prior, showing that
this has a number of desirable properties when learning the fat-tailed error distribution
with finite samples. Section 4 provides an analysis of the sequential Bayes factor
for testing normality versus fat-tails. Section 5 provides our empirical analysis and
comparisons including an analysis of the British pound and U.S. dollar daily exchange
rate and daily S&P500 returns from the credit crisis. Jacquier et al. (2004) apply MCMC
methods to the SV-t model to daily exchange rate on the British pound versus the U.S.
dollar, and we provide a sequential analysis for comparative purposes. Finally, Section 6
concludes.

2. T�-DISTRIBUTED ERRORS

Consider data yt = (y1, � � � , yt) arising from a fat-tailed t�-distribution. The data are
observed on-line, and we wish our estimation procedure to take this into account. Given
a prior distribution p(�), the aim is to compute a set of sequential marginal posterior
distributions p(�|yt) which are given by Bayes rule

p(�|yt) = p(yt|�)p(�)∫
p(yt|�)p(�)d�

�

The marginal likelihood is given by p(yt|�). In an iid setting, this likelihood is simply
p(yt|�) = ∏t

i=1 p(yi|�), a product of marginals. In the SV-t setting, it is more complicated
and requires integrating out the unobserved t-dimensional vector of log-volatilities ht =
(h1, � � � , ht), namely

p(yt|�) =
∫ t∏

i=1

p(yi|hi, �)p(ht)dht,

where p(yi|hi, �) ∼ t�(0, exp�hi�). One advantage of particle methods is that this
computation will naturally occur within the procedure. Our task is to provide sequential
inference for the degrees of freedom or tail thickness parameter, �, via the set of marginal
posterior distributions p(�|yt), for t = 1, � � � , T . To do this, we will first use a standard
data augmentation and then provide a sequential Monte Carlo algorithm to sample from
p(�t, �|yt) which we now describe for the iid-t and SV-t models.

2.1. The iid-t Model

Consider iid observations yt, for t = 1, � � � , T , from a fat-tailed location-scale model

yt = � + �	t where 	t
iid∼ t�(0, 1)�
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4 H. F. LOPES AND N. G. POLSON

Data augmentation uses a scale mixture of normals representation by writing 	t in
the following two steps: i) 	t = √

�t
t and ii) �t
iid∼ IG(�/2, �/2), where IG denotes the

inverse gamma distribution. The marginal data distribution, integrating out �t, is then the
fat-tailed t�-distribution p(yt|�, �, �2) ∼ t�(�, �2), where �2 can be interpreted as a scale
parameter. This leads to a hierarchical specification of the model

yt = � + �
√

�t
t where (�t|�) iid∼ IG(�/2, �/2) and 
t
iid∼ N (0, 1)�

These specifications lead to a likelihood function p(y|�, �2, �) of the form

p(y|�, �2, �) =
T∏

t=1

�
(

�+1
2

)
√

��
(

�
2

)
[

1 + 1
�

(
yt − �

�

)2
]− �+1

2

with marginal distribution p(yt|�) = ∫
p(yt|�, �, �2)p(�, �2)d�d�2. Fonseca et al. (2008)

make the important observation that the marginal likelihood for � becomes unbounded as
� → ∞ and the maximum likelihood estimator is not well defined. This leads us to further
develop an approach based on prior regularization, namely that the degree of freedom
parameter � is random with a prior distribution p(�) which we further discuss in Section
2.3.

Inference on the parameters (�, �2) is not the focus of our study, and for simplicity
we assume that either they are known quantities or taken from a standard diffuse prior,
p(�) ∝ 1, and inverse-gamma prior �2 ∼ IG(n0/2, n0�

2
0/2) given hyper-parameters n0 and

�2
0. These parameters control, respectively, the shape and the location of the distribution.

2.2. The SV-t Model

A common model of time-varying volatility is the stochastic volatility model with fat-tails
(SV-t) for returns and volatility (see Lopes and Polson, 2010a, for a recent review). The
basic SV model is specified by evolution dynamic

yt = exp�ht/2�
t 
t
iid∼ N (0, 1),

ht = � + ht−1 + �ut ut
iid∼ N (0, 1)�

The fat-tailed SV-t is obtained by adding an extra random scale parameter �t and, as
described in the conditionally iid setting, is equivalent to assuming that 
t ∼ t�(0, 1) (see,
for example, JPR, 2004). The model can then be expressed as

yt = exp�ht/2�
√

�t
t 
t
iid∼ N (0, 1)

ht = � + ht−1 + �ut ut
iid∼ N (0, 1)

�t
iid∼ IG(�/2, �/2)�
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PARTICLE LEARNING FOR FAT-TAILED DISTRIBUTIONS 5

The parameter  is the persistence of the volatility process and �2 the volatility of the
log-volatility. Estimation of these parameters will be greatly affected by the fat-tail error
assumptions which in turn will affect predicting price and volatility (see, for example,
Jacquier and Polson, 2000).

