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Summary. We consider the analysis of the Brazilian industrial production index (IPI)
using statistical tools recently developed for time series. The main purpose is short-term
forecasting and structural decomposition of the data through an autoregressive model that
allows, but not imposes, nonstationary behavior. A very strong point of this model is that
it incorporates all kinds of uncertainties by averaging forecasts across competing models,
weighted by their posterior probabilities, in contrast with traditional analyses which assign
probability one to a particular model. Additionally, the model considers innovation errors
with heavy-tailed distributions and consequently acomodates for outlying observations. We

interpret the results of the analysis in terms of its relation to the Brazilian economy.
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1 INTRODUCTION

Several authors had explained and made short and long term predictions of the Brazilian
Industrial Production Index (IPI) or some of its variants. For example, Lopes et al. (1999),
Schmidt et al. (1999), Gamerman and Moreira (1998) use dynamic linear models (DLMs)
with local linear trends, seasonality and cycles, to describe the behavior of the monthly
observed IPI. Although the analyses based on these models are relevant for the IPI , they
do not account for the uncertainty due to the specifications of the trend/seasonal/cycle
terms. All of these papers produce their results by using a particular model selected with
some optimal criteria.

Enormous amount of work has been devoted to develop useful models, but little to
incorporate model uncertainty as another crucial aspect in statistical analysis. For instance,
Draper (1995) states that model uncertainty should be taken very seriously to produce
forecasts and obtain parameter estimates. In time series, model uncertainty was introduced
by Harrison and Stevens (1976) that developed the multi-process approach to combine
aspects of different DL.Ms under consideration. More recently Barnett et al. (1996), Barbieri
and O’Hagan (1997), Troughton and Godsill (1997), Huerta and West (1999) developed
Markov Chain Monte Carlo (MCMC) methods to incorporate model uncertainty within a
linear autoregressive (AR) framework.

Specifically, in this paper we analyze the Brazilian IPT using the AR model with prior
specifications on latent components and characteristic roots as in Huerta and West (1999).
These specifications lead to a new class of prior distributions in autoregressive component

structure which has the following properties:

e they permit arbitrary collections of real and complex conjugate pairs of characteristic

roots;

e they allow for zero values among the characteristic roots, so taking care of prior

uncertainty about model order;

e they allow unit roots, and so cater for persistent low frequency trends and sustained

quasi-periodic components;

e they incorporate unobserved initial values of the data process as uncertain latent
variables, so that all resulting inferences are formally based on incorporating full

uncertainties about initial values.

In particular, such a class of priors naturally avoids any of the corrections in signifi-
cance tests proposed for the unitary root problem through posterior probability statements

on the number and type of unitary roots. For example, Cribari-Neto (1993) illustrates



the complications of frequentist procedures when testing whether a root is unitary or not.
Detailed discussion about unit root tests and their pitfalls is presented by Campbell and
Perron (1991). Furthermore, the class of priors is identified by a small number of hyper-
parameters, which may be chosen based on specific forms of quantitative prior information.
Alternatively, these hyper-parameters can be assigned essentially uniform or “reference”
prior distributions themselves, so inducing what may be viewed as a non-informative analy-
sis.

Additionally, we extend the prior modeling of Huerta and West (1999) to allow heavy-
tailed innovation errors which permits the accomodation of outlying observations. Such
extensions and modeling issues are presented in Section 2, along with prior elicitation, pos-
terior and predictive inference. We strongly believe that an AR model that fully recognizes
uncertainty on the order, model parameters, number of unitary roots and considers heavy-
tailed errors, is very helpful to describe economics as encompassed by the Bragilian IPIL.
Empirical arguments are provided in Section 3. Section 4 presents our final remarks and

possible extensions.

2 TIME SERIES MODEL AND METHODS

2.1 The Model and a Decomposition Result

Define {2} as the realization of an AR process of order p,

z; = ¢(B)e
where Bx; = 241 and ¢ € {0,1,...n}. ¢(u) =1 — d1u — ... — ¢puP is the characteristic
polynomial, ¢ = (¢1,...,¢,) is the vector of standard coeflicients, and {¢} are zero-mean

uncorrelated errors with e; ~ N(0,02/v;). The quantities ; are assumed independent with a
common distribution p(+). Note that the introduction of the parameters ~; implies a scale
mixture of Normals on the error terms which allows for heavy-tailed innovations. Some
cases of a scale mixture of Normals include the Laplace, exponential power and Student
t distributions. This is important in our application since it is well-known that several
macroeconomic interventions took place in Brazil during the last two decades. By allowing
heavy-tailed distributions for the innovations, such temporal interventions will have lower
impact in the model specification and conclusions. We will return to this point later when
we discuss the analysis of the IPL

