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MC in the 40s and 50s

Stan Ulam soon realized that computers could be used in this
fashion to answer questions of neutron diffusion and
mathematical physics;

He contacted John Von Neumann and they developed many
Monte Carlo algorithms (importance sampling, rejection
sampling, etc);

In the 1940s Nick Metropolis and Klari Von Neumann designed
new controls for the state-of-the-art computer (ENIAC);

Metropolis and Ulam (1949) The Monte Carlo method. Journal of the American Statistical Association.
Metropolis et al. (1953) Equations of state calculations by fast computing machines. Journal of Chemical
Physics.
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Example 0. 7 =7
Draw a square of side L = 2 (area=4).
Draw a circle of radius R = 1 inside the square (area=m).
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Monte Carlo idea

Randomly toss a bunch of (black) beans in the square.

Let p be the proportion of beans in the circle.

Simple rule:
Area Total
Square 4 1
Circle T p

Therefore 4p should converge to 7.
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Riemann sum
From the standard normal density

1
/ exp{—0.5x*}dx = 1

0o V2T

it is easy to see that

=2 {/Ooo exp{—0.5x2}dx}2

Then, assuming that 10 is pretty close to co, a simple Reimann

sum approximation to 7 is

2

N
2<h Z exp{—0.5x?}

i=1

with x; = h/2, xy =10 — h/2 and h=x, — x3.
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Main slide of this tutorial

MC methods are very powerful computational tools.

Never replace analytical solutions with MC approximations.

When using MC solutions beware of its slow convergence rate.

11
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Monte Carlo methods

In two lectures we introduce several Monte Carlo (MC)
methods for integrating and/or sampling from nontrivial
densities.

e MC integration

e Simple MC integration

e MC integration via importance sampling (IS)
e MC sampling

e Rejection method

e Sampling importance resampling (SIR)
e |terative MC sampling

e Metropolis-Hastings algorithms
e Simulated annealing
e Gibbs sampler

Lectures based on the book by Gamerman and Lopes (1996).

175 / Q0
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A few references

MC integration (Geweke, 1989)

Rejection methods (Gilks and Wild, 1992)

SIR (Smith and Gelfand, 1992)
Metropolis-Hastings algorithm (Hastings, 1970)
Simulated annealing (Metropolis et al., 1953)
Gibbs sampler (Gelfand and Smith, 1990)
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Two main tasks

@ Compute high dimensional integrals:

E;[h(0)] = /h(0)7r(9)d9
® Obtain
a sample {01, ...,0,} from 7(6)
when only
a sample {01, ...,0,} from q(0)

is available.

q(0) is known as the proposal/auxiliary density.

14 / Q0O



Bayes via MC

MC methods appear frequently, but not exclusively, in modern
Bayesian statistics.

Lo ks Posterior and predictive densities are hard to sample from:

f(x|6)p(6)
f(x)

Predictive f(x):/f(x|0)p(c9)d9

Posterior : 7(0) =

S Other important integrals and/or functionals of the posterior

mixture

e and predictive densities are:
e Posterior modes: maxy 7(6);

e Posterior moments: E;[g(0)];

Density estimation: 7(g(0));
Bayes factors: f(x|Mo)/f(x|M1);
Decision: maxy [ U(d, 0)7(0)d6.

15 / QN
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The objective here is to compute moments

E.[h(0)] = / h(0)7(0)d0

If 61,...,0, is a random sample from () then
_ 1
hme = — h(6; E.lh .
 DoH0) O] asn o

If, additionally, E;[h?(6)] < oo, then

wmazi/mw—aMwm%@w

Ve = % SO(h(0) = Bme)? — Valbme] a5 11— oo,

16 / 20



MC
integration

Example i.

The objective here is to compute!
1
p— / [cos(500) + sin(206)]%d6
0
by noticing that the above integral can be rewritten as
E.[h(0)] = / h(0)7(0)d0

where h(6) = [cos(500) + sin(200)]? and 7(#) = 1 is the
density of a U(0,1). Therefore

where 01,...,60, are i.i.d. from U(0,1).

True value is 0.965.
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The objective is still the same, ie to compute
EA(h(6)] = [ h(6)x(0)do

by noticing that

Do) = [ P a(0)do

where g(-) is an importance function.

