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The History of Science has suffered greatly from the use by teachers of second-hand material, and the 
consequent obliteration of the circumstances and the intellectual atmosphere in which the great 
discoveries of the past were made.  A first-hand study is always instructive, and often…full of 
surprises. 

Ronald A. Fisher 

Our world, our life, our destiny, are dominated by uncertainty; this is perhaps the only statement we may 
assert without uncertainty. 

Bruno de Finetti  

If this [probability] calculus be condemned, then the whole of the sciences must also be condemned. 
Henri Poincare  

Those who ignore Statistics are condemned to reinvent it. 
Bradley Efron 

All models are wrong, but some are useful.  
George E. P. Box 
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TEXTBOOK 
Lind, Marchal and Wathen’s “Statistical Techniques in Business & Economics (12th, 13th or 14th editions)” plays a supporting role in this  
class, particularly for students who find handouts either too superficial or need additional examples/explanations to any given subject.   
The book contains several examples and solved problems. 

STATISTICAL PACKAGES 
Most of the computations in the classroom examples are simple enough to be performed by a scientific calculator and/or excel.  Several  
of the computation and plots that appear in the lecture notes were obtained from MINITAB, R, Excel or MegaStat for Excel.  MegaStat  
for Excel is a set of routines that can be easily “added-in” by Microsoft Excel.  It comes with Lind, Marchal and Wathen’s textbook.   
However, excel by itself will be enough for most of our computations. 

HOMEWORK ASSIGNMENTS 
From 4 to 6 homework sets will be assigned, each one of which is invariably due one week after it has been handed out.   

GRADE POINT AVERAGE, FINAL NUMBER GRADE  and LETTER GRADE 
The University of Chicago Graduate School of Business mandates a maximum (not minimum!) class grade point average (GPA) of 3.33.   
The overall class scores will be used to rank the class and grade cutoffs are chosen so that the highest class GPA is less than (or equal to) 

3.33.  
The final number grade (FNG) will be the weighted average of i) homework assignments average (HWA), ii) the midterm exam (MT)  
and iii) the final exam (FI).  The weights are 20%, 30% and 50%, respectively.  For example, suppose that your grades on HW1, HW2,  
HW3, HW4, MT and FI are 7.0, 8.0, 9.0, 10.0, 9.0 and 8.0, respectively, then the homework assignments average (HWA) is the average  
of HW1, HW2, HW3 and HW4, i.e. HWA=8.5.  Therefore, your final number grade will be FNG = 0.2*HWA+0.3*MT+0.5*FI  =  
0.2*8.5+0.3*9.0+0.5*8.0 = 8.4.  The letter grades I use are A, A-, B+, B, B-, C, D (lowest grading pass) and F (fail). 

CALCULATOR, CHEAT SHEET AND REQUESTS FOR RE-GRADING 
Bring your own calculator to all exams.  For the midterm exam, a two-page (one sheet) "cheat sheet" is allowed.  For the final exam,  
a four-page (two sheets) “cheat sheet” is allowed.  All requests for re-grading of exams must be made in writing and must clearly state  
the basis of the request. 3 



Main topics 

 Exploratory data analysis 

 Probability 

 Statistical inference and hypothesis testing 

 Simple and multiple linear regression 
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UNIVARIATE EXPLORATORY DATA ANALYSIS 

1. Graphical summaries of the data 
2. Numerical descriptive measures 
3. Boxplot 

MULTIVARIATE EXPLORATORY DATA ANALYSIS  

1. How to relate two things 
2. Correlations and covariances 
3. Linearly related variables 
4. Portfolio example 
5. Simple linear regression 

BASIC PROBABILITY 

1. Probability and random variables 
2. Bivariate random variables 
3. Marginal distribution 
4. Conditional distribution 
5. Independence 
6. Computing joints from conditionals and marginals 

MORE ON PROBABILITY 

1. Continuous distributions 
2. Normal distribution 
3. Cumulative distribution function 
4. Expectation as a long run average 
5. Expected value and variance of continuous random variables 
6. Random variables and formulas 
7. Covariance/correlation for pairs of random variables 
8. Independence and correlation 
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STATISTICAL INFERENCE 

0.  I.I.D. draws from the normal distribution 
1. Binomial distribution 
2. The central limit theorem 
3. Estimating p, population and sample values 
4. The sampling distribution of the estimator 
5. Confidence interval for p 

HYPOTHESIS TESTING 

1. Hypothesis testing 
2. P-values. 
3. Confidence intervals, tests, and p-values in general. 

SIMPLE LINEAR REGRESSION 

1. Simple linear regression model 
2. Estimates and plug-in prediction 
3. Confidence intervals and hypothesis testing 
4. Fits, residuals, and R-squared 

MULTIPLE LINEAR REGRESSION 

 1. Multiple linear regression model 
 2. Estimates and plug-in prediction 
 3. Confidence intervals and hypothesis testing 
 4. Fits, residuals, R-squared, and the overall F-test 
 5. Categorical explanatory variables: dummy variables 

TOPICS IN REGRESSION  

 1. Residuals as diagnostics 
 2. Transformations as cures 
 3. Logistic regression 
 4. Understanding multicolinearity 
 5. Autoregressive models 
 6. Financial time series 



1. Graphical summaries of the data 
 1.1 Dot plot 

             1.2 Histogram 
 1.3 Time series plot 

2. Numerical descriptive measures 
 2.1 Measures of central tendency 

 2.1.1 The sample mean 
 2.1.2 The median 

      2.2 Measures of dispersion 
 2.2.1 The sample variance 
 2.2.2 The sample standard deviation 

      2.3 Measure of asymmetric: skewness 
      2.4 Meausre of extremety: kurtosis 
      2.5 Quantiles 
      2.6 Empirical rule 
3.  Boxplot 

Univariate Exploratory Data Analysis 
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Summary of the lecture 
•  In this class you will learn how to graph 

 small sets of quantitative observations: dotplot 
 large sets of quantitative observations: histogram 
 observations that are collected as time evolves: time-series plot 

•  You also will learn how to construct a boxplot, which can be prove useful when 
comparing observations from several samples 

•  Even though graphs are extremely useful and relatively simple to draw, in many 
situations numerical summaries are required, for instance as input into other systems. 

