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Heavy tailed distributions present a tough setting ) 2 -
for inference. They are also common in indus- E & 1 § g |
trial applications, particularly with Internet trans- o | ©
action datasets, and machine learners often an- - T
alyze such data without considering the biases S § . e S —

and risks associated with the misuse of standard
tools. This article outlines a procedure for infer-
ence about the (possibly conditional) mean of a
heavy tailed distribution that combines nonpara-
metric inference for the bulk of the support with
parametric inference — motivated from extreme
value theory — for the heavy tail. We are able
to derive analytic posterior conditional means
and variances for the expected value of a heavy
tailed distribution. We also introduce a simple
and novel independence Metropolis Hastings al-
gorithm that samples from the distribution for tail
parameters via small adjustments to a paramet-
ric bootstrap, and through this algorithm are able
to provide comparisons between our framework
and frequentist semiparametric inference. We
also provide a modeling extension that shrinks
tails across distributions to an overall background
tail. We illustrate on two examples: treatment ef-
fect estimation on a set of 72 A/B experiments,
and the fitting of regression trees for prediction
of user spending. Both use data from tens of mil-
lions of users of eBay.com.

1. Introduction

We refer to a data generating process (DGP) as heavy
tailed when the distribution on exceedances beyond ex-
treme thresholds cannot be bounded by an exponential dis-
tribution. Heavy tails are quite common in measures of
user (e.g., a registered website user or a recognized de-
vice) activity on the internet (??). For example, Figure 1
illustrates spending, in US$ spent on bought merchandise,
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Figure 1. The proportion of observations (left) and of total spend-
ing (right) that is due to users spending greater than $2000 on
eBay.com in each of 144 A/B experiment treatment groups.

across samples of users on eBay.com. Each sample,' rang-
ing in size from 105 to 108 users, corresponds to a treatment
group in one of the 72 A/B experiments (randomized con-
trolled trials) studied in Section 5. In our modal treatment
group, there is less than 0.1% of users who spend more
than $2000; however, these users account for 20% of the
total spending.

Such heavy tails imply that observations in high percentiles
are both high variance and will have a large influence on
sample means. In some cases (including, it appears, 3/4 of
the groups studied in Section 5) the tail variance will be in-
finite. Even when the variance is merely near-infinite, these
heavy tails have important consequences for our inference.

e The learning rate for mean inference is slower than
\/ﬁ, such that the usual standard error estimators un-
derestimate uncertainty (e.g., ?).

e Common Gaussian error assumptions are invalid both
in finite samples and asymptotically (?).

e Nonparametric bootstrap estimators of sampling un-
certainty about the mean will fail: they are inconsis-
tent for the true sampling distribution (?).

There are real practical implications for these issues. For
example, the over-sized influence of large observations on
the sample mean is well recognized by practitioners who

!These contain targeted user subsets and are not from current
traffic. They are not representative of eBay’s aggregated revenue.
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measure on-line transactions. A common ad-hoc solution
is to use Winsorization (?), wherein values above a thresh-
old are replaced by that threshold. However, estimation is
then sensitive to the Winsorization threshold and, due to the
inconsistency of the nonparametric bootstrap, there are no
obvious tools available for its optimal selection. Transac-
tion distributions also include density spikes at zero and at
other discrete points (e.g., 0.99, 100), making fully para-
metric modeling impractical. As another example, non-
parametric learners such as random forests will tend to
over-fit (and generally perform poorly) in the presence of
extreme values (?).

This article resolves these issues by combining nonpara-
metric inference for the bulk of a distribution with para-
metric inference for tail data above a fixed threshold. Re-
lated approaches have been proposed in the literature (see
below), but we make a number of unique contributions.

e We are able to derive exact posterior moments for the
distribution’s mean. These expressions require only
the posterior mean and variance for the expected tail
exceedance, which we make available via both analyt-
ical and efficient computational approximation.

e For inference about the tail parameters, we present
a novel independence Metropolis Hastings algorithm
that samples from the posterior through adjustment of
the results from a parametric bootstrap. The algorithm
is trivial to code, and provides information about the
distance between Bayesian and frequentist inference.

e Our procedure is closely related to a frequentist al-
gorithm that combines nonparametric and parametric
bootstraps. We are able to show that this algorithm is
consistent for the true sampling distribution, and the
theory provides guidance on the choice of threshold.

e We describe how to shrink individual tails towards an
overall background distribution. This is used both for
improved estimation for average treatment effects, but
also in a novel algorithm for construction of regression
trees on heavy tailed data.

