
Homework 2

Due June 1st at 1pm.

For t = 1, . . . , n, let us consider the following version of a
local-level dynamic linear model:

yt = xt + vt

xt = φxt−1 + wt wt
iid∼ N(0, τ2),

with x0 ∼ N(m0, C0).

We consider two possible structures for v1, . . . , vn:

M1 : vt ∼ πN(0, σ2) + (1− π)N(0, κ2σ2),

M2 : vt ∼ tν(0, σ2),

where π ∈ (0, 1), κ > 0 and ν > 0.

1 / 14



Data augmentation

Notice that vt ∼ πN(0, σ2) + (1− π)N(0, κ2σ2) can be
rewritten as

vt|λt ∼ N(0, σ2
λt) and λt

iid∼ Ber(π)

where σ2
t = σ2

λt
with σ2

0 = σ2 and σ2
1 = κ2σ2.

Similarly, vt ∼ tν(0, σ2) can be rewritten as

vt|λt ∼ N(0, λtσ
2) and λt ∼ IG(ν/2, ν/2).

Conditionally on {λt}nt=1, both models are standard normal
dynamic linear models (NDLMs).
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Prior

We will assume that

p(φ, σ2, τ2, π, κ|M1) = p(φ)p(σ2)p(τ2)p(π)p(κ)

p(φ, σ2, τ2, ν|M2) = p(φ)p(σ2)p(τ2)p(ν)

where
σ2 ∼ IG(ν0/2, ν0σ

2
0/2)

τ2 ∼ IG(η0/2, η0τ
2
0 /2)

π ∼ U(0, 1)

κ2 ∼ IG(a, b)

ν ∼ uniform on {1, 2, . . . ,m}

p(φ) ∝ 1
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MCMC

Let yn = (y1, . . . , yn) and xn = (x1, . . . , xn).
Let θ1 = (x0, φ, σ

2, τ2, π, κ) and θ2 = (x0, φ, σ
2, τ2, ν).

Derive MCMC schemes to sample from

p(xn, θ1|yn,M1) and p(xn, θ2|yn,M2),

by taking into account that the latent variables {λt}nt=1

facilitate the derivation of easy-to-sample full conditional
distributions.

4 / 14



Simulation exercises

In order to test both algorithms, simulate two sets of
n = 200 observations, one from M1 and one from M2, with
the following specifications:

M1 : θ1 = (0.0, 0.9, 1.0, 1.0, 0.9, 2.0)

M2 : θ2 = (0.0, 0.9, 1.0, 1.0, 4.0)

Run your MCMC schemes for 20,000 draws and discard the
first half as burn-in. Use the true values as initial values for
the fixed parameters θ1 and θ2.
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Suggestion

First run your code assuming the fixed parameters are
known since

p(xn|θ, yn,Mi), i = 1, 2,

are the more involving full conditionals. Well, not really!
You can use the augmented latent variables (λ1, . . . , λn) to
neatly derive quite standard FFBS schemes.

Then breaking

p(θ|xn, yn,Mi), i = 1, 2,

into univariate full conditionals should be straightforward.
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Presentations

Two of the three 3-person groups will be selected at the
beginning of the class on June 1st to present the results of
the two models (one model each group). The third group is
off the hook, but that will be known only right before the
presentations.

Be ready to describe your simulation and your code.

Each presentation will last at most 15 minutes.
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Sampling x0, φ and τ 2

For both models M1 and M2, the full conditional distributions of x0, φ and
τ2 are identical.

[τ2| · · · ] ∼ IG
(
η0 + n

2
,
η0τ20 +

∑n
t=1(xt − φxt−1)2

2

)

[x0| · · · ] ∼ N
{(

1

C0
+
φ2

τ2

)−1 (
m0

C0
+
φx1

τ2

)
;

(
1

C0
+
φ2

τ2

)−1
}

[φ| · · · ] ∼ N
{∑n

t=1 xtxt−1∑n
t=1 x

2
t−1

; τ2
1∑n

t=1 x
2
t−1

}
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Sampling x1, . . . , xn jointly

For both models M1 and M2, the full conditional distribution of x1, . . . , xn
is obtained by assuming that σ2 (the observational variance) is replaced by
σ2
t . Starting with x0|D0 ∼ N(m0, C0), it follows by induction that, given
xt−1|Dt−1 ∼ N(mt−1, Ct−1), then

xt|Dt−1 ∼ N(at, Rt), at = φmt−1, Rt = φ2Ct−1 + τ2

yt|Dt−1 ∼ N(ft, Qt), ft = at, Qt = Rt + σ2
t

xt|Dt ∼ N(mt, Ct), mt = (1−At)at +Atyt, Ct = Rt −A2
tQt

where At = Rt/Qt. Then, backward sampling is performed by first sampling
xn from N(mn, Cn) and then, for t = n− 1, n− 2, . . . , 3, 2, 1 sampling

xt|xt+1, Dt ∼ N
{(

φ2

τ2
+

1

Ct

)−1 (
φxt+1

τ2
+
mt

Ct

)
;

(
φ2

τ2
+

1

Ct

)−1
}

In model M1, σ2
t = (κ2)1−λtσ2 with λt = 1 or λt = 0.