To complete the model specification, we need a prior distribution for the parameters
(�, , �2) given �. For simplicity, we take a conditionally conjugate normal-inverse-
gamma-type prior. Specifically, (�, )|�2 ∼ N (b0, �2B0) and �2 ∼ IG(c0, d0), for known
hyper-parameters b0, B0, c0, and d0. Lack of prior information is achieved when B−1

0 ≈
0 and c0 ≈ 0. The marginal prior distribution for (�, ) is, therefore, a Student’s t
distribution. This conditionally conjugate structure will aid in the development of our
particle learning algorithm as it leads to conditional sufficient statistics. Nonconjugate
prior specifications can also be handled in our framework, see Lopes et al. (2010) for
further discussion.

2.3. Priors on �

In the models considered so far, an important modeling assumption is the regularization
penalty p(�) on the tail thickness. A default Jeffreys-style prior was developed by Fonseca
et al. (2008) and, we will see, with a number of desirable properties—particularly when
learning a fat-tail (e.g., a t4-distribution) from a finite dataset. The default Jeffreys prior
for � takes the form

p(�) = 1
�

(
�

� + 3

)1/2 {
�′

( �

2

)
− �′

(
� + 1

2

)
− 2(� + 3)

�(� + 1)2

}1/2

, (1)

where �′(a) = d��(a)�/da and �(a) = d�log �(a)�/da are the trigamma and digamma
functions, respectively. The interesting feature of this prior is its behavior as � goes to
infinity and it has polynomial tails of the form p(�) ∼ �−4. This is in contrast to commonly
used priors such as Fernandez and Steel (1999) and Geweke (1993) who essentially specify
priors with exponential tails of the form � exp�−���, for a subjectively chosen hyper-
parameter, �. In this case, the tail of the prior decays rather fast for large values of � and
assessing the degree of tail thickness can require prohibitively large samples.

Table 1 compares Fonseca’s robust prior to several exponential priors, including the
exponential prior with mean 20 (rate � = 0�05), which was advocated, for instance, by
Geweke (1993). As it can be seen, despite its higher mass for heavy tailed distributions
(small values of �), Fonseca’s prior also places higher mass for normality (large values
of �), when compared to the exponential with mean 20. The exponential priors, with
high mean, essentially place zero mass on normality, whereas Fonseca’s prior places
approximately 0.01 probability on normality, which although being small can still be
overwhelmed by an informative likelihood.

In our empirical analysis, we will show how this prior reduces bias in the posterior
mean E(�|yt) and also how it helps discriminate a fat-tailed t4-distribution from
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6 H. F. LOPES AND N. G. POLSON

TABLE 1
Fonseca’s Prior and Geweke’s Prior

�0 10 20 50 150 190

P�(� < �0|� = 0�01) 0.01 0.20 0.45 0.8959 0.98180
P�(� < �0|� = 0�05) 0.36 0.61 0.91 0.9995 0.99997
P�(� < �0|� = 0�20) 0.85 0.98 1.00 1.0000 1.00000
PJ (� < �0) 0.85 0.93 0.98 0.9972 0.99952

normality. On the other hand, the flat uniform prior suffers from placing too much mass
on high values of �—which are close to normality—making the inference problem harder
for finite samples.

3. PARTICLE LEARNING FOR FAT-TAILS

We now provide a discussion of particle learning with particular reference to estimating
fat-tails. Sequential Bayesian computation requires calculation of a set of posterior
distributions p(�|yt), for t = 1, � � � , T , where yt = (y1, � � � , yt).

Loosely speaking, particle learning is a sequential Monte Carlo scheme that
sequentially learns a low dimensional vector of essential states, usually comprising a
combination of a few latent states of the state-space model along with conditional
sufficient statistics for fixed, time-invariant parameters. Section 3.1 provides a thorough
explanation and implementation of particle learning for the iid-t case. See Carvalho et al.
(2010), Lopes et al. (2010), Lopes and Tsay (2011), and Lopes and Carvalho (2013) for
extended discussion and several examples of PL in action.