•  We will also talk about 
 measures of central tendency (mean and median) 
 measures of dispersion (variance, standard deviation) 
 measure of asymmetry (skewness) 
 measure of extremity (kurtosis) 

•  We will also discuss the empirical rule that says that roughly 68% of the observations 
in any sample should fall within one sample standard deviation around the sample mean 
and 95% should fall within two sample standard deviations around the sample mean. 
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Book material 

•  Chapter 1 
 Types of statistics (pages 6-7 (12 &13)* ) and types of variables (pages 8-9 (12 
& 13)) 

•  Chapter 2 
 Frequency distributions and Histogram (pages 25 -33 (12), 22-37 (13)) 

•  Chapter 3 
 Sample mean (page 58 (12 &13)) and sample median (page 62 (12& 13)) 
 Measures of dispersion (pages 71-77 (12), 71-80 (13)) 
 Empirical rule (page 80 (12), 82 (13)) 

•  Chapter 4 
 Dotplots (pages 97-98 (12), 99-100 (13)) 
 Boxplots (pages 108-111 (12), 110-113 (13))  
 Skewness (pages 114-117 (12) , 113-117 (13)) 

*Numbers in parentheses refer to the book edition 
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 Two key ideas 

 Exploratory (descriptive) issues:  
 Look at the data (sample). 
 Understand its structure without generalizing. 

 Inference issues:  
 Use data (sample) to generalize results to  
 a larger population of interest. 

1. Graphical Summaries of the Data 
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Example 

Problem: How many of 100,000 voters (population) 
prefer A over B? We can’t ask them all! 

 Solution:  Ask a sample of 500 voters. 

Summarize, describe the data: 300 voters for A (A = 1) , 200 for B (B = 0). 
We will learn how to generalize to the population. For now, we just learn how 
to analyze (describe) the data. 
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Let us look at some data. Data are the statistician’s raw 
material, the numbers that we use to interpret reality. 

All statistical problems involve either the collection,  
description and analysis of data, or thinking about the 
collection, description and analysis of data.  

There are many aspects of data.  Data may be: 
univariate (one variable per case) or  
multivariate (more than one variable per case).  

There are also different types of data:  
discrete (transactions in a given day) and  
continuous (SP500) 
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The Canadian Return Data 

Here is a specific data set (or sample). We have  
107 monthly returns on a broad based portfolio of 
Canadian assets (more on portfolios later). 

canada 
    0.07    0.05    0.02   -0.04    0.08   -0.02   -0.05    0.02    0.03 
    0.00    0.03    0.08   -0.03    0.01    0.03    0.01    0.02    0.08 
    0.02   -0.02    0.00    0.01    0.02   -0.09    0.00    0.01   -0.07 
    0.07    0.00    0.02   -0.05   -0.04   -0.03    0.03    0.04    0.00 
    0.07    0.00    0.01    0.04   -0.02    0.02    0.01   -0.03    0.05 
   -0.02    0.00    0.01   -0.01   -0.05   -0.01    0.01    0.00    0.02 
   -0.02   -0.07    0.03   -0.04    0.03   -0.02    0.06    0.03    0.04 
    0.01   -0.01   -0.01    0.01   -0.05    0.09   -0.02    0.05    0.06 
   -0.05   -0.04   -0.01    0.01   -0.06    0.05    0.06    0.02   -0.01 
   -0.06    0.02   -0.05    0.06    0.04    0.02    0.04    0.02    0.02 
    0.00    0.00   -0.01    0.04    0.01    0.05   -0.01    0.02    0.04 
    0.02   -0.03   -0.03    0.05    0.04    0.08    0.07   -0.03 

Interpret: Each number corresponds to a month. 
They are given in time order (go across columns first). 
Our first observation is .07. In the first month, the 
return was .07, in the 11th .03. 
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We are interested in ways to summarize or “see” the data. 
The previous table was very unclear.  
To display the returns we can use a simple graphical tool: the dot plot. 
For each number simply 
place a dot above the 
corresponding 
point on the 
number line. 

1.1 The dot plot 

Interpret:  
The returns are 
centered or located 
at about .01. 
The spread or variation 
in the returns is huge. 
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center or 
location of the data 

variation or spread about the center 

Notice that the data has a nice mound or bell shape. 
There is a central peak and right and left “tails” that 
die off roughly symmetrically. 14 



Some data 
does not 
have the 
mound shape. 

Daily volume 
of trades 
in the 
cattle pit. 

It is skewed to the right or positively skewed. 
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We also have data on countries other than Canada. 
Let us compare Canada with Japan. 
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It really helps to get things on the same scale. 
How is Japan different from Canada? 
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Mutual fund data 

Let us use the dot plot to compare returns on some other 
kinds of assets. 

We will look at returns on different mutual funds such as 
the equally weighted market and T-bills. 