Finally, we test and illustrate our work in two real applica-
tions: the analysis of A/B experiments and in building ro-
bust random forests. The resulting framework is very pow-
erful, and performs better than the alternatives, but is also
very simple. We hope that it will find users amongst the
large community of analysts dealing with heavy tailed data
who currently rely upon sensitive ad-hoc techniques.

1.1. Related Literature

A related Bayesian approach to extreme value analysis is
proposed in ?: they combine a Dirichlet process mixture

model below a threshold with a GPD above. All parame-
ters, including the value of the threshold itself, are sampled
from their joint posterior in an MCMC algorithm. Our ap-
proach is more simple and scalable: we allow for analytic
expression of many of the relevant posterior statistics of in-
terest and require only a simple bootstrap-based sampler
for the tail.

? describes estimation for the mean of a heavy tailed dis-
tribution that combines the sample mean below a thresh-
old with the mean of a maximum likelihood estimated
model above that threshold. The point estimates from this
approach will be similar to ours, and will converge with
enough data, but our approaches to uncertainty quantifica-
tion are distinct. Johansson’s asymptotic variance formulas
depend upon unknown model parameters.

? provide a completely different approach to the problem,
based upon sub-sampling. While the nonparametric boot-
strap fails for heavy tails, Romano & Wolf show that algo-
rithms based upon without-replacement sub-sampling can
provide consistent approximations to the sampling distri-
bution. We discuss and compare to their approach in our
applications.

Finally, ? estimate the tail distribution for small sam-
ples through exponential tilting of models fit on larger
samples. While their approach is totally different from
our Bayesian hierarchical shrinkage technique, both works
share the strategy of using background datasets to inform
difficult estimation for individual tails.

2. A Semiparametric model for heavy tailed
data generating processes

Our inference strategy is built around the use of Dirichlet-
multinomial sampling as a flexible representation for an ar-
bitrary data generating process (DGP). In its standard ap-
plication, this model treats the observed sample as a draw
from a multinomial distribution over a large but finite set
of support points. A Dirichlet prior is placed on the prob-
abilities in this multinomial, and the posterior distribution
over possible DGPs is induced by the posterior on these
probabilities. The approach has a long history. It was in-
troduced by Ferguson (?), it serves as the foundation for
the Bayesian bootstrap (?), and it has been studied by nu-
merous authors (22?27?).

Our work presents an extension of the standard Dirichlet-
multinomial scheme. Consider a univariate random vari-
able, say z. We assume the usual fully-nonparametric
model below a certain fixed threshold, say u. That is, the
prior DGP for z < w is a Multinomial draw, with Dirich-
let distributed probability, from a large-but-finite number
of support points. At the same time, with some probability
our realized z is instead drawn as u + v where v > 0 is
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a random exceedance from some distribution. Hence, the
full DGP model is a mixture of Multinomial sampling on
arbitrary support and a parametric tail distribution.

We model our tail exceedances as realizations from a gen-
eralized Pareto distribution (GPD)?, with p(V < v) =
1 — (14 &v/o)~1/¢ and density function on v > 0

,(l
GPD(e; €, o) = (1 +§g) e )

SHE

for tail index & > 0and scale o > 0. The generalized

theoretical justification as the limiting distribution for ex-
ceedance beyond large w for a wide family of processes
??2?7). As & — 0 the GPD converges to an exponen-
tial distribution, and for £ > 0 the tails are heavier-than-
exponential. For £ > 1/2 the variance of v is infinite, and
for £ > 1 the mean is infinite. Thus our analysis will focus
on GPD models with £ € (0, 1), so that the tail is heavy
enough to cause problems when bootstrapping? but not so
heavy that the mean does not exist.