Central to PL is the creation of a essential state vector Zt to be tracked sequentially.
We assume that this vector is conditionally sufficient for the parameter of interest; so
that p(�|Zt) is either available in closed-form or can easily be sampled from. More
precisely, given samples �Z(i)

t �N
i=1 ∼ p(Zt|yt) and a Rao–Blackwellized identity, then a

simple mixture approximation to the set of posteriors is given by

pN (�|yt) = 1
N

N∑
i=1

p(�|Z(i)
t )�

Here the conditional posterior p(�|Z(i)
t ) will include the dependence on �2 for the iid-t

case and (�, , �2) and the latent volatilities ht = (h1, � � � , ht) for the SV-t case through the
essential state vector.

The task of sequential Bayesian computation is then equivalent to a filtering problem
for the essential state vector, drawing �Z(i)

t �N
i=1 ∼ p(Zt|yt) sequentially from the set of
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PARTICLE LEARNING FOR FAT-TAILED DISTRIBUTIONS 7

posteriors. To this end, PL exploits the following sequential decomposition of Bayes’ rule

p(Zt+1|yt+1) =
∫

p(Zt+1|Zt, yt+1) d�(Zt|yt+1)

∝
∫

p(Zt+1|Zt, yt+1)︸ ︷︷ ︸
propagate

p(yt+1|Zt)︸ ︷︷ ︸
resample

d�(Zt|yt)�

The distribution d�(Zt|yt+1) ∝ p(yt+1|Zt)d�(Zt|yt) is a 1-step smoothing distribution.
Here �(Zt|yt) denotes the current distribution of the current state vector and in particle
form corresponds to 1

N

∑N
i=1 �Z(i)

t
, with � a Dirac measure.

Bayes rule above then gives us a prescription for constructing a sequential simulation-
based algorithm: given �(Zt|yt), find the smoothed distribution �(Zt|yt+1) via resampling
and then propagate forward using p(Zt+1|Zt, yt+1). This simply finds draws from the
next filtering distribution �(Zt+1|yt+1). Parameter inference is then achieved offline using
p(�|Zt+1).

From a sampling perspective, this leads to a very simple algorithm for updating
particles �Zt�

N
i=1 to �Zt+1�

N
i=1 in the following three steps:

1. Resample: with replacement from a multinomial with weights proportional to the
predictive distribution p(yt+1|Z(i)

t ) to obtain �Z�(i)
t �N

i=1;
2. Propagate: with Z(i)

t+1 ∼ p(Zt+1|Z�(i)
t , yt+1) to obtain �Z(i)

t+1�
N
i=1;

3. Learning: � from p(�|Zt+1).

The ingredients of particle learning are the essential state vector Zt, a predictive
probability rule p(yt+1|Z(i)

t ) for resampling �(i), and a propagation rule to update
particles: Z�(i)

t → Z(i)
t+1. The essential state vector will include the necessary conditional

sufficient statistics for parameter learning given a model specification.

3.1. PL for the iid-t Case

First, we consider the normal location-scale model of Section 2.1 with � = 0 for
simplicity. The model corresponds to a data augmentation scheme (yt|�2, �t) ∼ N (0, �2�t)

with (�t|�) ∼ IG(�/2, �/2). To complete the model, we assume priors of the form �2 ∼
IG(n0/2, n0�

2
0/2) and Jeffreys prior p(�) for � (Eq. 1).

Now, the key to our approach is the use of an essential state vector Zt. The algorithm
requires the following distributions: p(yt+1|Zt), p(�, �2|Zt), and p(�t|�2, �, yt). Bayes rule
yields

p
(
�|�t

) ≡ p(�|Zt1, Zt2) ∝ p(�)

(
( �

2 )
�
2

�( �
2 )

)t
Z−(�/2+1)

t1 exp�−�Zt2/2� (2)
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8 H. F. LOPES AND N. G. POLSON

and

p(�2|yt, �t) ≡ p(�2|Zt3, Zt4) ∼ IG(Zt3/2, Zt4/2) (3)

with recursive updates for the parameter sufficient statistics

Zt1 = Zt−1,1�t and Zt2 = Zt−1,2 + 1/�t,

Zt3 = Zt−1,3 + 1 and Zt4 = Zt−1,4 + y2
t /�t,

with initial values Z01 = 1, Z02 = 0, Z03 = n0, and Z04 = n0�
2
0.

Additionally, the predictive distribution for resampling and the latent state conditional
posterior for propagation are directly available as

p(yt+1|�t+1, Zt) ∼ tZt3+2

(
0,

Zt4

Zt3 + 2
�t+1

)
, (4)

p(�t|�2, �, yt) ∼ IG
(

� + 1
2

,
� + y2

t /�2

2

)
� (5)

Therefore, we use an essential state vector given by Zt = (�t+1, Zt1, Zt2, Zt3, Zt4). We are
now ready to outline the steps of the PL scheme (see Panel A).