The equally weighted market represents returns on a portfolio  
where you spread your money out equally over a wide 
variety of stocks. 
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Character Dotplot 

                             .  .:  . 
                           . ::.::  : 
                           : ::::: .:. 
                           ::::::: ::: 
                           ::::::::::: 
                         :::::::::::::: 
                        ::::::::::::::::.. 
                  .... :::::::::::::::::::      . 
          -+---------+---------+---------+---------+---------+-----drefus   
Each dot represents 2 points 
                               .. 
                               ::. 
                              .::: 
                              :::: 
                             ::::: 
                           : :::::: 
                           :.::::::.:: 
                       ....:::::::::::.   . 
          -+---------+---------+---------+---------+---------+-----Putnminc 
                               . 
                               : 
                             : : 
                            .: : : 
                            :: : : 
                            :: :.: 
                            ::.::: .:: .: 
                       ...:.:::::::::::::: 
                      .:::::::::::::::::::   : 
            .. :    .:::::::::::::::::::::.:.:       .          . 
          -+---------+---------+---------+---------+---------+-----eqmrkt   
Each dot represents 7 points 
                                : 
                               :: 
                               :: 
                               :: 
                               :: 
                               :: 
                               :: 
          -+---------+---------+---------+---------+---------+-----tbill    
       -0.20     -0.10      0.00      0.10      0.20      0.30 

Dreyfus 
growth fund 

Putman  
income fund 
(Note that each dot 
is now 2 points) 

Equally weighted 
market 

T-bills 
(each dot is 7 points here. 
This is the risk free asset) 

Data on 4 different 
kinds of returns: 
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Character Dotplot 

                             . 
                             :         : 
                             :         : 
                 .    . :    :    :    : 
         .    .  : .  : :  :.:  : :    :  .                . 
         +---------+---------+---------+---------+---------+-------
nbeerm   

          .   ..   .  : :  . 
         +---------+---------+---------+---------+---------+-------
nbeerf   
       0.0       4.0       8.0      12.0      16.0      20.0 

nbeerm: the number of beers male MBA students claim 
              they can drink without getting drunk 
nbeerf:  same for females 

Generally the males claim they can drink more, 
their numbers are centered or located at larger values. 

We call a point 
like this an 
outlier 

The beer data 
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1.2 The histogram 

Sometimes the dot plot can look rather jumpy. 
The histogram gives us a smoother picture of the data. 
The height of each bar tells us how many observations are 
in the corresponding interval. 

nbeerf 
     4.0     2.0     5.0     6.0     0.5     7.0     6.0     2.5     5.0 

3 women have a 
number of beers 
between  
1.5 and 4.5. 

3 women have a 
number of beers 
in the interval  
(1.5, 4.5). 1.5 4.5 21 



Here is the  
histogram 
of the Canadian 
returns. 

The number of 
bars you use  
affects how “smooth” 
the picture looks. 
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 1.3 The time series plot 

We just looked at two kinds of data: 
 1) the return data 
 2) the number of beers   

For the return data, each number corresponds to a month. 
For the beer data, each number corresponds to a person. 

The return data has an important feature that the 
beer data does not have. 

It has an order! 

There is a first one, a second one, and .... 

23 



A sequence of observations taken over time is 
often called a time series. 

We could have daily data (temperature), 
annual data (inflation), 
quarterly data (inflation, GDP) 
and so on. 

For time series data, the time series plot is an 
important way to look at the data. 
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Time series plot of the Canadian returns: 

On the  
vertical  
axis we 
have 
returns. 

On the  
horizontal 
axis we  
have “time”. 

Do you see a pattern? 
25 



Time series plot of Daily volume of trades in the cattle pit: 

On the  
vertical  
axis we 
have 
volumes. 

On the  
horizontal 
axis we  
have days. 

Do you see a pattern? 
26 



Monthly US beer production. 

Now, do you see a pattern? 
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Australia: monthly production of beer. 
megalitres.  April 1956 - Aug 1995  

Two components: a seasonal (annual) cycle plus an increasing 
trend from 100 to 175, then a constant trend for the second half 
of the time series.  28 



 2. Numerical Descriptive Measures 

We have looked at graphs.  

Suppose we are now interested in having numerical  
summaries of the data rather than graphical representations. 

We have seen that two important features of any data 
set are: 

1) how spread out the data is, and  

2) the central or typical value of the data set. 
29 



In this part of the notes we will describe methods to 
summarize a data set numerically. 

First, we will introduce measures of central tendency 
to determine the “center” of a distribution of data  
values, or possibly the “most typical” data value. 

Measures of central tendency include: the mean and  
the median. 

Second, we will discuss measures of dispersion, such 
as the sample standard deviation and the sample 
variance. 
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2.1 Measures of Central Tendency 

Suppose we collect n pieces of data. We need some way of 
describing the data. We write 

the first number 

the last number, n is the number 
of numbers, or the “number of 
observations.”  You may also hear it 
referred to as the “sample size.” 

They are the values that we observe.  

2.1.1 The sample mean 
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Here, x is just a name for the set of numbers, we could 
just as easily use y (or Buddy). 

x 

5 
2 
8 
6 
2 

n=5 

Sometimes the order of the observations means something. 
In our return data the first observation corresponds to the 
first time period. 
Sometimes it does not.  In our beer data we just have a list 
of numbers, each of which corresponds to a student. 
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The sample mean is just the average of the numbers “x”: 

We often use the       symbol to denote the mean of the  
numbers x. 

We call it “x bar”. 