10 / 20
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Example ii.

The objective here is to estimate

oo
1
= Pr(0 >2) = ——————df = 0.1475836
p=Pr(0>2) /2 (1 +67)
where 0 is a standard Cauchy random variable.

A natural MC estimator of p is
By = lzn:/{e-e (2,00)}
pP1 = n — i )

where 01, ...,60, ~ Cauchy(0,1).

271 / Q0
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A more elaborated estimator based on a change of variables

fromfOtou=1/0is

where vy, ..., up ~ U(0,1/2).

27 /20



MC via IS

The true value is p = 0.147584.

: I
100 0.100000 0.1467304 0.030000 0.001004
1000 0.137000 0.1475540 0.010873 0.000305
10000 0.148500 0.1477151 0.003556 0.000098
100000 | 0.149100 0.1475591 0.001126 0.000031
1000000 | 0.147711 0.1475870 0.000355 0.000010

With only n = 1000 draws, po has roughly the same precision
that p1, which is based on 1000n draws, ie. three orders of

magnitude.

277 / Q0



Rejection method
The objective is to draw from a target density

Two main tasks 71'(9) = C7|—7'~['(9)
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when only draws from an auxiliary density

Rejection = a
i q(0) = cq(0)

is available, for normalizing constants ¢, and cq.
3-component
mixture
2-component If there exist a constant A < oo such that

(0

MH algorithms 0 S ..,( ) S 1 for all 8
Simulated AQ(H)
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then g(0) becomes a blanketing density or an envelope and A
the envelope constant.

24 / 20
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Algorithm

Drawing from 7(6).
@ Draw 6* from q(-);
® Draw v from U(0,1);
© Accept 0" if u < jgffg));
O Repeat 1, 2 and 3 until n draws are accepted.

Normalizing constants ¢, and ¢4 are not needed.

The theoretical acceptance rate is A%’.

The smaller the A, the larger the acceptance rate.

20 / 20



Example iii.

Enveloping the standard normal density

Two main tasks

Bayes via MC 1
m(0) = exp{—0.56°
(6) = —=exp{~0.5¢°)
— by a Cauchy density qc(0) = 1/(w(1 + 62)), or a uniform
method density qy(#) = 0.05 for 6 € (—10, 10).

Bad proposal: The maximum of 7(6)/qu(0) is roughly
Ay =7.98 for 6 € (—10,10). The theoretical acceptance rate

is 12.53%.

Good proposal: The max of m(0)/qc(0) is equal to
Ac = /27m/e = 1.53. The theoretical acceptance rate is
65.35%.
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Empirical rates: 0.1265 (Uniform) and 0.6483 (Cauchy)
Theoretical rates: 0.1253 (Uniform) and 0.6535 (Cauchy)
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SIR method

No need to rely on the existance of Al

Algorithm
® Draw 07,...,6;, from q(-)

® Compute (unnormalized) weights

wi =7m(07)/q(67) i=1,...,n
©® Sample 6 from {07,...,6}} such that

Pr(6 = 07) x wj i=1,...,n.
O Repeat m times step 3.

Rule of thumb: n/m = 20.
Ideally, w; =1/n and Var(w) = 0.

27 / 20
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Example iii. revisited
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Fraction of redraws: 0.391 (Uniform) and 0.1335 (Cauchy)
Variance of weights: 4.675 (Uniform) and 0.332 (Cauchy)
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Example iv. 3-component mixture

Assume that we are interested in sampling from

Two main tasks

Bayes via MC 7(0) = c1pn(0; p1, X1) + copn(0; 2, X2) + azpn(0; 13, X3)

where py(-; i, X) is the density of a bivariate normal
distribution with mean vector . and covariance matrix . The
mean vectors are

3-component #1 = (1’ 4)/ M2 = (47 2), M3 = (6-5, 2)7

2-component . .

mixture the covariance matrices are

MH algorithms Zl — 1.0 -0.9 and 22 — 23 — 1.0 —0.5
s —-09 1.0 —-0.5 1.0 ’
Gibbs sampler

and weights a3 = ap = a3 =1/3.