When � 
= 0 and a conditionally conjugate prior for location � is used, say N (�0, �2C0),
it follows that Eq. (3) is replaced by p(�2|yt, �t)p(�|�2, yt, �t), while the vector Zt is
expanded accordingly. If instead the prior for � is N (�0, C0), independent of �2, then the
essential vector Zt would include one of the two parameters, most likely � since in practice
location parameters are easier to update.

3.2. PL for the SV-t Case

Particle learning for the SV-t model is similar to the iid-t model despite being somewhat
more elaborated with the latent state now being the scale mixture �t as well as the log-
volatilities ht. In addition, there are three parameters (�, , �2) driving the log-volatility
dynamic behavior, as opposed to �2 in the iid-t model.

Static Parameters. Let us first deal with � = (�, , �2) the vector of fixed parameters
driving the log-volatility equation (see Section 2.2). Conditional on the latent volatilities
ht = (h1, � � � , ht), sampling � is rather straightforward since it is based on the conjugate
Bayesian analysis of the normal linear regression with x′

t = (1, ht−1) (Gamerman and
Lopes, 2006, Chapter 2), i.e., (�, |�2) ∼ N (bt, �2Bt) and �2 ∼ IG(ct, dt). The parameter
sufficient statistics are Z�

t = (bt, Bt, ct, dt), and they can determined recursively as

B−1
t bt = B−1

t−1bt−1 + htxt,

B−1
t = B−1

t−1 + xtx′
t, (6)

ct = ct−1 + 1/2,

dt = dt−1 + (ht − b′
txt)ht/2 + (bt−1 − bt)

′B−1
t−1bt−1/2�
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PARTICLE LEARNING FOR FAT-TAILED DISTRIBUTIONS 9

PANEL A Particle learning for the iid-t model.

Resampling Step. To sequentially resample the log-volatility ht and propagate a new

Q13

volatility state ht+1, we use the Kim, Shephard, and Chib (1998) strategy of approximating Q3
the distribution of log ỹ2

t , where ỹ2
t = y2

t /�t, by a carefully tuned seven-component mixture
of normals1. Then, a standard data augmentation argument allows the mixture of normals
to be conditionally transformed in individual normals, i.e., (�t|kt) ∼ N (�kt , v2

kt
), such that

kt ∼ Mult(�). Conditionally on kt, the SV-t model for zkt = log y2
t − log �t − �kt can be

rewritten as a standard first order dynamic linear model, i.e.,

(zkt |ht, �t, kt) ∼ N (ht, v2
kt

),

(ht|ht−1, �) ∼ N (� + ht−1, �2),

with conditional state sufficient statistics Zh
t = (mt, Ct) given by the standard Kalman

recursions (West and Harrison, 1997). More explicitly, the conditional posterior Q4

1More precisely, log ỹ2
t = ht + �t , where �t = log 
2

t follows a log �2
1 distribution, a parameter-free left

skewed distribution with mean −1�27 and variance 4�94. They show that the log �2
1 can be well approximated

by
∑7

j=1 �jN (�j , v2
j ), where � = (0�0073, 0�1056, 0�00002, 0�044, 0�34, 0�2457, 0�2575), � = (−11�4, −5�24, −9�84,

1�51, −0�65, 0�53, −2�36), and v2 = (5�8, 2�61, 5�18, 0�17, 0�64, 0�34, 1�26).
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10 H. F. LOPES AND N. G. POLSON

(ht|Zh
t , �) ∼ N (mt, Ct) with moments given by

mt = (1 − At)at + Atzkt and Ct = (1 − At)Rt, (7)

where at = (� + mt−1), At = Rt/Qt, Rt = 2Ct−1 + �2 and Qt = Rt + v2
kt

.

Essential State Vector. We will take advantage of the above Kalman recursions in the
resampling step. We use an essential state vector of the form

Zt = (�t+1, Z�
t , Z�

t , Zh
t ),

where the subset (Z�
t , Z�

t ) of Zt is essentially the set (Zt1, � � � , Zt4) derived from the iid-t
model.

There are many efficiencies to be gained with this approach over traditional SMC Q5
approaches. For example, we only need to sample ht−1 and ht (Step 2) in order to
propagate Z�

t and sample � (Step 4). In other words, PL does not necessarily need to
keep track of the log-volatilities. For instance, point-wise evaluations of p(ht|yt) can be
approximated by the Monte Carlo average of the Kalman filter densities, i.e., pN (ht|yt) =
1
N

∑N
i=1 p(ht; m(i)

t , C(i)
t ).