Combining the GPD and Dirichlet-multinomial sampling
yields our semi-parametric prior for heavy tailed DGPs,

0
|0| Zelﬂ[z Q]—l— Ll GPD(Z—U; &, 0'>1[z2u]

6]

(2)
where Z = {(1 ...(1}, all elements less than w, is the sup-
port for the bulk of the DGP g(2)* and @ = [0 - - - 0141
is a vector of random weights with 6, > 0V [.°

Observations are assumed drawn independently from (2)
by first sampling /; with probability 6;, and then assigning
z; = (i, for l; < L and otherwise drawing z; — u ~ GPD.
A posterior over g is induced by the posterior over the
model parameters: 6, &, and ¢. Functionals of g, such
as E, f(z) for arbitrary function f and where E, implies
expectation over z ~ g, are thus random variables.

2.1. Inference on the sampling weights

A conjugate prior for the weights, 6, places independent
exponential distributions on each element: 6; ~ Exp(a;)
forl = 1,...,L + 1, where E[¢;] = a;, var(0;)) = a?,

*However, our development does not depend upon this spe-
cific tail model; you can replace the GPD with your preferred
distribution while makmg use of the ideas in this paper.

*If you estimate 5 ~ 0, then standard Bayesian bootstrap
methods (e.g., ?) should apply and there is no need to model a
parametric tail.

*We will often suppress 8 and write g(-) for g(-; @) unless the
weights need to be made explicit.

and we call a; > 0 the prior ‘rate’.® We use a single’

rate parameter a, such that a = [a---a]’. After observ-
ing a sample Z = [z;--- 2y, each weight remains in-
dependent in the posterior with exponential distribution

0| Z ~ Exp (a +3 ]1[11-:1])‘

We focus on the limiting prior that arises as a — 0; see
Chamberlain and Imbens (?) and Taddy et al. (??) for
discussion. This ‘non-informative’ limit yields a massive
computational convenience: as a — 0 the weights for un-
observed support points converge to a degenerate random
variable at zero: p(f; = 0|Z) = 1if [ # I; for any 4.
Our posterior for the DGP is then a multinomial sampling
model with random positive weights on only the observed
data points and on the tail model (I; = L + 1).

To simplify notation, say z; < u for ¢ < m and z; > u for
i=m+1,...,m+n with N = m + n. We then over-
load notation and re-write @ = [01,...,60.,,0,41] as the
posterior vector of weights on observations 21, . . ., 2, (all
less than ) and on the tail. We can then write a posterior
DGP realization, conditional upon GPD parameters, as

9(2) |Z §0o 3
m+1
= ]2 Za Lpesy + o) GPD(z — u; &, )15y,
iid

0; ~ Exp(1) Vi <m and 6,41 ~ Exp(n).

This defines our posterior distribution over DGPs, with de-
tails on the GPD tail posterior deferred until Section 3.

2.2. Inference for the DGP mean

The mean of g(z) is a random variable that can be written

927, m+1 g
Zw\ 0] (“*1—5)' @

Uncertainty about Ez is induced by the posterior on
weights 6 and on the mean exceedance A = o/(1 — &).
Because w is fixed, we have @ L ).

It is easy to see that By = min Szt m+n (u+EN),
while the law of total variation yields posterior variance
varpy = E[var(u|A\)] + var(IE[u|A]). Given the properties

SThis is equivalent to the more common specification of
a Dirichlet distribution on the normalized weights, written
Dir(6/|6];a) o [T,Z" (6:/161)" .

"One could also use multiple rate parameters; e.g., a larger
value a; on 0; associated with ¢; = 0 if zeros are common, or a
larger ar+1 on 61,41 corresponding to the tail data.
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of the Dirichlet posterior on 6/|6|, the first term is

S (zi = a)? Fn(u+ A — py)?
(m+n)(m+n+1)

—Epy)? + n(u+EXN—Ep)?

(m+n)m+ntD)
n?(m +n — 2)var(\)
(m+n)2(m+n+1)

Efvar(s1|\)] =

_ i

(&)

where /1) = [>i%, 2 + n(u+ A)] /(m+n) and Ep is the
posterior expectation from above. The second term is

2

var(E[u|\]) = var(\) (6)

(m+n)?
and thus the full expression is
S (2 — Ep)? + n(u+ EX — Ep)?
(m+n)im+n+1)
2n%(m +n — 0.5)
(m+n)2(m+n+1)

(7

varp =

var(\).

As detailed below, IEA and var()\) are available through ei-
ther Laplace approximation or Markov chain Monte Carlo.

3. Inference for tail parameters

In this section we describe Bayesian modeling and poste-
rior inference for the GPD parameters, £ and o, conditional
upon the sample of exceedances {v; = 2z, 4; — u}y.