33 



Here is a more compact way to write the same thing… 

Consider 

We use a shorthand for it (it is just notation): 

This is summation notation 

34 



Using summation notation we have: 

The sample mean: 

35 



Character Dotplot 

           .     . .     .   :   :   . 
         +---------+---------+---------+---------+---------+-------nbeerf   
                                         . 
                                         :               : 
                                         :               : 
                     .       .   :       :       :       : 
         .       .   :   .   :   :   : . :   :   :       :   . 
         +---------+---------+---------+---------+---------+-------nbeerm   
       0.0       2.5       5.0       7.5      10.0      12.5 

In some sense, the men claim to drink more. 
To summarize this we can compute the average value 
for both men and women. 
(I deleted the outlier, I do not believe him!). 

Graphical interpretation of the sample mean 

Let us go back to our standard dot plots 
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Mean of nbeerf = 4.2222 

Mean of nbeerm = 7.8625 

Character Dotplot 

           .     . .     .   :   :   . 
         +---------+---------+---------+---------+---------+-------nbeerf   
                                         . 
                                         :               : 
                                         :               : 
                     .       .   :       :       :       : 
         .       .   :   .   :   :   : . :   :   :       :   . 
         +---------+---------+---------+---------+---------+-------nbeerm   
       0.0       2.5       5.0       7.5      10.0      12.5 

“On average women claim 
they can drink 4.2 beers. Men 
claim they can drink 7.8 beers” 

In the picture, I think of the mean as the “center” of the data. 

4.22 

7.86 
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Mean of canada = 0.0090654 

Mean of japan = 0.0023364 

Let us compare the means of the Canadian and Japanese 
returns. 

This is a big difference. 

It was hard to see this difference in the dot plots (page 14) 
Because the difference is small compared to the variation. 
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Let us look at summation in more detail. 

means that for each value of i, from 1 to n, 
we add to the sum the value indicated, 
in this case xi.  

add in this value for each i 

More on summation notation (take this as an aside) 
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   x     y  year 
0.07  0.11     1 
0.06  0.05     2 
0.04  0.09     3 
0.03  0.03     4 

Think of each row as an 
observation on both x and y. 
To make things concrete, think 
of each row as corresponding to  
a year and let x and y be annual  
returns on two different assets. 

In year 1 asset “x” had return 7%. 
In year 4 asset “y” had return 3%. 

To understand how it works let us consider some 
examples. 
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compute x bar. 

compute y bar. 
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For each value of i, we can add in anything we want: 
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2.1.2 The median 

After ordering the data, the median is the  middle value of the 
data.  

If there is an even number of data points, the median is the  
average of the two middle values. 

 Example 

 1,2,3,4,5   Median = 3 

 1,1,2,3,4,5   Median = (2+3)/2 =2.5 
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Mean versus median 

Although both the mean and the median are good  
measures of the center of a distribution of measurements,  
the median is less sensitive to extreme values.  

The median is not affected by extreme values since  
the numerical values of the measurements are not 
used in its computation. 

Example  

1,2,3,4,5   Mean: 3   Median: 3 
1,2,3,4,100   Mean: 22   Median: 3 
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2.2 Measures of Dispersion 

The mean and the median give us information about the central 
tendency of a set of observations, but they shed no light on the 
dispersion, or spread of the data. 

Example: Which data set is more variable ? 

    5,5,5,5,5  Mean: 5 
    1,3,5,8,8  Mean: 5 

Do you only care about the average return on a mutual fund or 
you need a measure of risk, too?  

Here is one … 45 



2.2.1 The Sample Variance 

Character Dotplot 

           .      .            .      . 
          -+---------+---------+---------+---------+---------+-----x        

           .            .                          .            . 
          -+---------+---------+---------+---------+---------+-----y        
       0.030     0.045     0.060     0.075     0.090     0.105 

The y numbers are more spread out than the x numbers. 
We want a numerical measure of variation or spread. 

The basic idea is to view variability in terms of distance 
between each measurement and the mean. 
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Character Dotplot 

           .      .            .      . 
          -+---------+---------+---------+---------+---------+-----x        

           .            .                          .            . 
          -+---------+---------+---------+---------+---------+-----y        
       0.030     0.045     0.060     0.075     0.090     0.105 
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We cannot just look at the distance between each 
measurement and the mean. We need an overall 
measure of how big the differences are  
(i.e., just one number like in the case of the mean). 

Also, we cannot just sum the individual distances 
because the negative distances cancel out with the 
positive ones giving zero always (Why?). 

We average the squared distances and define 
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So, the sample variance of the x data is defined to be: 

We use n-1 instead of n for technical reasons that will 
be discussed later. 

Think of it as the average squared distance of  
the observations from the mean. 

Sample variance: 

49 



2) What are the units of the variance? 

It is helpful to have a measure of spread which 
is in the original units. The sample variance is not in the 
original units. We now introduce a measure of dispersion  
that solves this problem: the sample standard deviation 

1) What is the smallest value a variance can be? 

Questions 
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2.2.2 The sample standard deviation  

It is defined as the square root of the sample variance (easy). 

The units of the standard deviation are the same 
as those of the original data. 

The sample standard deviation: 
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Example 1 (numerical) 

Assume as before:               = 0.04, -0.02, 0.02, -0.04 
                   
       = 0.02, 0.01, 0.01, 0.02 
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The sample 
standard deviation 
for the y data 
is bigger than  
that for the x data. 