A/ R0
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q(0) ~ N(p,X) where

po = (4,2)"  and Z:9<
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Rejection method

-0

Acceptance rate:

9.91% of n = 10,000 draws.
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Fraction of redraws: 29.45% of (n = 10,000, m = 2,000).

20

2



A bit of
history

Monte Carlo
methods

Two main tasks
Bayes via MC
MC
integration

MC via IS

Rejection
method

SIR method

Examples

3-component
mixture

2-component
mixture
MCMC
methods

MH algorithms

Simulated
annealing

Gibbs sampler

Books on MC
methods

References

Rejection & SIR

A0/ Q0



Two main tasks
Bayes via MC

3-component
mixture

2-component
mixture

MH algorithms

Simulated
annealing

Gibbs sampler

Example v. 2-component mixture

Let us now assume that

(0) = a1pn(8; 1, 1) + azpn(0; p3, X3)

where mean vectors are
H1 = (174)/ H3 = (6572)7

the covariance matrices are
1.0 -0.9 1.0 -05
21= ( 09 1.0 > and >3 = < 05 1.0 >

and weights oy = 1/3 and a3 = 2/3.

AT / Q0
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Acceptance rate: 10.1% of n = 10,000 draws.
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Rao-Blackwellization
Suppose one wants to compute

| = E{h(x)} = // p(x, y)dxdy.

A simple MC integration based on draws (x1,y1), ..., (Xn, ¥n) is

= % > h(x)
i=1

In some cases the integral can be partially solved analytically

/y { /X h(X)p(Xy)dX} p(y)dy = /y E(h(x)|y)p(y)dy

leading to a better MC approximation

= 0" EhGx)l)
i=1

A9 / Q
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The basic probability results used are
E(h(X)) = E{E(h(X)]Y)}

and
V(h(X)) = E{V(h(X)|Y)} + V{E(h(X)[Y)}

such that
V(h(X)) > E{V(h(X)|Y)}

commonly known as Rao-Blackwell results.

Never replace analytical solutions with MC approximations.

A0/ Q0



Example.
X|Y ~ N(0,1/Y), Y ~ G(2.5,2.5) and h(x) = exp{—x?}. The two
MC approximations are

n
1
Two main tasks 2
Bayes via MC h = E g eXp{*X,-} and h
i=1

1 < 1
_;;W 1

~
<]
@ |
]
3-component
mixture s
s
Z-Fomponent E 2
mixture B
<
<
g
=%
<
< |
o
MH algorithms
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3 «@ |
Gibbs sampler i

Draws (log10)
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MCMC methods

Dongarra and Sullivan (2000) list the top algorithms with the

greatest influence on the development and practice of science

and engineering in the 20th century (in chronological order):

Metropolis Algorithm for Monte Carlo

Simplex Method for Linear Programming

Krylov Subspace Iteration Methods

The Decompositional Approach to Matrix Computations
The Fortran Optimizing Compiler

QR Algorithm for Computing Eigenvalues

Quicksort Algorithm for Sorting

Fast Fourier Transform

BT /RO
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70s and 80s

Metropolis-Hastings:

Hastings (1970) and his student Peskun (1973) showed that
Metropolis and the more general Metropolis-Hastings algorithm
are particular instances of a larger family of algorithms.

Gibbs sampler:

Besag (1974) Spatial Interaction and the Statistical Analysis of Lattice Systems.

Geman and Geman (1984) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
Pearl (1987) Evidential reasoning using stochastic simulation.

Tanner and Wong (1987). The calculation of posterior distributions by data augmentation.

Gelfand and Smith (1990) Sampling-based approaches to calculating marginal densities.

R / Q0



MH algorithms

A sequence {#(®,0() 9(2) 1 is drawn from a Markov chain
whose limiting equilibrium distribution is the posterior
ciuc distribution, 7(6).

Algorithm
@ Initial value: 6(©)
@ Proposed move: 0* ~ q(6*|0(—1)

© Acceptance scheme:

0 _ |0 com prob. «
0 .
6U-1)  com prob. 1—a

MH algorithms Where

o m(6) q(6' V6%
o= mn {1’ (00D g(6+[0—D)

T /&



Special cases
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Bayes via MC @ Symmetric chains: g(0]0*) = q(6*|0)

a:mm{ w?}

q(0)

a‘mm{ ()}

where w(0*) = 7(6%)/q(6*).