For estimation of the fat-tails, we can use a Rao–Blackwellized density estimate. For
example in the SV-t case, in order to reduce Monte Carlo error, we use an estimate of
the form

p(�|yt) = � �p(�|�t, ht, yt)� ≈ 1
N

N∑
i=1

p(�|(�t, ht)(i), yt),

where �(�t, ht)(i)�N
i=1 are draws from p(�t, ht|yt). This leads to efficiency gains as the

conditional p(�|�t, ht, yt) and conditional mean �(�|�t, ht, yt) are known in closed form.
We are now ready to outline the steps of the PL scheme for the SV-t model (see Panel B).

PL and MCMC. Although direct comparison with MCMC (Verdinelli and Wasserman,
1991) is not the focus of this article, we observe that MCMC is inherently a nonsequential
procedure. MCMC provides the full joint distribution p(hT , �, �|yT ) including smoothing
of the initial volatility states particle learning only computes p(hT , �|yT )—the distribution
of the final state hT and parameters �. Another difference is in the assessment of MC
errors. MCMC generates a dependent sequence of draws, PL has standard

√
N MC

bounds, but can suffer from accumulation of MC error for larger T . MCMC for learning
fat-tails � can exhibit low conductance (Eraker et al., 1998), having difficulty escaping
lower values of � in the chain, and can lead to poor convergence. Computationally
speaking, the cost of performing MCMC sequentially is prohibitive high when compared
to PL. Carvalho et al. (2010, Example 7) compares MCMC to PL in the simple first order
normal dynamic linear model and show that, for T = 1,000 time periods and N = 500
particles, PL is roughly one order of magnitude faster than MCMC.
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PANEL B Particle learning for the SV-t model

4. MODEL ASSESSMENT WITH A SEQUENTIAL BAYES FACTOR

Sequential model determination is performed using a Bayes factor �T (Jeffreys, 1961;
West, 1984). This naturally extends to a sequential version for an infinite sequence of Q6
(dependent) data we will still identify the “true” model. A probabilistic approach for
determining how quickly you can learn the tail of the error distribution is to use the
recursion

�T+1 = p(yT+1|y1, � � � , yT )

q(yT+1|y1, � � � , yT )
�T �

Blackwell and Dubins (1962) provide a general discussion of the merging of opinions
under Bayesian learning. They show that for any two models p(y1, � � � , yT ) and
q(y1, � � � , yT ) that are absolutely continuous with respect to each other, opinions that
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12 H. F. LOPES AND N. G. POLSON

merge in the following sense. First, �T is a martingale, �T -measurable and under the true
model Q,

�Q

(
p(yT+1|y1, � � � , yT )

q(yT+1|y1, � � � , yT )
�T

)
= 1 so that � (�T+1|�T ) = �T ,

where �T represents all the information up to time t.
By the martingale convergence theorem, �∞ = limT→∞ �T exists almost surely under

Q and in fact �∞ = 0 a.s. Q. Put simply, the sequential Bayes factor will correctly identify
the “true” model Q under quite general data sequences include the SV-t model we
consider here in detail. Furthermore, by the Shannon–McMillan–Breiman theorem (see,
for example, Cover and Thomas, 2006), we can analyze the rate of learning via the
quantity

lim
T→∞

1
T

ln q(y1, � � � , yT ) → H a.s. Q,

where H is the entropy rate defined by H = limT→∞ �Q (− ln p(yT+1|y1, � � � , yT )) < 0.
Hence as H ∈ [−∞, 0), we have that �∞ = 0. A similar result for the marginal likelihood
ratio

lim
T→∞

1
T

ln
p(y1, � � � , yT )

q(y1, � � � , yT )
→ lim

k→∞
�Q

(
ln

p(yk+1|yk, � � � , y1)

q(yk+1|yk, � � � , y1)

)
< 0 a.s. Q�

We will use this in the next subsection.
Bayes factors have a number of attractive features as they can be converted into

posterior model probabilities when the model set is exhaustive. Lopes and Tobias (2011)
provide a recent survey including computational strategies based on the Savage–Dickey
density ratio. These results are only asymptotic, and with a finite amount of data, it helps
to analyze the rate of learning using a Kullback–Leibler metric.