This numerically 
captures the 
fact that y has  
“more variation” 
about its mean  
than x. 
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Character Dotplot 

                                      . 
                                      : 
                                    : : 
                                   :: : 
                                 .::: :.: 
                             : : :::: :::: 
                             ::: :::: :::: ::: 
                        . : :::: :::: :::: :::. 
          -----+---------+---------+---------+---------+---------+-canada   
                             .         . 
                            ::.     .  : . 
                          . :::   .::  :.:   . 
                          : :::  .::: :::: : :. 
           .  ..    .. :.:: :::: :::: :::: : ::    : : .  :      . 
          -----+---------+---------+---------+---------+---------+-japan    
          -0.160    -0.080     0.000     0.080     0.160     0.240 

Variable        N     Mean        StDev   
canada        107  0.00907      0.03833  
japan         107  0.00234      0.07368   

Example 2 (graphical) 
The standard deviations 
measure the fact that there 
is more spread in the Japanese 
returns 
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2.3 Measure of asymmetry: Skewness 
Measures asymmetry of a distribution. 

Symmetric data has zero skewness. 

Negatively skewness (the left tail is longer – mean < median) 
Occurs when the values to the left of (less than) the mean are fewer but 
farther from the mean than are values to the right of the mean. 

Positively skewness (the right tail is longer – mean > median) 
Example: investment returns -5%, -10%, -15%, 30% 
People like bets with positive skewness.   
Willing to accept low, or even negative, expected returns when an asset 
exhibits positive skewness. 
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Mean <  Median                  Mean > Median 
56 



Measures the degree to which exceptional values occur more 
frequently (high kurtosis) or less frequently (low kurtosis) 

A reference distribution is the normal distribution, whose kurtosis 
is three. 

High kurtosis results in exceptional values that are called "fat tails." 
Fat tails indicate a higher percentage of very low and very high 
returns than would be expected with a normal distribution. 

Low kurtosis results in "thin tails" and a wide middle with more 
values close to the average than there would be in a normal 
distribution, and tails are thinner than there would be in a 
normal distribution. 

2.4 Measure of extremity: Kurtosis 
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Volume data 
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Kurtosis: historical facts 
•  KURTOSIS was used by Karl Pearson in 1905 in "Das Fehlergesetz und seine 

Verallgemeinerungen durch Fechner und Pearson. A Rejoinder," Biometrika, 4, 169-212, in the 
phrase "the degree of kurtosis." He states therein that he has used the term previously (OED). 
According to the OED and to Schwartzman the term is based on the Greek  meaning a bulging, 
convexity.  

•  He introduced the terms leptokurtic, platykurtic and mesokurtic, writing in Biometrika (1905), 5. 
173: "Given two frequency distributions which have the same variability as measured by the 
standard deviation, they may be relatively more or less flat-topped than the normal curve. If more 
flat-topped I term them platykurtic, if less flat-topped leptokurtic, and if equally flat-topped 
mesokurtic" (OED2).  

•  In his "Errors of Routine Analysis" Biometrika, 19, (1927), p. 160 Student provided a mnemonic:  

Earliest Known Uses of Some of the Words of Mathema6cs: h"p://jeff560.tripod.com/k.html 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Computing skewness and excess kurtosis 

Excess kurtosis is kurtosis minus 3. 
Excel computes excess kurtosis. 
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Volume data: kurtosis and outliers 
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Same kurtosis, different skewness 
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10 largest obs.  
11.25794  
11.26239  
11.43341  
11.48154  
11.52330  
11.94644  
12.10322  
12.33747  
12.75935  
15.32864 

10.13302  
10.98134  
11.38262  
11.73549  
11.77891  
12.84776  
14.80519  
15.38212  
21.74778  
35.23782 

Same skewness, different kurtosis 
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Left histogram: higher variability. 
Left histogram: lower kurtosis or thinner tails. 
Bottom curves: left tail behavior of both histograms. 

Kurtosis and standard devia=on 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Same mean, variance, skewness 
Different kurtosis 
In both cases, mean=0, variance=3 and skewness=0.   
Excess kurtosis is 0.054 for the thin-tail distribution (black). 
Excess kurtosis is 65.18 for the fat-tail distribution (red). 

Percentage of observations below cutoff 
cutoff         Red         Black 
     -10   0.1064      0.0000 
      -9    0.1448      0.0000 
      -8    0.2038      0.0005 
      -7    0.2993      0.0065 
     -6     0.4636      0.0571 
     -5     0.7696      0.3571 
     -4     1.4004      1.6004 
     -3     2.8834      5.1393 
     -2     6.9663    11.8255 
     -1   19.5501    19.4970 
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2.5 Quantiles 

Quartiles: divide the data into 4 equal parts. 
   Q1 = Median of the first half of the data 
   Q2 = Median 
   Q3 = Median of the second half of the data 

IQ = Interquartile range 
IQ = Q3-Q1 

Deciles: divide the data into 10 equal parts. 
Percentiles: divide the data into 100 equal parts. 
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2.6 The Empirical Rule 

We now have two numerical summaries for the data 

where the data is how spread out,  
how variable the data is 

The mean is pretty easy to interpret (some sort of “center” of the 
data). 

We know that the bigger sx is, the more variable the data is, but how 
do we really interpret this number? 

What is a big sx, what is a small one ? 
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The empirical rule will help us understand sx and 
relate the summaries back to the dot plot (or the  
histogram). 

Empirical Rule 

For “mound shaped data”: 

 Approximately 68% of the data is in the interval 

Approximately 95% of the data is in the interval 
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Let us see this with the Canadian returns 

The empirical 
rule says that 
roughly 95% 
of the  
observations  
are between the 
dashed lines and 
roughly 68% between 
the dotted lines. 

Looks reasonable. 
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Same thing 
viewed from 
the perspective 
of the time 
series plot. 

5% outside 
would be about 
5 points. 