® Independence chains: g(0|0*) =

BA / 20
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Random walk Metropolis

The most famous symmetric chain is the random walk
Metropolis:

q(016") = q(|6 — 671)

Hill climbing: when

o= min {1’ 7:(9;))}

a value 0* with higher density m(0*) greater than 7(0) is
automatically accepted.

BEE / Q0O
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Example iv. RW Metropolis

q(9|0;) ~ N(0,-, 0.2522).
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Example iv. Autocorrelations
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Example v. RW Metropolis
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Example vi. tuning selection

Tthe target distribution is a two-component mixture of
bivariate normal densities, ie:

7(0) = 0.7fn(0; ju1, £1) + 0.3fn(0; i, T2).
where

py = (4.0,5.0)
uy = (0.7,3.5)

1.0 07
X1 = (0.7 1.0)

1.0 -07
Z2 = <—0.7 1.0)'
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RW Metropolis
q(0,¢) = fn(¢; 0,vk) and v =tuning.

tuning=0.01 tuning=1 tuning=100
Initial value=(4,5) Initial value=(4,5) Initial value=(4,5
rate=93.8% Acceptance rate=48.5% Ac rate=2.4%
Two main tasks o d o - o -
Bayes via MC
< < <4
L T T T T T L T T T T T L T T T T T
-2 0 2 4 6 -2 ) 2 4 6 2 0 2 4 6
; tuning=0.01 tuning=100
3-component Initial value=(0,7) Initial value=(0,7) Initial value=(0,7)
mixture Acceptance rate=93.3% rate=49.3% Ac rate=2.4%
2-component o @ R ©
mixture :
MH algorithms 1
Simulated
annealing o
Gibbs sampler
o o4 o4
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Tuning=0.01
Initial value=(4,5)

Autocorrelations

Tuning=1
Initial value=(4,5)

Tuning=100
Initial value=(4,5)

lag

Tuning=0.01
Initial value=(0,7)

Tuning=:
Initial value=(0,7)

Tuning=100
Initial value=(0,7)

MH algorithms




Independent Metropolis
q(0,¢) = fn(é; us,vh) and pusz = (3.01,4.55)".

tuning=0.5 tuning=5 tuning=50
Initial value=| Initial value=(4,5) Initial value=(4,5)
Acceptance rate=9.9% Acceptance rate=30.9% Acceptance rate=5%
Two main tasks
@ Acceplance rale=9.9% L Acceplance rale=30.9% -’ @ Acceplance rate=5%
Bayes via MC P
<4
T T T T T T T T T T T T T T
-2 0 2 4 6 -2 ) 2 4 6 0 2 4 6
; tuning=5 tuning=50
3-component 0.7) Initial value=(0,7, Initial value=(0,7)
mixture Acceptance rate=29.4% Ac rate=4.3%
2-component © ‘Acceptance rale=29.4% @ @ Acceptance rate=4.3%
mixture
MH algorithms 1 1 1
Simulated
annealing o o o
Gibbs sampler
o o4 o
T T T T T T T T T T T T T T T
-2 0 2 4 6 -2 ) 2 4 6 -2 0 2 4 6
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Autocorrelations

Tuning=0.5 Tuning=5 Tuning=50
Initial value=(4,5) Initial value=(4,5) Initial value=(4,5)

0 50 100 150 200 0 50 100 150 200 0 E 100 150 200
lag tag lag
Tuning=0.5 Tuning=" Tuning=
Initial value=(0,7) Initial value=(0,7) Initial value=(0,7)

MH algorithms
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Simulated annealing

Simulated annealing? is an optimization technique designed to
find maxima of functions.

It can be seen as a M-H algorithm that tempers with the target
distribution:
q(6) o< w(6)" 7

where the constant T > 1 receives the physical interpretation
of system temperature, hence the nomenclature used
(Jennison, 1993).

The heated distribution g is flattened with respect to 7 and its
density gets closer to the uniform distribution, which is
particularly relevant for the case of a distribution with distant
modes.