4.1. Discriminating a t4 from a Gaussian

We can use these theoretical insights (see also Edwards et al., 1963; Lindley, 1956) to
address the question a priori of “how long a time series one would have to observe Q7
to have strong evidence of a t4 versus a Gaussian?” Jeffreys observed that one needs
data sequences of length T = 500 to be able to discriminate the tails of an underlying
probability distribution. We now formalize this argument using our sequential Bayes
factor. One is motivated to define a priori the “expected” log-Bayes factor for a given
data length, �� T , under the Gaussian model

1
T

ln�T = �t∞ ln
t�

t∞
= KL(t�, t∞)
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under the Gaussian t∞-model where KL denotes Kullback–Leibler divergence. Then, a
priori, if we are given a level of Bayes factor discrimination �� T , we then have to observe
on average T � observation to be able to discriminate the two models where

T � = 1
KL(t�, t∞)

ln�� T �

This measure is asymmetric, as if the data is generated by a t� distribution, the constant Q8
changes to KL(t∞, t�).

To illustrate the magnitudes of these effects, if we take � = 3 and � = 10
(strong evidence), for example, this argument would suggest that on average T = 150
observations from a standard normal are needed to strongly reject the t3 model, and
on average T = 20 observations from the t3 to strongly reject the standard normal
distribution. This is borne out in our empirical study. Figure 1 plots the first factor in the
above expression, namely, the Kullback–Leibler divergence between the t�-family and the
Gaussian.

This also confirms the analysis in Gramacy and Pantaleo (2010). In a multivariate
regression setting, they perform a Monte Carlo experiment where T and � varies with T ∈
�30, 75, 100, 200, 500, 1000� and � ∈ �3, 5, 7, 10, ∞�. They observed the frequency of time
the � indicated strong preference (� > 10) for a model. Under normal errors, � = 3 could
be determined with high accuracy for T ≤ 200, � = 5 took T ≤ 1,000, and for 10 ≤ � < ∞

FIGURE 1 i.i.d. model. Discriminating a t� from a Gaussian. KL(t�, t∞) (black) and KL(t∞, t�) (grey).
For � = 4, 10, 20, theoretical sample sizes are T ∗ = 108, 446, 1,473 for strong evidence against normality and
T ∗ = 22, 220, 1,009 for strong evidence against t�.
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14 H. F. LOPES AND N. G. POLSON

very large samples would be required to discriminate the tails with any degree of posterior
accuracy. Of course, for a given dataset, the Bayes factor might provide strong evidence
even for small samples. The Jeffreys prior then has the nice property (by definition of
the inverse of the Fisher information matrix) of down-weighting these regions of the
parameter space where it is hard to learn the parameters.

It is also interesting to address the asymptotic behavior of the fat-tailed posterior
distribution when the true model is not in the set of models under consideration.
Berk (1966, 1970) assumes that the data generating process comes from yt ∼ q(y)—
a model outside our current consideration. Given our fat-tailed model p(y|�, �), Berk
shows that under mild regularity conditions the posterior distribution p(�, �|y) will
asymptotically concentrate with probability one on the subset of parameter values where
the Kullback–Leibler divergence between p(y|�, �) and q(y) is minimized or equivalently∫

log p(y|�, �)q(y)dy is maximized.

5. EMPIRICAL RESULTS

We now illustrate our methodology for iid SV-Student’s t error distributions (see Sections
2.1 and 2.2 for the specifications). The iid-t model illustration will serve the additional and
important purpose of showing that the uniform prior is not necessarily always a harmless
prior. The SV-t model will be estimated sequentially on the British pound/U.S. dollar
daily exchange rate series and daily returns on the S&P500 from a period in 2007–2010
that includes the credit crisis. Resulting inferences will be compared with MCMC at the
end of the sample.

5.1. The iid-t Model

To illustrate the efficiency of our approach, we simulate a sample of size T = 200 from
a Student’s t4 distribution, centered at zero and unit scale, i.e., �2 = 1. Figures 2 and 3
show the joint posterior distributions of p(�2, �|yt) for t = 50, 100, 150, and 200 under,
respectively, the uniform prior and the Jeffreys prior of Fonseca et al. (2008). As the
model implies that Var(yt) = �2�/(� − 2), one should not be too surprised that there is a
posterior correlation between �2 and � for small values of �.