As discussed above, we are focusing on heavy tails with
finite mean exceedences that correspond to £ € (0,1). On
this range, o can take any positive value. A simple inde-
pendent prior setup would then be

(0, €) = Be(; a,0)Ga(a; ¢, d)
o fa71(1 _ g)bflacflefda (8)

where Ga(- ; a,b) denotes a beta density with mean a/(a+
b) and Ga(: ; c¢,d) a gamma density with mean ¢/d, with
a,b,c,d > 0. We will work with versions of this prior
throughout, however our sampling algorithm is trivially ad-
justed to work for alternative specifications.

A useful version of (8) sets @ = b = 1 and takes the non-
informative limit ¢, d — 0 to obtain

m(0,§) =

the combination of a unit uniform on ¢ and an improper
uniform prior on log ¢. Following ? and ?, the posterior for
GPD parameters will be proper under the prior in (9) given
a minimum of three observations.® This noninformative
default is used the absence of any background information.

*]156(0 1) )]

8This holds under any prior specification that combines
7(0) o< o~ with an independent proper prior on £.

Finally, this specification combines with the GPD likeli-
hood to yield a log posterior proportional to

l(0,6) = —nlogo — (2 + 1) Zi:log (1 —&-5%) (10)

+ (a—1)logé + (b—1)log(1—¢&) + (¢c—1)log o — do,

which simplifies considerably under the model in (9).

Maximization of (10) leads to MAP estimates of the pa-
rameters, say [¢,5]. The related problem of MLE estima-
tion for GPDs is well studied by ? and his algorithm is
easily adapted for fast MAP estimation within our domain
[€,0] € (0,1) x RT.

3.1. Laplace posterior approximation

The main object of interest is actually the posterior for the
GPD mean, /(1 — £). We make the transformation

g

with inverse Jacobian |.J| = 1 — &, to obtain the posterior
P(A, €| V) (12)

ga—1lg=dA(1=¢) ( ¢ Ui)(%“)

An c+1(1_£)n b—c+1 jx

Note that the MAP estimate for \ is just A = &/(1 — ).
The Laplace approximation (?) to the marginal posterior
distribution on A is available as

N(A-Villsg)- (13)

where V, is the curvature of the log posterior °
spect to \. Thus

pAx) =

with re-

Vs . (14)

— 3 [n—c-ﬁ-l-}—<2+1>Z(@2_2@)1_17

i

var(A | x) = —

with ¢; = 51)1/ [(
terior variance for \.

))\ + & vl} , is the approximate pos-

3.2. Independence-MH via the parametric bootstrap

For small tail samples the Laplace approximation will dra-
matically underestimate posterior uncertainty. Instead, we
propose a novel independence Metropolis Hastings (i-MH)
algorithm (see, e.g., ?) that uses a parametric bootstrap of

*Via 8logp(\, &|v )0\ = [(1/§+1)z gi—n+c—1]/x -
d(1—¢&) where ¢; = &vi/ [(1 — &)X + Evy).
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the MAP estimates as a proposal distribution in Markov
Chain Monte Carlo. This approach is similar in spirit to the
bootstrap reweighting of (?), but unlike that work it does
not require an analytic expression for the sampling distri-
bution of the statistics of interest. The algorithm proceeds
as follows.

e Fit the MAP parameter estimates [£, 5].

e Obtain B draws [fb, &) from the parametric bootstrap:

— Generate a sample of size n by simulating from
the MAP estimated GPD model.

— Obtain new MAP estimates [¢,, 5] conditional
upon this simulated sample.

e Estimate the bivariate bootstrap distribution, say
(¢, 0), via kernel smoothing on {&, 63} ;.

e Forb=2...B,replace [fb, &p) with [éb,h Gp—1] with
probability

- {r<§b_1,&b_1>e>fp[l<éb,&b>] 1}
r(&, ) expll(&p—1,64-1)]

where [ is the log posterior objective in (10).!°

In addition to being fast and simple, this algorithm offers a
bridge between Bayesian and frequentist inference: if the
acceptance probabilities are high, then there is little differ-
ence between the sampling distribution and the posterior.