Denote by {ai,...,a,} the reciprocals of the characteristic roots or solutions of the
equation ¢(u) = 0. If |aj| < 1 for all j, the process is stationary with unitary roots if
any of these moduli equal one. Assume there are C pairs of complex conjugate roots and

R = p —2C real roots. Denote the complex pairs by r; exp(tiw;) for j =1,...,C, and the



real roots by r; for j =2C +1,...,p. As presented in West (1997), it can be shown that

C Y4
W= it ), Ay
j=1 j=2C+1
where the z4; and a; are latent processes related to the complex and real roots respectively.

Corresponding to the real roots j = 2C' +1,...,p, we have
(]_ — er)atj = bjet

for some real constants b;; thus the as; are correlated AR processes of order one. Corre-

sponding to the complex conjugate pairs of roots j = 1,...,C, we have
(1 —2rjcos(w;j)B + T?B2)th = (dj +¢;B)e

for further real constants d; and e;; thus the z;; are AR, moving average processes of order
(2,1). In other words, a series that follows an autoregressive process can be expressed
as the sum of simpler processes, some of periodic behavior and some with low frequency
variation. In fact, the decomposition implies that z;; has a quasi-periodic behavior with
frequency wj, or periodicity A\; = 27 /w; where the damping of the component is determined
by the modulus of the defining complex root. Computation of the latent components may
be handled through the DLM representation of an AR model and has been exemplified in
the context of oxygen-isotope series, electroencephalogram traces and other types of data,

in both West (1997), West et al. (1999) and West and Harrison (1997).

2.2 Prior Specifications

Huerta and West (1999) introduced a class of hierarchical priors defined on the component
structure of an AR time series. We briefly review these specifications here.

The prior assumes fixed but arbitrary upper bounds C; and R4, on the number of
complex pairs and real roots, hence an upper bound p; = 2C; + R, on model order.
Independent priors are specified on the real roots, the complex roots and the error terms

variance. Hach real root r; has a prior that
e gives probability 7. to r; = 0,
e gives probability 7, _1 to r; = —1,
e gives probability 7,1 to r; = 1, and
e otherwise has a continuous density g,(r;) from —1 to 1.

Fach complex conjugate pairs of roots r; exp(Fiw;) has a prior that



e gives probability 7. to r; = 0,
e gives probability 7.1 to r; = 1, and

e otherwise has r; independent of w;. The modulus r; follows a continuous density
gc(r;) with support in (0,1). The wavelength A\; = 27/w; has a continuous density
h(X;) with support on (2, A,) where A, is an upper bound in periods. By default, ),

can be fixed at n/2, the maximum period observable for a time series of length n.

Notice that the prior is defined on the parameters that determine the time series de-
composition of Section 2.1 and implicitly, quantifies prior knowledge on the latent structure
of an AR model. In applications, particular forms for ¢,(-), g.(-) and A(:) had involved
truncated Normals, Uniform densities or more general Beta distributions. A detailed ex-
ploration of how particular forms of these functions determine priors in other quantities of
interest, like the standard AR coefficients, has been fully addressed in Huerta and West
(1999). For the analysis of the Brazilian IPI and in a non-informative sense, we adopt the
benchmark prior known as the component reference prior which establishes that g,(-) is a
Uniform on (—1,1), g.(-) is a Beta(3,1) and h(};) o< sin(2r/X;)/A? with A; ranging form 2
to Ay. The marginals of this prior, correspond to the standard reference prior obtained by
treating the parameters of each component process z;; and ay; individually.

Furthermore, the constant scale factor that appears in each error term is assumed in-
dependent of the roots and has a specific marginal prior, usually a conditionally conjugate
inverse gamma prior, i.e., p(0?) ~ IG(a,b). Priors for the point-masses may be assigned
as context dependent, but for simplification, we use independent uniform Dirichlet distrib-
utions, namely Dir(n, 0, 71, Tr,—1|1,1,1) and Dir(m. 0,7 1|1,1). Note that the prior point
masses at zero for the numbers of roots, both complex and real, may fall below the fixed
upper bounds C and R,. This implies that the model order can take any value from 0
to py. Also, the point masses 7, _1 and 7. ; permit direct inferences on the number of
unitary roots distinguishing between real and complex cases, something that is known to
be controversially important in macroeconomic time series analysis (Nelson and Plosser,
1982).