It is clear that the posterior provides fairly accurate sequential estimates for the joint as
well as the marginal distributions (the exact posterior probabilities are computed on a fine
bivariate grid). On the one hand, the Jeffreys prior, as anticipated, penalizes larger values
of � with the penalization slightly decreasing as the sample size increases. On the other
hand, the uniform prior is impartial with respect to the number of degrees of freedom,
so any information regarding � comes exclusively from the likelihood which, in turn, is
fairly uninformative about � for t = 50, 100, and 150. Even when t = 200, there is still no
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FIGURE 2 i.i.d. model. Sequential posterior inference for (�2, �) based on PL for T = 200 iid observations
drawn from t4 with uniform prior for �. PL is based on N = 10,000 particles.

negligible mass for values � > 10. Figure 4 shows that PL estimates are still accurate when
n = 1,000. It also shows that the marginal posterior of � is highly concentrated around
the true value for t > 500, as theoretically predictive in Section 4.1 and Fig. 1.
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16 H. F. LOPES AND N. G. POLSON

FIGURE 3 i.i.d. model. Sequential posterior inference for (�2, �) based on PL for T = 200 iid observations
drawn from t4 with Jeffreys prior for �. PL is based on N = 10,000 particles.
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FIGURE 4 i.i.d. model. Sequential posterior inference for � based on PL for T = 1,000 iid observations
drawn from t4 with Jeffreys prior for �. PL is based on N = 10,000 particles.

The undesirable bias of the not-so-harmless uniform prior is highlighted in the Monte
Carlo exercise summarized by Figs. 5 and 6. The posterior means, medians, and modes of
� based on p(�|yt), t = 30, 50, 100, 300, 400, and 500 are compared across R = 50 samples.
As it can be seen, the bias of the uniform prior is striking for samples of size up to
T = 100, when compared to those of the Jeffreys prior. For samples of size T = 400 and
T = 500, the bias is much smaller, but a closer look reveals its presence. For example, the
25th percentiles of the mean, median, and mode box-plots when T = 500 are all above
the true value � = 4 for the uniform prior.
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FIGURE 5 i.i.d. model. Posterior mean, median, and mode for the number of degrees of freedom � under the
uniform prior, for different sample sizes and based on a Gibbs sampler of length M = 1,000 after a burn-in
period of M0 draws. Boxplots are based on R = 50 datasets.
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FIGURE 6 i.i.d. model. Posterior mean, median, and mode for the number of degrees of freedom � under the
Jeffreys prior, for different sample sizes and based on a Gibbs sampler of length M = 1,000 after a burn-in
period of M0 draws. Boxplots are based on R = 50 datasets.
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5.2. The SV-t Model

We now revisit the well-known British pound versus U.S. dollar exchange rate data of
Jacquier et al. (2004). The data consists of T = 937 daily rates form October 1st, 1981
to June, 28th 1985. For illustration purposes, we simulated data with exactly the same
length from a SV-t4 model with parameters (�, �, , �2) = (4, −0�202, 0�980, 0�018) and
initial value h0 = −8�053. Both simulated and real data sets are presented in Fig. 7.

The prior distribution of � is given by the discretized version of Fonseca et al.’s (2008)
Jeffreys prior, similar to the approach taken in Section 5.1 (see Eq. 1). The vector log-
volatility parameters (�, , �2) are independent, a priori, of � and its prior distribution
is given by (�, )|�2 ∼ N (b0, �2B0) and �2 ∼ IG(	0/2, 	0�

2
0/2), while the posterior for the

log-volatility at time t = 0 is given by h0 ∼ N (m0, C0). The hyper-parameters are set at

FIGURE 7 SV-t model. The top row corresponds to simulated data (T = 937) from the SV-t� model with
parameters � = 4, � = −0�202,  = 0�980, �2 = 0�018, and x0 = −8�053. The bottom row corresponds to JPR’s
(1994) British pound vs. U.S. dollar exchange (T = 937) daily rates from go from October 1, 1981 to June
28, 1985.
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FIGURE 8 SV-t model. (2�5, 50, 97�5)th percentiles of the sequential marginal posterior distributions of �, ,
�2, and � for the normal (red lines) and Student’s t (black lines) models.
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the values m0 = log y2
1, C0 = 1�0, b0 = (−0�002, 0�97), B0 = diag(1�0, 0�01), c0 = 5�0, and

d0 = 0�1125.
Posterior inference is based on PL with N = 10, 000 particles. Figures 8 presents 2.5th,

50th and 97.5th percentiles of the sequential marginal distributions of �, , �2, and � for
both simulated and real data sets. For the simulated data, the posterior distribution of �

concentrates around the true value � = 4 after about 350 observations. For the real data,
� is highly concentrated with around ten degrees of freedom at the end of the sample;
however, the right tail of the distribution, i.e., large degrees of freedom, is fairly long for
most of the sample. Another interesting fact is that both normal and Student’s t model
learn about � and  in a similar manner, while the same cannot be said for the volatility
of the log-volatility parameter, �2. This is perhaps not surprising as the normal model
overestimates the volatility of log-volatility to accommodate the fact that daily rates
violate the plain normality assumption. The same behavior is present in our simulated
data exercise. In fact, the posterior distribution for the log-volatilities, p(ht|yt), for the
simulated data based on the normal model has larger uncertainty than for the t� model
(figure not shown here). Finally, at the end of the sample we can calculate the marginal
posterior on the tail-thickness p(�|yT ), our sequential particle approach agrees with the
MCMC analysis of Jacquier et al. (2004). This suggests that the MC accumulation error
inherent in our particle algorithm is small for these types of data length and models.