4. A semiparametric heavy tailed bootstrap

This section studies a bootstrap algorithm that is closely re-
lated to our semiparametric Bayesian procedure. Consider
frequentist inference about Q= /N (fiy — ) for a sam-
ple of N observations drawn from true distribution function
F(z), with [* 2dF(z) = i < oo and where fiy denotes
the MLE for p based upon a size-IN sample from F'.

A frequentist bootstrap replaces F' ~ ﬁN and uses this to
obtainb = 1, ..., B draws of Q% = v/ N(ji% —fin ) where
1% is the MLE based upon a size-N sample from ﬁN. The
targeted sampling distribution, Gn(q) = p(Qn < ¢q), is
then estimated as G x(¢) = B~' Y1, Lige <q)-

Standard results on bootstrap consistency (??) require that
G converges in distribution (i.e., weakly) to G uni-
Jormly across all Fy in a neighborhood, say F, containing
F and also F'y for N big enough.'" Convergence in prob-
ability for Fiy(z) to F(z) Vz then implies consistency of

!0This ‘rejection’ probability — the probability of not moving
states — is equal to one minus the familiar acceptance probability.
""In addition, the mapping F — G, must be continuous.

Gy inthat, as N — oo, p(|Gn(q) — Gn(q)| < €) — 0 for
all ¢,e > 0.

? shows that the nonparametric bootstrap — using the em-
pirical distribution function (EDF) as FN — is inconsistent
for the distribution of the sample mean for data that has
infinite variance. As explained by ?, in this setting G
based upon samples from Fx does not converge uniformly
to G because sums of the largest re-sampled observa-
tions, Zf\; Ner Z?z') for » > 1, can be dominated by repeats
of the largest sample observation, z(x).

Instead, define a semiparametric bootstrap that takes the
MLE tail parameters, [¢,,, 6], and forb=1,..., B

e draw my, ~ Bin(m/N, N) and set n, = N — my;

e sample with replacement m; observations z; where

i<m(e.,z <u),say {z},...,25 }

e generate v} ...v5 from GPD(&,, 6,) and obtain the
corresponding MLE, A, = &% /(1 — €% ); and

e set ﬂll’v = (Z;-ibl zi, + np(u + 5\?%)) /N.

The results can then be applied in estimation of the sam-
pling distribution, e.g., for /N (fix — 1) as approximately
equal to the sampled distribution on v/ N (,azj\, —AN).

The distribution for fiy implied by our semiparametric
bootstrap is the combination of three bootstrap estimators,
for distributions on % Zi\il 21|z, <y}, on m/N, and on
M. Consistency of the nonparametric bootstrap for the
first two statistics!? can be established through standard ar-
guments (?). To show consistency for our semiparametric
bootstrap, we need to confirm that the parametric bootstrap
using Fy(z — ulz > u) = GPD(&,, 6,,) converges to the

correct distribution for \,,.

? considers DGPs with distribution functions F'(z) = 1 —
cz=VC(14+279L(2)), where ¢,§ > Oand L(tz)/L(z) — 1
with z — oo for t > 0. This defines a wide class of heavy
tailed distributions, and for u large enough the distribu-
tion F'(z — un|z > un) approaches a GPD(&, o) where
on = uné. Following the same steps as Johansson, which
apply results from ? on the asymptotic distribution for
MLEs [£,,, 6], you can show that for F'(z) with £ € (0,1)
and z~% L(z) non-increasing, if uy = O(N¢/(1+209)) then

V(A — Eplz — un|z > un]) =a N(0,q,)  (15)

where ¢, = on(1 + &)(1 — &€+ 262)/(1 — €)% Thus
our bootstrap sample generator, GPD(¢,,, 6,,), converges

2The first is the mean from sampling a bounded domain, the

second is the proportion of successes in a binomial trial of size N.
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to F(z — un|z > uy) along a sequence of distributions
with means \,, that are asymptotically normal around the
target of interest, Ep[z — un|z > uy]. From ?, this is
enough to establish consistency of this tail bootstrap, and
hence of our full semiparametric bootstrap.

Intuitively, the parametric tail bootstrap succeeds here be-
cause our MLEs allow us to converge quickly to the ‘true’
GPD model; inference is then based upon new samples
from this distribution and, unlike resamples from the EDF,
these are not overly influenced by large order statistics in
the original sample. From (15), this convergence holds so
long as uy is growing at the right rate. Theoretically, the
true GPD tail that we converge to with uy has oy = up.
One can compare this oy to &,,, the sample MLE for the
same parameter, to see if they roughly agree. If not, uy
might need to increase. In practice, however, we also ad-
vocate repeating inference over a range of thresholds u and
using results from the region where they stabilize.