We must note that the roots are not identified. The model coeflicients ¢ are unchanged
with arbitrary permutations of the roots. Identification of real roots can be imposed simply
by relabeling them in order of increasing value. Identification may be achieved for the
complex roots by relabeling them in order of increasing moduli or of increasing period or
wavelength.

In extension to Huerta and West (1999), we assume that each v is independent of the
reciprocal roots and 0% with a prior distribution p(v;) ~ Ga(a, 3). This specification defines

errors that follow a Student ¢ distribution.



2.3 Posterior and Predictive Analysis

Posterior and predictive calculations are developed using Markov chain Monte Carlo (MCMC)
methods based on the Gibbs sampler. For explanations on MCMC methods with theory and
applications, we recommend Gamerman (1997) and Gilks et al. (1996). Chib and Greenberg
(1996) and Gamerman (2000) are references of applications of MCMC techniques in econo-
metric problems. For our MCMC, we briefly outline the form of the relevant conditional
posterior distributions.

First some notation. Write X = {1, ..., 2, } for the observed time series and, given the
maximum model order py write Y = {zo,2_1,..., f—(p+—1)} for the latent initial values.
The MCMC includes formal inference on these initial values. The model parameters are

denoted by
Y= {Oéj, J: ]-7"'7p+; (ﬂ'r,—lyﬂ'ro:ﬂrl); (7007701); 02; '7t,t: ]_7...,77,}.

Posterior inferences are based on summarizing the full posterior p(1, Y|X). For any subset
¢ of elements of 9, let ¥\ & denote the complementary elements, i.e., 1 with € removed. The
MCMC method iteratively simulate elements of 1 and Y from their conditional posteriors

with all conditioning parameters fixed at their latest sampled values. Specifically,

e for each j =2C4 +1,...,py, the real roots are sampled individually from
p(m‘d’\rj? X7Y)'

Assuming g,(r;) is Uniform from —1 to 1, this conditional posterior is a mixture of
a truncated Normal at (—1,1) with three points masses at 0, —1 and 1 respectively.

This mixture posterior is easily sampled via CDF inversion of a truncated Normal.

e For each j =1,...,C4, the complex roots are sampled individually from
p(?”j, Aj’d’\(ﬁ': Aj)? X, Y)

Even with simple models for g.(r;) and h(};), this conditional posterior is difficult.
A MCMC reversible jump step is used to sample from this conditional distribution

which is a mixture of a continuous component with two point masses.
e The hyperparameters are sampled from conditionally independent posteriors
p(’”r,—l: TrQs Trl ’1/’\<7Tr,—17 Tr0, 7Tr1)7 X7 Y)

and

p<7007 el ’1/’\<7TcOy 7Tcl)y X7 Y)



Assuming the Dirichlet priors introduced in Subsection 2.2, this conditional distrib-
utions are respectively Dir(-|r_1 + 1,70 + 1,71 + 1) and Dir(-|co + 1,¢1 + 1) where
(r_1,7r0,71) denote the number of real roots equal to -1,0 and 1 respectively. (co,c1)

are the number of complex roots with modulus 0 and 1 respectively.

e The error variance is sampled from
2 2
p(o®|yp\o*, X,Y).
Assuming that p(o?) ~ IG(a,b), the conditional posterior follows an IG(a',b ) where
n
a =a-+ n/2; b =b+ Z'%E%/Z
t=1

€ = Xy — Z§:1 ¢jxi_; are the error innovations computed with the implied AR para-

meter vector ¢ obtained with the current values for the roots ;.
e Fort =1,...,n each scale parameter ~ is sampled individually from
(el \ %, X, Y).
If p(v¢) ~ Ga(a, B), then the conditional posterior follows a Ga(a', 8') where
ad=a+1; 8 = B+ €220

Once again, €; = xp— Z§:1 ¢;x¢—; are the error innovations computed with the implied

AR parameter vector ¢ obtained with the current values for the roots a;.

e The initial values are sampled from

p(Y[$\Y, X).

Under the prior specifications of the previous section, the AR process is not strictly
stationary but it turns out that the reverse time model produces samples from the
correct conditional distribution for the initial latent values. This important result is
shown in Huerta and West (1999). The simulation consists in sequentially sampling
T, X1, .., T_(p,—1) I turn, conditioning on the most recent sampled values in the
reverse time model z; = Z§:1 iz + 3t = 0,...,—(p — 1) sampling ¢ at each
step. As for previous conditional distributions, the current roots a; imply current
values for ¢;. Notice that this operation is essentially the same as used in sampling
future values xy for k& > 0, in forecasting ahead from the end of the data using the

forward-time model x; = Zle Diri—j + €

In the next section, we implement this machinery to explore the time series behavior

and to forecast some of the levels of the Brazilian IPI.