There are 4 points  
outside, which is  
pretty close. 
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1-2-2-3-3-4-4-4-4-4-4-5-5-5.5-7 

3. BOXPLOT 
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Step by step illustration 
Data: 65 69 70 63 63 72 63 60 69 66 71 73 70 65 74 69 69 87 
Sort:  60 63 63 63 65 65 66 69 69 69 69 70 70 71 72 73 74 87 

Q1 =  
Q2 =  
Q3 = 

IQ  = 
1.5*IQ = 

Q1-1.5*IQ  =  
Q3+1.5*IQ =  
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Sort:  60 63 63 63 65 65 66 69 69 
          69 69 70 70 71 72 73 74 87 
Q1 = 65 
Q2 = 69 
Q3 = 71 

IQ  = Q3-Q1=71-65=6 
1.5*IQ = 9 
Q1-1.5*IQ  = 65-9=56 
Q3+1.5*IQ = 71+9=80 

Solution 
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Example: European returns 
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Example: Annual salary (in thousands of dollars) 
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Example: SP500 components 

1st row: ordered by skewness 
2nd row: ordered by kurtosis 76 



S&P500: kurtosis and skewness 
Skewness and logarithm of excess kurtosis for the S&P500 components. 
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S&P500: Components with fattest and thinnest tails 

The bo"om graphs are excess kurtosis  
computed over =me.  78 



Example: Number of siblings - MBA students 
Data collected from Business Stats students on January 

10th 2009 (41000-85): 
0 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1  
2 2 2 2 2 2 2 2 2 2 2  
2 2 2 2 2 3 3 3 4 5 5 
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Xbar = 1.73 
Median = 1.50  
Var = 1.087 
St.dev.=1.042  
Q1 = 1.00 
Q3 = 2.00 
Skewness = 1.616 
Excess kurtosis = 3.093 
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Source: Sta=s=cal 
Methods for Health Care 
Research (5th edi=on)  
by Barbara H. Munro.  
Publisher: Lippinco", 
Williams & Wilkins 

Example: Number of siblings – Boston College 
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Xbar = 2.022013 
St.Dev. = 1.640233 
Skewness = 2.165848 
Excess kurtosis = 8.029811 
Q1 = 1 
Q2 = 2 
Q3 = 3 
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Example: Average daily temperature in Rio de Janeiro, 
Durham and Chicago 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Seasonality is more pronounced in Durham and Chicago. 
Variability is also higher  in Durham and Chicago. 
Longer winters in Chicago (really?!?!) 
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The time series were smoothed by replacing each observation by the 
average of 21 neighboring days, 10 to the left and 10 to the right of the 
observation.   
Smoothing the time series helps to highlight the short-term patterns. 
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The time series were smoothed by replacing each observation by the average of 
364 neighboring days, 182 to the left and 182 to the right of the observation.   
Smoothing the time series helps to highlight the long-term patterns. 
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Monthly  
behavior 

Rio: variability seems 
to be constant 
throughout the year. 

Durham, Chicago: 
variability seems to be 
higher during colder 
months than during  
warmer months. 

Dot: medians 
vertical bar: Q1 to Q3 
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January behavior 

Rio is the warmest place in January (it is summer there!) 
Even Durham is much warmer then Chicago (what am I doing here?) 
Temperature in Chicago is the most variable. 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Example: Highest temperatures in the USA 

HAWAII 37.8 GEORGIA 44.4 IOWA 47.8 
ALASKA 37.8 ALABAMA 44.4 NEBRASKA 47.8 
RHODE-ISLAND 40 WEST-VIRGINIA 44.4 WASHINGTON 47.8 
CONNECTICUT 40.6 MICHIGAN 44.4 IDAHO 47.8 
MAINE 40.6 TENNESSEE 45 COLORADO 47.8 
VERMONT 40.6 OHIO 45 OREGON 48.3 
NEW-HAMPSHIRE 41.1 LOUISIANA 45.6 TEXAS 48.9 
MASSACHUSETTS 41.7 KENTUCKY 45.6 OKLAHOMA 48.9 
NEW-YORK 42.2 WISCONSIN 45.6 ARKANSAS 48.9 
FLORIDA 42.8 MINNESOTA 45.6 SOUTH-DAKOTA 48.9 
MARYLAND 42.8 WYOMING 45.6 KANSAS 49.4 
DELAWARE 43.3 MISSISSIPPI 46.1 NORTH-DAKOTA 49.4 
VIRGINIA 43.3 INDIANA 46.7 NEW-MEXICO 50 
NEW-JERSEY 43.3 ILLINOIS 47.2 NEVADA 51.7 
NORTH-CAROLINA 43.3 UTAH 47.2 ARIZONA 53.3 
SOUTH-CAROLINA 43.9 MONTANA 47.2 CALIFORNIA 56.7 

PENNSYLVANIA 43.9 MISSOURI 47.8 
89 



Highest temperatures 
Count 50  
Mean 45.604  
sample variance 13.901  
sample standard deviation 3.728  
Minimum 37.8  
Maximum 56.7  
Range 18.9  
   mean - 2s 38.147  
   mean + 2s 53.061  
   percent in interval (95.44%) 92.0% 
   mean - 3s 34.419  
   mean + 3s 56.789  
   percent in interval (99.73%) 100.0% 
Skewness 0.279  
Kurtosis 0.728  
1st quartile 43.300  
Median 45.600  
3rd quartile 47.800  
interquartile range 4.500  
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Example: US 2004 unemployment rates 

Mean (xbar) = 5.2078431  
variance = 1.1691373  
standard deviation (s) = 1.0812665 