We now return to a Bayesian framework for the remain-
der of this article, but the reader who is interested in fre-
quentist inference may feel free to use the semiparametric
bootstrap of this section instead. The two algorithms are
very closely related: there is little difference between the
Bayesian bootstrap and the nonparametric bootstrap on the
bulk of the distribution (?) and the i-MH sampler of Sec-
tion 3.2 explicitly agrees with the frequentist parametric
tail bootstrap whenever acceptance probabilities are close
to one. Given this connection, the discussion above indi-
cates that our semiparametric Bayesian inference will also
have good frequentist properties in large samples.

5. A/B Experiments

Our motivating application for these ideas involves A/B ex-
periments: two independent heavy tailed samples are ob-
tained, one from a group receiving a treatment and another
from a group receiving a control. The object of interest is
then

Y= H1— o (16)

where pq is the mean of the treatment group and g the
mean of the control group.

Our main inferential target is the average treatment effect
in an A/B experiment: the difference in average response,
say z, between a group that received some treatment (e.g., a
change to the website, some marketing, a new search algo-
rithm) and a control group that experiences the status quo.
That is, for a binary treatment indicator d, where d; = 1
for treated and d; = 0 for untreated, we seek to estimate
the treatment group means py = IE[z|d] and the average
treatment effect

v = p1 — Mo (17)
We wish to estimate and test for v # 0 in a setting where

each treatment group has var(z|d) = co.

A standard analysis estimates v with Z; — Z, the difference
of sample means. A naive standard error for this estimate
is \/sse(z0) /NG + sse(z1) /N2, where Ny = mg + ng in
the notation from above: mg and ng, are the numbers of
observations below and at-or-above the tail cutoff, respec-
tively. The results for such an analysis are shown in Figure
2; out of our 72 experiments there are 8 significant p-values
at a 10% False Discovery Rate. However, both point and
standard-error estimates here will be sensitive to extreme
values in the sample. Moreover, the standard error formula
is incorrect for distributions with infinite variance, where
the learning rate is less than /Ng.

there is a prior belief that the experiments do not make
much of a difference in the tail. That is, we suspect that
in most cases the users spending a lot of money will act the
same regardless of what website experience they are met
with. Unfortunately, for infinite variance data it is common
that a few very large observations can have an outsized in-
fluence on the mean estimates (and those of ). Thus we
wish to accurately quantify uncertainty in the presence of
heavy tails and avoid having them overly influence our in-
ference.

5.1. Tail analysis results

Using a cutoff of v = 2000, we analyzed the exceedances
across our 72 experiments. Four example experiments are
in Figure 3; each analysis used 10,000 iterations of the I-
MH sampler.

e Compared to results for the MCMC (I-MH) posterior
samples, the Laplace approximation variance is far too
small.

e The parametric bootstrap proposal distribution is very
similar to the I-MH sampler. Indeed, 85% of our
experiments the average acceptance probability was
greater than 0.9. Thus our tail analysis is very similar
to that of a parametric bootstrap.

e Posterior predictive fits look good. As predicted by
extreme value theory, these improve even more for
larger u (e.g., v = 3000) at the expense of smaller
tail-sample-sizes.

e All tail indices £ have 100% of posterior weight be-
tween 0 and 1. This implies that the exceedences have
a finite mean but infinite variance.

5.2. Semiparametric Bayesian results

Combining the parametric tail analysis with nonparametric
inference below the cutoff, we obtain a new set of effect and
uncertainty estimates. The plot in Figure 4 shows inference
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Figure 2. Inference using naive sample mean differences and standard errors.

analogous to our earlier results in Figure 2 (we are abusing
concepts and reporting standardized effects and p-values
based on the Bayesian posterior moments). The significant
effect estimates are roughly similar: we’d make nearly the
same decisions at 10% FDR. However, there are bigger dif-
ferences than it first appears. In the next section we see, for
example, that the naive confidence intervals can be far dif-
ferent from the correct posterior intervals.