3 ANALYZING THE BRAZILIAN INDUSTRIAL PRODUCTION INDEX

The data we analyze correspond to 215 monthly observations of the Brazilian industrial
production index (IPI), from February 1980 to December 1997. The data, displayed in
Figure 1, presents a strong seasonal pattern and the "ups” and “downs” characteristic
of a trend. Any econometric analysis of such macroeconomic series must be performed
with extra care, since the brazilian economy has suffered several macroeconomic shocks
in the past two decades; some of them with temporary effects, others with permanent
effects. Allowing the innovations to follow heavy-tailed distributions is a conservative way

of weighing the information in the data as it becomes more or less important.
— Figure 1 about here —

To study different aspects of the series, a component structured AR model was con-
sidered with C} = 20 and Ry = 20 which implies a maximal model order p; = 60. The
MCMC described in Subsection 2.3, was iterated 10000 times with a burn-in of 5000 itera-
tions the following 5000 samples used for posterior inference. First, we present the marginal
posterior distribution for model order in Figure 2. The Figure shows that the posterior dis-
tribution for p mostly favors values from 16 to 35 and has a mode at p = 24. This posterior

distribution reflects large uncertainty upon the lag of the AR model.
— Figure 2 about here —

To exhibit the model structure in terms of complex and real roots, in Figure 3 we
present the marginal posterior distribution for the number of complex pairs of roots and
the number of real roots. The model prefers 6, 7 or 8 complex pairs with large probability.
The posterior distribution for the real roots favors a wide range of values, which is typical

when components of very low frequency exist in the data.
— Figure 3 about here —

To summarize some of the posterior samples of the real roots, in Figure 4 we show
histograms of samples for the 2 smallest and two largest real roots when the roots are
ordered from lower to higher. Also, the positive probabilities of a point mass at —1,0 and 1
are reported in the Figure. It is interesting to note that the largest root (labeled r(20)) has
0.67 probability of being unitary and the smallest root (labeled 7(1)) has 0.41 probability of
being equal to —1. Indeed, this shows evidence that the data is non-stationary with random

walks of order one driving the trend of the series.



— Figure 4 about here —

Posterior summaries for some of the complex pairs of roots appear in both Figures 5 and
6. The figures show boxplots of samples corresponding to the modulus and wavelength of
5 complex pair roots respectively. For identification, the roots were ordered by wavelength
with the label ”1” denoting the root with the larger period and the label “5”, the root with
the smallest period. The boxplots for moduli do not consider samples where the modulus
is equal to one. Instead, the posterior probability of a unitary modulus is reported in the
left side of Figure 5. We observe that the root that has the larger period or wavelength, has
a posterior probability of being unitary equal to 0.96 and a period of about 12 time units.
This complex root defines a quasi-cyclical non-stationary component that correspond to
the seasonality in the data. Also, the other four roots have a positive probability of being
unitary with periods at about 6, 4, 3, and 2.4 units of time. These periodicities are basically
harmonics of the fundamental periodicity of 12. Notice that the fifth harmonic is more likely
to correspond to a non-stationary latent component in comparison to the third and fourth

harmonics.
— Figures 5 and 6 about here —

Posterior samples of the roots directly lead to samples for the components associated
to the complex and real roots simply because these components are functions of the para-
meters in the AR model. In consequence, posterior summaries of the decomposition can be
displayed as with other quantities of interest. In fact, Figure 7 presents the data with pos-
terior means for two components corresponding to the complex roots and two components
corresponding to the real roots. The quasi-cyclical component labeled by (C1) is associated
to the complex pair that has a periodicity of 12 months and is essentially the underlying
seasonality in the data. This component has a time-varying amplitude comparable to the
amplitude presented by the series. Furthermore, the component has two high peaks between
1990-1992, a period where the brazilian economy was experiencing major macroeconomic
interventions, such as the Summer Plan in February 1989, the first and second Collor’s Plan
in March 1990 and February 1991, respectively. Thus, the component captures the higher

level of uncertainty presented in the data during the early 90’s.
— Figure 7 about here —

The component labeled by (C2) corresponds to the root that has a harmonic periodicity
of 6 months. It shows a very low amplitude compared to the data and all other complex

components have similar low amplitudes. The component labeled by (R3) is associated to



the maximal real root (r(20)) and has an amplitude comparable to the amplitude of the data.
This component is basically the underlying trend of the series. The last component displayed
(R4) corresponds to the smallest real root (r(1)); its amplitude is very low compared to the
series and has switches characteristic of an AR(1) process with a root equal or close to —1.
Mostly, components that have very low amplitude represent complicated noise structure in
the information.