Q1 = 4.6 (Georgia) 
Q2 = 5.2 (Rhode Island) 
Q3 = 5.7 (New Mexico) 

skewness = 0.4798145  
kurtosis = 0.3317919 

Empirical rule                                              actual 
                                                               coverage 
[xbar-1*s;xbar+1*s]=[4.13;6.289110]        72.55% 
[xbar-2*s;xbar+2*s]=[ 3.05;7.370376]       94.12% 
[xbar-3*s;xbar+3*s]=[ 1.96;8.451643]     100.00% 
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1. How to relate two things 
2. Correlations and covariances 
3. Linearly related variables 
    3.1 Mean and variance of a linear function 
    3.2 Linear combinations 
    3.3 Mean and variance of a linear combination: 2 inputs 
    3.4 Mean and variance of a linear combination: 3 inputs 
    3.5 Mean and variance of a linear combination: k inputs 
4. Portfolio example 
5. Simple linear regression 

Multivariate Exploratory Data Analysis 
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Summary of the lecture 
In this class you will learn how to  
•  Relate two sets of variables: sample linear correlation coefficient 
•  Compute sample mean, variance and standard deviation of linear 

combinations of variables 
•  Study the practical example of portfolio allocation 

Book  
Skewness (pages 114-117 (12)*, 113-117 (13)) 
What is correlation analysis? (pages 429-435 (12), 458-465 (13)) 

*Number in parenthesis refers to the book edition 
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July 10, 1987 until December 31, 1997 (2733 days) - Amsterdam (EOE) , Frankfurt 
(DAX), Paris (CAC40), London (FTSE100), Hong Kong (Hang Seng) Tokyo 
(Nikkei), Singapore (Singapore All Shares), New York (S&P500). 

Example: Comparing international stock returns 
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Histograms 
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Statistical summary 
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It is considered good to have  
a large mean return  
and  
a small standard deviation. 
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1. How to Relate Two Things 

The mean and standard deviation help us summarize a bunch 
of numbers which are measurements of just one thing (one variable) 

A fundamental and totally different question is how 
one thing relates to another. 

In this section of the notes we look at scatter plots 
and how covariance and correlation can be used to 
summarize them.  

When examining two things (variables) at the time, the scatter 
plot will be our main graphical tool whereas covariance and 
correlation will be our main numerical summaries. 
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nbeer  weight 
i 
12.0  192  1 
12.0  160  2 
5.0  155  3 
5.0  120  4 
7.0  150  5 
13.0  175  6 
4.0  100  7 
12.0  165  8 
12.0  165  9 
12.0  150  10 
.      .      . 
.      .      . 
.      .      . Now we think of each pair of numbers as an observation. 

Each pair corresponds to a person. 
Each person has two numbers associated with him/her, 
# beers and weight. 
Each pair corresponds to a point on the plot. 

Is the number of beers you can drink 
related to your weight? Example 

Scatter plot 
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Example 

International stock returns: Amsterdam and Frankfurt. 

Each point 
corresponds 
to a day. 
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In general we have observations 

and each point on the plot corresponds to an observation. 

Our data looks like: 

x  y  i 
12.0  192  1 
12.0  160  2 
5.0  155  3 
5.0  120  4 
7.0  150  5 
13.0  175  6 
4.0  100  7 
12.0  165  8 

....... 

The plot enables us to see  
the relationship between  
x and y 

the ith observation is a pair 
of numbers 
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In both examples it does look like there is a relationship. 

Even more, the relationship looks linear in that it looks like 
we could draw a line through the plot to capture the pattern. 

Covariance and correlation summarize how strong a 
linear relationship there is between two variables. 

In our first example weight and # beers were two variables. 
In our second example our two variables were two kinds of 
returns. 

In general, we think of the two variables as x and y. 

2. Covariance and Correlation 

104 



1885: Sir Francis Galton: studying the heights of children 
versus the heights of parents. 

There's a regression-back-to-the-mean effect: If your 
parents are on average higher than the average, you'll 
regress back to the average. 

1888: Co-relation: slope of the least-squares regression line 
for data in standardized (by median and quartile range) form 

1896: Karl Pearson, product moment definition 
The misuse of correlation has multiplied faster than the 
proper use of it ! 

Historical note 
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The sample covariance between x and y: 

The sample correlation between x and y: 

So, the correlation is just the covariance divided by 
the two standard deviations. 106 



We will get some intuition about these formulae, but first 
let us see them in action.  How do they summarize data 
for us? Let us start with the correlation. 

Correlation, the facts of life: 

The closer r is to 1 the stronger the linear 
relationship is with a positive slope. 
When one goes up, the other tends to go up. 

The closer r is to -1 the stronger the linear 
relationship is with a negative slope. 
When one goes up, the other tends to go down. 
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Correlation of amsterdam and frankfurt = 0.677 

Correlation of nbeer and weight = 0.692 

The correlations corresponding to the two scatter plots 
we looked at are: 

The larger correlation between nbeer and weight 
indicates that the linear relationship is stronger. 

Let us look at some more examples. 

108 



Correlation of  
y1 and x1 = 0.019 

Correlation of  
y2 and x2 = 0.995 
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Correlation of  
y3 and x3 = 0.586 

Correlation of  
y4 and x4 = -0.982 
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Correlation of y5 and x5 = 0.210 

The correlation only measures linear relationships (here 
the value is small but there is a strong nonlinear 
relationship between y5 and x5.) 111 



Example: The country data 

Which countries go up and down together? 
I have data on 23 countries. 
That would be a lot of plots! 
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To summarize, we can compute all pair wise correlations: 

            Amsterdam Frankfurt   Paris  London HongKong  Tokyo Singapore NewYork 
Amsterdam       1.000 
Frankfurt       0.678     1.000 
Paris           0.345     0.393   1.000 
London          0.657     0.481   0.280   1.000 
HongKong        0.408     0.284   0.177   0.419   1.000 
Tokyo           0.653     0.607   0.298   0.565   0.340   1.000 
Singapore       0.307     0.371   0.462   0.248   0.174   0.292     1.000 
NewYork         0.284     0.295   0.267   0.302   0.118   0.243     0.298   1.000 

Why is this blank? 