By flattening the modes, the moves required to cover
adequately the parameter space become more likely.

Kirkpatrick, Gelatt and Vecchi (1983)



Example vii: Nonlinear surface

Assume that the goal is to find the mode/maximum of

Two main tasks ﬁl +52XI) Yi

Bayes via MC 7(B1, f2) o H Heﬁ—1+ﬁle)5’
with x = (—0.863, —0.296, —0.053,0.727) and y = (0, 1,3,5).

The simulated annealing algorithm is implemented for four
initial values:

(5,30) (—2,40) (—4,-10) (6,0)

MH algorithms and two cooling schedules:

Simulated
annealing

Ti=1/i and T;=1/[10log(1+ i)].

The proposal distribution is g(5]6()) = fy(8; 1), 0.05%1).
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Ti=1i By B
g — — © N
"“*w
—/‘7 /
7 v g/
! T T T T T 1 T T T T 1 ! T T T T 1
4 2 0 2 s 6 o 1000 2000 300 4000 5000 0 00 000 W00 4000 5000
B erations. Herations.
Ti=1/[10l0g(i+1)] B B2
g = 3
7
/
- /
e gd/
! T T T T T 1 T T T T 1 ! T T T T 1
- -2 3 2 4 6 o 1000 2000 30 4000 5000 3 000 2000 00 4000 5000
[ teraions. terations

Newton-Raphson mode: (0.87,7.91).
T; = 1/i: mode is (0.88,7.99) when (3{”, 5{%))

(5,30).
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Gibbs sampler
Technically, the Gibbs sampler is an MCMC scheme whose
transition kernel is the product of the full conditional
... distributions.
S IB e Algorithm
® Start at 9(© (9 92 ), )
® Sample the components of 9U) iteratively:
0V~ (6,169 007V )

69 ~ (92\99),90‘1),...)

09~ x(05)0Y,69), .. )

2-component

mixture

MH algorithms

Simulated

annealing The Gibbs sampler opened up a new way of approaching

Gibbs sampler

statistical modeling by combining simpler structures (the full
conditional models) to address the more general structure (the
full model).
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Example viii: Bivariate normal

Assume that the target distribution is the bivariate normal with
mean vector and covariance matrix given by

2
M:<M1> and Zz( 71 0122>,
M2 012 03
respectively.

In this case, the two full conditionals are given by
‘7%2
01]02 ~ N (Ml + 22 (02 — p2), 0 2)
o3 03

and

2
012 o
02|61 ~ N <H2 + (01— p1), 03 — 122>
01 91
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AcE

o Q\ © %\ o
—— — ——
D2 o 2 4 i 2 0 2 i 2 0 2
o o .
4 4
< 4 N 55
o 0 ® % w o 0 ® % @ o 0 » % w o 0 » % @
Lag Lag Lag Lag
LR H 3

Middle frame: Based on M = 21,000 consecutive draws.
Bottom frame: Based on M = 1000 draws, after initial
Mo = 1000 draws and saving every 20th draws.
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Book references

Two main tasks

s off MIE Ripley (1987) Stochastic Simulation. Wiley. (Chapters 5 and 7).

Thisted (1988) Elements of Statistical Computing. Chapman & Hall/CRC. (Chapter 5).
Gentle (1998) Random Number Generation and Monte Carlo Methods. Springer. (Chapter 5).
Liu (2001) Monte Carlo Strategies in Scientific Computing. Springer. (Chapters 2, 5 and 6).
Robert and Casella (2004) Monte Carlo Statistical Methods. Springer. (Chapters 3, 4 and 7).
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Gamerman and Lopes (2006) MCMC: Stochastic Simulation for Bayesian Inference. Chapman &
Hall/CRC. (Chapters 3, 5 and 6).

3-component

00 90000600

ixt

;I;:;";onsm Rizzo (2008) Statistical Computing with R. Chapman & Hall/CRC. (Chapters 5 and 9).

mixture
Rubinstein and Kroese (2008) Simulation and the Monte Carlo Method. Wiley. (Chapters 5 and 6).
Robert and Casella (2010) Introducing Monte Carlo Methods with R. Springer. (Chapters 3, 6 and

MH algorithms 7).
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