5.2.1. S&P500: Credit Crisis 2008–2009

To study the effect of the credit crisis on stock returns, we revisit daily S&P500 returns
previously studied, amongst many others, by Abanto-Valle et al. (2010) and Lopes and
Polson (2010b). The former article estimates SV models with errors in the class of
symmetric scale mixtures of normal distributions and also base their illustration on the
S&P500 index from January 1999 to September 2008, therefore missing most of the credit
crunch crisis and its aftermath. We concentrate our analysis on the period starting on
January 3, 2007 and ending on October 14, 2010 (T = 954 observations). We sequentially
fit the normal model to this data set as well as the t� model for � ∈ �5, 10, 50�. Figure 9
summarizes our findings. The three Student’s t models have higher predictive power
than the normal model when measured in terms of log-Bayes factors. This distinction
is particularly strong when comparing the t5 (or t10) model with the normal model.
Interestingly, the t5 model becomes gradually closer to the normal model from July 2008
to July 2010, when again it distances itself from normality.

Before the onset of the credit crisis in July 2008, the model with the largest Bayes
factor (relative to a normal), and hence the largest posterior model probability (under a
uniform prior on �) is the t5-distribution. This is not surprising as the previous time period
consisted of little stochastic volatility and the occasional outlying return—which is nicely
accomodated by a t5 error distribution, in the spirit of Jeffreys initial observation about
“real" data. The interesing aspects of Bayesian learning occur in the period of the crisis
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FIGURE 9 SV-t model for S&P500 returns. Top frame: S&P500 daily closing price (divided by 100: solid
thick line) along with PL approximations to the (2�5, 50, 97�5)th percentiles of the posterior distributions of
the time-varying standard deviations p(exp�xt/2�|yt), for t = 1, � � � , T , under the SV-t10 model. Middle frame:
Log returns. Bottom frame: Logarithm of the Bayes factors of t� against normality for � ∈ �5, 10, 50�.
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from July 2008 to March 2009. One immediately sees a dramatic increase in the stochastic
volatility component of the model and the clustering of a high period of volatility. In and
of itself, this is sufficient to “explain” the extreme moves in the market. Correspondingly,
in terms of online estimation of the fat-tails, the Bayes factor quickly moves to favor the
model with light tails, here the t10-distribution. Finally, as the crisis subsides, the volatility
mean reverts and the returns again look like they exhibit some outlying behavior (relative
to the level of volatility) and the sequential Bayes again starts to move to favor the fatter-
tailed t5-distribution.

6. DISCUSSION

Estimating tail-thickness of the error distribution of an economic or financial time series
is an important problem as estimates and forecasts are very sensitive to the tail behavior.
Moreover, we would like an on-line estimation methodology that can adaptively learn the
tail-thickness and provide parameter estimates that update as new data arrives. We model
the error distribution as a t�-distribution where � ∼ p(�), and we adopt a default Jeffreys
prior on the tail-thickness parameter �. We show that this has a number of desirable
properties when performing inference with a finite amount of data. We use the sequential
Bayes factor to provide an on-line test of normality versus fat-tails, and we derive its
optimality properties asymptotically and in finite sample using a Kullback–Leibler metric.
We illustrate these effects in the credit crisis of 2008–2009 with daily S&P500 stock return
data. Our analysis shows how quickly an agent can dynamically learn the tail of the error
distribution whilst still accounting for parameter uncertainty and time-varying stochastic
volatility. Figures 2–4 and 8 all show that estimating � is in fact rather difficult. Figure 8,
in particular, shows that when the data is not normal it takes several time periods for the
parameter � be stably estimated.

Whilst MCMC is computationally slow for solving the online problem, it does also
provide the full smoothing distribution at the end of the sampler. This would require
O(N 2) particles in our approach (see Carvalho et al., 2010, for further discussion),
and therefore, if smoothed states are required, we recommend filtering forward with
particles and smoothing with MCMC. Other estimation methods such as nested Laplace
approximation (Smith, 2000) seem unable to identify the true error structure due to
the multimodalities present in the posterior and particle methods provide a natural
alternative. Clearly, there are a number of extensions of our approach, for example, to
multivariate and dynamic panel data.
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