Posterior summaries for samples of ~ are indicative of possible outlying observations.
For instance, in Figure 8 we present 95% posterior intervals and posterior means based on
5000 posterior samples for =, ¢ corresponding to the months of February 89 to January 92.
We assigned a prior for v ~ Ga(l,1) which puts .95 prior probability to values between
0.29 and 3.69. Other Ga(a,«) prior distributions were used essentially leading to the
same results. Most of the posterior intervals reported in Figure 8 are consistent with the
hypothesis that =, may be close to one, except for the intervals corresponding to April
1990 and April 1991. Both periods are close to Collor’s plans, so reassuring the strength
of our modeling strategy in describing more important movements and trends of the data
and giving lower weight to specific idiosyncratics. In these two cases, the small values for
¢ favor a larger error variance 0?/v. The introduction of v; helped the AR model to

accomodate these anomalous observations.
— Figure 8 about here —

To consider model validation and forecasting, we implemented again the MCMC but
only with the observations previous to and including January 1997. As explained in Subsec-
tion 2.3, samples of multiple step-ahead forecasts can be generated conditional on all other
parameters using the autoregressive equation that defines the model. Based on 5000 of these
posterior samples, Figure 9 presents the 95% predictive probability intervals and posterior
means for forecasts corresponding to February 1997 until December 1997, compared against
the actual observed values. In general, we notice that the posterior means are lower but
close to the observed values. The predictive intevals contain the observed data, except for

December 97, where the observation is below the lower limit of the corresponding interval.
— Figure 9 about here —

For comparison with other possible approaches, we computed forecasts with AR models
that have a constant variance and the model order selected using the AIC criteria. For
the Brazilian TPI, AIC leads to a model order of 13 which has zero posterior probability in
Figure 2. Under AIC, we obtained the maximum likelihood estimator (MLE) of ¢ and o?
and generated samples of “future” values for February 1997-December 1997. Additionally,



assuming the standard reference prior for the AR model, p(¢, 02) x 1/ 0% , we generated
samples of “future” values for the same time period with the corresponding Normal-Gamma
reference posterior. In fact, using the posterior mean of the samples as point estimators of
the future values, we computed the mean square error (MSE) of the AR-AIC models and
our AR model that incoporates model order uncertainty, unitary roots and heavy-tailed
errors. The MSE for the AR with the standard reference posterior is 67.64; with the MLLE
treated as the “real” parameter, the MSE is 86.06. For our AR model, the MSE is 30.14,
showing that is worth the effort of recogninzing different levels of uncertainty in forecasting
time series under AR models.

Furthermore, we consider the forecasts produced for the IPI with dynamic linear models
that have trend/seasonal components reported in Schmidt et al. (1999) and Gamerman and
Moreira (1998). The predictions for March 1997-August 1997 obtained with these dynamic
models and the predictions we obtained with AR models are plotted in Figure 10. We
observed that all the five models underestimate the actual values and the AR-AIC models
have very poor predictive performance. The AR with structure prior and heavy-tailed errors
outperforms both dynamic models for May and July 1997. At March and April of 1997,
our AR model is only superior to the DL.M of Gamerman-Moreira. For this time period,
the MSE of our AR model is 25.64, for the Gamerman-Moreira DTLM is 25.34 and for the
model of Schmidt et al. (1999) is 21.03.

— Figure 10 about here —

In terms of predictive intervals, Figure 11 compares the 95% probability intervals for the
AR models with priors on component structure and the dynamic models of Schmidt et al.
(1999) and Gamerman and Moreira (1998) for the period that covers March 1997-August
1997. The intervals for the AR model show a general tendency for higher predictive values
during this time period. Surprisingly, the length of the intervals for the AR model are
smaller with respect to those lengths obtained with DIL.Ms.

