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1 Introduction

Bayesian model comparison is commonly performed by computing posterior
model probabilities. More precisely, suppose that the competing models can be
enumerable and are represented by the set M = {M1,M2, . . .}. Under model
Mk, the posterior distribution is

p(θk|y, k) =
p(y|θk, k)p(θk|k)

p(y|k)
(1)

where p(y|θk, k) and p(θk|k) represent the probability model and the prior dis-
tribution of the parameters of model Mk, respectively. The computation of
predictive densities

p(y|k) =
∫

Θk

p(y|θk, k)p(θk|k)dθk

lies at the heart of the model selection and comparison problem since they are
used to compute the Bayes factors and, consequently, posterior odds ratios,

Pr(k|y)
Pr(k′|y)︸ ︷︷ ︸

Posterior Odds

=
p(y|k)
p(y|k′)︸ ︷︷ ︸

Bayes Factor

× Pr(k)
Pr(k′)︸ ︷︷ ︸

Prior odds

A variety of methods are available for computing these marginal data den-
sity values – often referred to as the normalising constant problem. Some are
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specific to analysis based on MCMC methods for each individual sub-model,
and some are generic and based on analytic and asymptotic arguments. A re-
view of some standard methods appears in Kass and Raftery (1995), where
the connections between various methods of approximating Bayes’ factors us-
ing combinations of analytic and asymptotic arguments are explored. We list
here just a few of them: (i) the so-called candidate formula (Chib, 1995), (ii)
the harmonic mean estimator (Newton and Raftery, 1994), (iii) Gelfand and
Dey’s estimator (Gelfand and Dey, 1994), (iv) the Laplace-Metropolis estimator
(Lewis and Raftery, 1997), and various novel approaches based on the recent
innovative developments in (v) bridge sampling (Meng and Wong, 1996). Ad-
ditional useful references in this general area include, for example, Gilks et al.
(1996), DiCiccio et al. (1997) and Godsill (1998), which study comparisons and
connections between some of the various methods just referenced. Gamerman
and Lopes (2006) provide detailed description and worked examples that utilize
the estimators listed here as well as several others that appeared more recently.

We also introduce the Reversible Jump Markov Chain Monte Carlo (here-
after RJMCMC, see Green (1995)) algorithm for moving between models with
different numbers of factors. RJMCMC approaches avoid the need for comput-
ing marginal data densities by treating the number of factors as a parameter,
but require ingenuity in designing appropriate jumping rules to produce com-
putationally efficient and theoretically effective methods.

2 Reversible jump MCMC

We present the Reversible Jump algorithm as introduced in Green (1995).
Among many others, Richardson and Green (1997), Dellaportas et al. (1998),
Denison et al. (1997), Troughton and Godsill (1997), Insua and Müller (1998),
Barbieri and O’Hagan (1996) and Huerta and West (1999) applied the reversible
jump sampler to mixture models, variable selection, curve fitting, autoregressive
models, neural networks, ARMA models and component structure in AR mod-
els, respectively. We also explore its relationship to Carlin and Chib’s (1995)
pseudo-prior method. Particular attention is given to the Metropolized Carlin-
Chib algorithm simultaneously introduced by Dellaportas et al. (1998) and
Godsill (1998). The results presented here are mainly based on the develop-
ments from Dellaportas et al. (1998) and Godsill (1998). Additional overview
and/or further extensions can be found in Chen et al. (2000), Section 9.5, and
Gamerman and Lopes (2006), Section 7.3.

The RJMCMC algorithm

Suppose that the competing models can be enumerable and are represented by
the set M = {M1,M2, . . .}. Under model Mk, the posterior distribution is

p(θk|y, k) ∝ p(y|θk, k)p(θk|k) (2)
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where p(y|θk, k) and p(θk|k) represent the probability model and the prior dis-
tribution of the parameters of model Mk, respectively. Then,

p(θk, k|y) ∝ p(k)p(θk|k, y) (3)

The RJMCMC methods involve Metropolis-Hastings type algorithms that
move a simulation analysis between models defined by (k, θk) to (k′, θk′) with
different defining dimensions k and k′. The resulting Markov chain simulations
jump between such distinct models and form samples from the joint distribution
p(θk, k). The algorithm are designed to be reversible so as to maintain detailed
balance of a irreducible and aperiodic chain that converges to the correct target
measure. Further details of the general methodology and ideas can be found in
Green (1995).

Here we present the algorithm in a schematic form. If the current state of the
Markov chain is (k, θk), then one possible version of the RJMCMC algorithm is
as follows:

Step 1. Propose a visit to model Mk′ with probability J(k → k′).

Step 2. Sample u from a proposal density q(u|θk, k, k′).

Step 3. Set (θk′ , u
′) = gk,k′(θk, u), where gk,k′(·) is a bijection between (θk, u)

and (θk′ , u
′), where u and u′ play the role of matching the dimensions of

both vectors.