5.3. Capping

We now investigate the effect of capping on estimation. In
this procedure, one replaces response values above a cer-
tain ‘cap’ with that value. It is viewed as a variance re-
duction technique. Results for four of our experiments are
shown Figure 5; in each the naive sample mean differences
and standard errors are applied to the capped values, as well
as to the raw uncapped values (red line), and we compare
to the semiparametric Bayesian analysis (for v = 2000).

e The point estimates from higher capped values are
near to the posterior mean than those from either low
caps or the uncapped values.

e The capped value standard errors are always much
smaller than the true posterior standard deviation.
Note that these standard errors are correct for the mean
of capped values; it is for the true overall mean —
our object of interest — that they underestimate uncer-
tainty.

e A safe-ish procedure appears to be to use a high cap to
get the point estimate, but use the standard error cal-
culated on the raw values to assess uncertainty. Note

that, since we’re learning at a rate < v/ N, these values
still likely tend to underestimate uncertainty.

5.4. Sensitivity to cutoff

We consider how the semiparametric Bayesian analysis re-
sponds to changes in the tail cutoff, u. Figure 6 shows that
results are quite stable to this choice; e.g., compare to figure
3 to see that the capping procedure is much more sensitive
even over this limited range.

6. Extensions

There are some nice things we could do with this.

6.1. Hierarchical modeling

We (or rather eBay analysts) have a strong prior that the
treatments do not make much of a difference in the tail. We
could build this into the analysis by shrinking all of the tails
to an overall mean. An efficient Empirical Bayes procedure
would first calculate a GPD model for the aggregate tail,
then use this to create a ‘prior’ model for the individual
tail GPD parameters. You could also have things evolve in
time, etc.

6.2. Heavy tailed regression

These same considerations apply to any regression model
that we might want to fit where the response is heavy tailed
(e.g., if the response is GMB). It would be good to look
at both ordinary least-squares (OLS) and trees (CART, ran-
dom forests) to see what we can improve.
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Figure 3. Tail analysis for exceedances beyone z = 2000. The left panel shows the histograms of exceedances by treatment group, the
center panel shows both Laplace approximate and Independence MH posterior distributions for the treatment effect in the tail (A1 — Ao),
and the right plot compares quantiles for the observed tail data in the treatment group to those of a posterior predictive sample of the
same size. The dashed lines in the center panel are the parametric bootstrap proposal distribution.
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Figure 4. Posterior inference results when combining the parametric tail analysis with nonparametric inference below the cutoff at
u = 2000. The ‘effects’ here are posterior means, while the ‘se’ are posterior standard deviations. For comparison with Figure 2, we
report results on the the same scale of standardized effects and Normal distribution ‘p-values’.

7. Conclusion

This is great Big Data analysis: avoiding modeling and dif-
ficulty for the easy bits (the middle of the distribution), and
applying good solid statistical modeling on the hard bits
(the tail). Since the posterior distribution and the paramet-
ric bootstrap for the tail models are virtually indistinguish-
able, you don’t need to be Bayesian to buy the conclusions.

A. MAP estimation under the default prior

Maximization of the log posterior in (10) is unaffected by
a re-parametrization13, so we make the convenient trans-
lation « = 1/£ and 7 = £/0 to obtain the maximization
objective

l{a,7) = (n+ 1)(log o + log 7) (18)
—(a+1) Zlog(l + Tv;).

(2

A similar replacement is advocated for maximum likeli-
hood estimation in (?)'#. The gradient with respect to o

Note that we are just solving for a maximum, not translating
the distribution to a different parameter space.
YWhere k = —¢.

is
n

+1
= — log(1 ). 1
Va " zZ: og(l+ 7v;) (19)

This is solvable as a function of 7, so that at the maximum
of (18) we can make the replacement

. n+1
o Yo log (14 7v;)

By substitution into (18), the resulting profile objective
function is then proportional to

a(T) (20)

1) = loglra(r)] - 57 @
with gradient
v, =" Gy o 22)
T T 1+ 7o

Obtaining roots for V. over the domain 7 > 0 is straight-
forward. We just note that MAP 7 will be very small for
many fat tailed datasets and thus you need to set an appro-
priately small convergence tolerance (102 is fine for our
examples). Finally, the roots for (22) yield MAP estimates

[5, &} _ [1 L ] . (23)

a(r)’ 7a(r)
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