In model M2, σ2
t = λtσ2, where λt > 0.

In both cases σ2
t equals σ2 times a function of λt.
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Sampling σ2

Using the results from the previous slide, we can easily define

ỹt =
yt√

(κ2)1−λt
and x̃t =

xt√
(κ2)1−λt

for model M1, and

ỹt =
yt√
λt

and x̃t =
xt√
λt

for model M2. Therefore, under both models, the observation equation
become

ỹt = x̃t + ut ut ∼ N(0, σ2)

whose likelihood for σ2 is L(σ2) ∝ (σ2)−n/2 exp
{
−
∑n
t=1(ỹt − x̃t)2/2σ2

}
.

Combining this likelihood with the IG(ν0/2, ν0σ2
0/2) prior for σ2, leads to the

full conditional

[σ2| · · · ] ∼ IG
(
ν0 + n

2
,
ν0τ20 +

∑n
t=1(ỹt − x̃t)2

2

)
.
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Sampling π and ν

Under model M1, the full conditional distribution of π is

[π| · · · ] ∼ Beta

(
n∑
t=1

λt, n−
n∑
t=1

λt

)
.

Under model M2, the full conditional distribution of ν is

Pr(ν = m| · · · ] ∝
n∏
t=1

[
(m2 )

m
2

Γ(m2 )
λ
−(m

2
+1)

t exp

{
− m

2λt

}]

11 / 14



Sampling κ

Without loss of generality, assume that, under model M1, ỹ1, . . . , ỹs and
x̃1, . . . , x̃s are the s observations and corresponding s states where λt = 0.

Let

˜̃yt =
ỹt

σ
and ˜̃xt =

x̃t

σ
,

for t = 1, . . . , s.
Therefore, the observation equation become

˜̃yt = ˜̃xt + ut ut ∼ N(0, κ2)

whose likelihood for κ2 is L(κ2) ∝ (κ2)−s/2 exp
{
−
∑s
t=1(˜̃yt − ˜̃xt)2/2κ2

}
.

Combining this likelihood with the IG(a, b) prior for κ, leads to the full
conditional

[κ2| · · · ] ∼ IG
(
a+ s/2, b+ (˜̃yt − ˜̃xt)

2/2
)
.
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Sampling λ1, . . . , λn

Under model M1, it is easy to see that, for t = 1, . . . , n,

Pr(λt = 1| · · · ) ∝ πpN (yt;xt, σ
2)

Pr(λt = 0| · · · ) ∝ (1− π)pN (yt;xt, κ
2σ2),

so
(λt| · · · ) ∼ Ber(πt)

where

πt =
πpN (yt;xt, σ2)

πpN (yt;xt, σ2) + (1− π)pN (yt;xt, κ2σ2)

Similarly, under model M2, it follows that, for t = 1, . . . , n,

p(λt| · · · ) ∝ λ−(ν/2+1)
t exp{−ν/2λt}pN (yt;xt, λtσ

2),

so

[λt| · · · ] ∼ IG
(
ν + 1

2
,
ν + (yt − xt)2

2

)
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MCMC for M1

Initial values:

x
(0)
0 = y1, x

(0)
t = yt, λ

(0)
t = 1, for t = 1, . . . , n, κ(0) = 1, φ(0) = φ̂ols and τ2(0) = τ̂2ols.

Cycle through the following steps:

• [σ2] ∼ IG
(
0.5(ν0 + n), 0.5(ν0τ

2
0 +

∑n
t=1 wt(yt − xt)

2)
)
, with wt = κλt−1.

• [λt] ∼ Ber
(

πpN (yt;xt,σ
2)

πpN (yt;xt,σ
2)+(1−π)pN (yt;xt,κ

2σ2)

)
.

• [π] ∼ Beta
(∑n

t=1 λt, n−
∑n
t=1 λt

)
.

• [τ2] ∼ IG
(
0.5(η0 + n), 0.5(η0τ

2
0 +

∑n
t=1(xt − φxt−1)

2)
)
.

• [x0] ∼ N{V−1
0

(
C−1

0 m0 + τ−2φx1

)
;V−1

0 }, where V−1
0 = C−1

0 + φ2/τ2.

• [φ] ∼ N{(
∑n
t=1 xtxt−1)s

−2
x ; τ2s−2

x }, where s2x =
∑n
t=1 x

2
t−1.

• [κ2] ∼ IG
(
a + s

2
, b +

∑n
t=1 wt(yt−xt)

2

2σ2

)
, with wt = 1− λt and s =

∑n
t=1 wt.
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