Step 4. The acceptance probability of the new model, (θk′ , k
′) can be calculated

as the minimum between one and

p(y|θk′ , k
′)p(θk′)p(k′)

p(y|θk, k)p(θk)p(k)︸ ︷︷ ︸
model ratio

J(k′ → k)q(u′|θk′ , k
′, k)

J(k → k′)q(u|θk, k, k′)

∣∣∣∣
∂gk,k′(θk, u)

∂(θk, u)

∣∣∣∣
︸ ︷︷ ︸

proposal ratio

(4)

Looping through steps 1-4 generates a sample {kl, l = 1, . . . , L} for the model
indicators and Pr(k|y) can be estimated by

P̂ r(k|y) =
1
L

L∑

l=1

1k(kl) (5)

where 1k(kl) = 1 if k = kl and zero otherwise. The choice of the model proposal
probabilities, J(k → k′), and the proposal densities, q(u|k, θk, k′), must be
cautiously made, especially in highly parameterized problems.

Independent sampler: If all parameters of the proposed model are generated
from the proposal distribution, then (θk′ , u

′) = (u, θk) and the Jacobian
in (4) is one.
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Standard Metropolis-Hastings: When the proposed model k′ equals the cur-
rent model k, the loop through steps 1-4 corresponds to the traditional
Metropolis-Hastings algorithm (Metropolis et al., 1995; Hastings, 1970;
Peskun, 1973; Chib and Greenberg, 1995).

Posterior densities as proposal densities: If p(θk|y, k) is available in close form
for each model Mk, then q(u′|θk′ , k

′, k) = p(θk|y, k) and the acceptance
probability (equation 4) reduces to the minimum between one and

p(k′)p(y|k′)
p(k)p(y|k)

J(k′ → k)
J(k → k′)

(6)

using the fact that p(y|θk, k)p(θk)p(k) = p(θk, k|y)p(y|k). Again, the Ja-
cobian equals one. The predictive density or normalizing constant, p(y|k),
is also available in close form. Moreover, if J(k′ → k) = J(k → k′), the ac-
ceptance probability is the minimum between one and the posterior odds
ratio from model Mk′ to model Mk, that is the move is automatically
accepted when model Mk′ has higher posterior probability than model
Mk; otherwise the posterior odds ratio determines how likely is to move
to a lower posterior probability model.

Metropolized Carlin and Chib’s algorithm

Let Θ = (θk, θ−k) be the vector containing the parameters of all competing
models. Then the joint posterior of (Θ, k) is

p(Θ, k|y) ∝ p(k)p(y|θk, k)p(θk|k)p(θ−k|θk, k) (7)

where p(θ−k|θk, k) are pseudo-prior densities (Carlin and Chib, 1995). Carlin
and Chib propose a Gibbs sampler where the full posterior conditional distrib-
utions are

p(θk|y, k, θ−k) ∝
{

p(y|θk, k)p(θk|k) if k = k′

p(θk|k′) if k = k′ (8)

and
p(k|Θ, y) ∝ p(y|θk, k)p(k)

∏

m∈M
p(θm|k) (9)

Notice that the pseudo-prior densities and the RJMCMC’s proposal densities
have similar functions. As a matter of fact, Carlin and Chib suggest using
pseudo-prior distributions that are close to the posterior distributions within
each competing model.

The main problem with Carlin and Chib’s Gibbs sampler is the need of
evaluating and drawing from the pseudo-prior distributions at each iteration of
the MCMC scheme. This problem can be overwhelmingly exacerbated in large
situations where the number of competing models is relatively large (See Clyde,
1999, for applications and discussions in variable selection in regression models).
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To overcome this last problem Dellaportas et al. and Godsill (1998) proposes
“Metropolizing” Carlin and Chib’s Gibbs sampler. If the current state of the
Markov chain is at (θk, k), then they suggest proposing and accepting/rejecting
a move to a new model in the following way:

Step 1. Propose a new model Mk′ with probability J(k → k′).

Step 2. Generate θk′ from the pseudo-prior p(θk′ |k).

Step 3. The acceptance probability of the new model, k′ can be calculated as
the minimum between one and

p(y|θk′ , k
′)p(k′)J(k′ → k)

∏
m∈M p(θm|k′)

p(y|θk, k)p(k)J(k → k′)
∏

m∈M p(θm|k)

which can be simplified to

p(y|θk′ , k
′)p(k′)J(k′ → k)p(θk′ |k′)p(θk|k′)

p(y|θk, k)p(k)J(k → k′)p(θk|k)p(θk′ |k)
(10)

since the other pseudo-prior densities cancel out.

Once again, if p(θk|y, k) is available in close form for each model Mk, and
p(θk|k′) = p(θk|y, k), then the acceptance probability in (10) reduces to (6). As
we have mentioned earlier the pseudo-prior densities and the RJMCMC’s pro-
posal densities have similar functions and the closer their are to the competing
models’ posterior probabilities the better the sampler mixing.
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