— Figure 11 about here —

We summarize this application section with a list of points we find interesting and a

few thought-provoking issues:

e One of the main aspects of our methodology is to allow the lag-length in an AR model
to be uncertain, an aspect of great importance for economic time series. Figures
2 and 3 suggest that arbitrarily choosing an specific value for the lag-length may
ignore a great amount of uncertainty and perhaps lead to over-optimistic inference

and conclusions.
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e Related to the last point is the fact that accounting for model uncertainty does not
necessarily mean to increase uncertainty when forecasting a time series (see Figure
11).

e Another important issue is that the model can accomodate outlying observations that
seem to have only marginal impact in the modeling by structuring the innovations

with heavy-tailed distributions (see Figure 8).

e The real/complex unitary roots found represent long-term dependency in the economy.
Figure 7, for instance, reveals a stochastically changing seasonality component (C1)

and a stochastic trend component (R3) in agreement with previous analyses of the

IPI.

4 SUMMARY REMARKS

This paper analyzes the Brazilian industrial production index using a Bayesian methodol-
ogy based on a new class of prior distributions for AR models that is extended to allow
for heavy-tailed errors. The analyses show how a unified approach is able to deal with
model uncertainty, inference on latent structure, inference on unitary roots, forecasting and
outliers, all at once. This type of modeling avoids the imposition of trends and polynomial
seasonal components to capture structure and multiple significant tests to show the pres-
ence of an underlying stochastic trend. It also avoids the use of “ad-hoc” diagnostic tools
to detect outlying observations by including scale-mixtures of Normals.

On the other hand, a current limitation of the model is that the generation of samples
of futures is based on drawing the respective error terms by drawing -, from its prior
distribution or assuming them equal to one, i.e., no outlying observations are expected in
the future. In this direction, we recognize the need of a full study that measures the impact
of such prior specifictions or others for forecasting and accomodating outlying information

in time series. This is part of future research.
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Figure 1: Brazilian Industrial Production Index. 215 monthly observations taken since
February 1980.

0.10

probability

0.04
1

0.00

T T 1
0 10 20 30 40 50 60

AR order

Figure 2: Posterior distribution for model order p based on 5000 posterior samples; C'; = 20
and Ry = 20.

14



0.30

z §
= o
3
[
-}
E o
s o
o
8 \
S ]
© [ T T T 1
0 5 10 15 20
number of complex pairs
o
bl
o
o
z2 9
= o
3
<
3
e o
s <
; ‘ ‘
8 o ‘ ‘ ‘ 1 Do
© [ T T T 1

0 5 10 15 20

number of real roots

Figure 3: Posterior distributions for number of complex pairs and number of real roots

based on 5000 posterior samples; Cy = 20 and R = 20

Probability at -1 = 0.41 Probability at 0 = 0.05
0
- o
&
z z
g 5
z 8 z
L L
i i
2 o )
z = H
k=t k|
o} )
@ o
It}
o
o >
T T T T T 1 © T T T T T 1
-1.00 -0.95 -0.90 -0.85 -0.80 -0.75 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
(1) 1(2)
Probability at 1 = 0.67
o R
S
8
> >
3 =
g e 3
& g
El 3
g ° g °
i i
$ o ¢ 8
s &
& g R
-
o
S
o °
T T T T 1 T T T 1
0.6 0.7 0.8 0.9 1.0 0.85 0.90 0.95 1.00
1(19) 1(20)

Figure 4: Histograms of samples for the two smallest and the two largest real roots with

reported (positive) posterior probabilities of point masses.
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Figure 5: Boxplots of samples for moduli corresponding to the 5 largest roots ordered by

wavelength with reported posterior probability of a point mass at one.
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Figure 6: Boxplots of samples for wavelengths corresponding to the 5 largest roots ordered

by wavelength.
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Figure 7: Data and posterior means for two latent components corresponding to complex
roots and two latent components corresponding to real roots. Complex components (labeled
C1 and C2) are the two largest when ordered by wavelength and real components (labeled

R3 and R4) are the corresponding to the maximal and minimal roots.

17



gamma
3
I
I
1

T T T T T T T T T T T 1
2/89 5/89 8/89 11/89 2/90 5/90 8/90 11/90 2/91 5/91 8/91 11/91

time

Figure 8: 95% posterior intervals for some of the parameters v¢. ”m” represents the posterior

mear.
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Figure 9: 95% predictive intervals based on AR model with priors on structure components

including posterior means and actual observations for 97/3-97/12.
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Figure 10: Observations and forecasts for 6 months, 97/3-97/8, corresponding to five time

series models.
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Figure 11: 95% predictive intervals for the period 97/3-97/8 based on AR models and

dynamic linear models.
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