Example: International stock returns 
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Why compute both covariance and correlation? 

The four covariances are around 0.5…… 
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….but the four correlations are rather different. 

Note: Correlations are unit free.  They are between -1 and 1. 
Covariance, on the other hand, carries the units of X and of Y. 115 



3 Linearly Related Variables 

We have studied data sets that display some 
kind of relation with each other (the mutual fund returns and 
the market returns, for instance). 

Sometimes there is an exact linear relation between variables: 

 y = c0 + c1 x 

Can we say something about the sample mean of y if all we 
know is the sample mean of x (and vice versa)?   

Can we say something about the sample standard deviation 
of y if all we know is the sample standard deviation of x (and 
vice versa)?  

We will answer these questions in the sequel. 
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Example 

Suppose we have daily temperatures (in Celsius degree) in 
Rio de Janeiro from  January 1st, 1995 to December, 11th 2008. 

We also know that the sample mean and the sample variance 
for the daily temperature for this period are 24.24C and  2.78C. 

What in the hell are Celsius degree? 

Don’t panic!!!! 

F = 32 + 1.8C 
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The variable y is a linear function of the variable x if: 

In general, we like to use the symbols y and x 
for the two variables 

We think of the c’s as constants 
(fixed numbers) while x and y vary. 
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3.1 Mean and variance of a linear function 

How are the mean and variance of y related to those of x? 

Let us look at our temperature example. 
It is not a coincident that 32+1.8*24.235=75.622 and that 
1.8*2.782=5.008 
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Suppose 

Then, 

Recall that |x| is the absolute value of x.  For instance,  
|-5|=5 and |10|=10 120 



When a variable y is linearly related to several others, 
we call it a linear combination. 

y is a linear combination of the x’s. 
ci is the coefficient of xi. 

3.2. Linear combinations 

We may want a variable to be related to several others instead of 
just one. We will assume that Y is a function of X,Z,…rather than 
just a function of X. 
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Example: house pricing  
Home Nbhd Offers         SqFt    Brick    Bed      Bath              Price 
1  2  2  1790   No  2  2      114300 
2  2  3  2030   No  4  2         114200 
3  2  1  1740   No  3  2      114800 
4  2  3  1980   No  3  2        94700 
5  2  3  2130   No  3  3      119800 
6        1  2  1780   No  3  2      114600 

We will see later, when studying multiple linear regression, that the price 
can be modeled as a linear combination of the other variables. 

The following formula relates the expected sales price of a house (Price) to 
its size (SqFt), number of bedrooms (Bed) and number of bathrooms 
(Bath): 

Price = -5640.83 + 35.64*SqFt + 10459.93*Bed + 13546.13*Bath 
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Let us use country returns and suppose that we had put 
0.5 into USA and 0.5 into Hong Kong, ie. 

               port = 0.5*honkong + 0.5*usa 

What would our returns have been? 

honkong  usa   port 
 0.02        0.04   0.030 
 0.06       -0.03   0.015 
 0.02        0.01   0.015 
-0.03        0.01  -0.010 
 0.08        0.05   0.065 
........ 

For each month, we 
get the portfolio return 
as ½*hongkong + ½*usa. 

Example: Portfolio allocation 
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How do the returns on this portfolio compare with 
those of Hong Kong and USA? 

It looks 
like the mean 
for my portfolio 
is right in 
between the 
means of 
USA and Hong Kong. 

What about the 
standard deviation?  
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Let us try a portfolio with three stocks. 

Let us go short on Canada (i.e., we borrow Canada to invest 
in the other stocks), ie. 

          port = -0.5*canada+1.0*usa+0.5*honkong 

Clearly, 
forming 
portfolios 
is an interesting 
thing to do! 
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Basic question: why would we form portfolios? 

Maybe the portfolio has a nice mean and variance (i.e.  
nice “average return” and nice “risk”) 

There are some basic formulae that relate the mean 
and standard deviation of a linear combination  
to the means, variances and covariances of the  
input variables. 

We can apply these formulae to understand how 
the mean and variance of a portfolio depend 
on the input assets. These formulae constitute the  
basic part of the tool-kit of those who really  
understand finance. 
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2 inputs: 

Suppose 

Then, 

3.3. Mean and variance of a linear combination: 2 inputs 

First, we consider the case where we have only two inputs. 
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Example: Portfolio means 

Port = 0.5*honkong + 0.5*usa 

honkong  usa   port 
 0.02        0.04   0.030 
 0.06       -0.03   0.015 
 0.02        0.01   0.015 
-0.03        0.01  -0.010 
 0.08        0.05   0.065 
........ 

For each month, we 
get the portfolio return 
as ½*hongkong + ½*usa. 

The mean returns on USA, and Hong Kong are 
0.01346, and 0.02103  

The mean return on Port is 
0.5*0.01346+0.5*0.02103=0.01724  
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Covariance matrix 

             hongkong      usa 
hongkong      0.00521 
usa           0.00103  0.00111 

As before, we apply the formula: 

Var(Port)= (0.5)*(0.5)*0.00521 + (0.5)*(0.5)*0.00111 + 2*(0.5)*(0.5)*0.001 
                 = 0.25*0.00521 + 0.25*0.00111 + 0.5*0.001 = 0.0021. 

The diagonals are variances, 
The off diagonals are  
Covariances. 

Let us do the same exercise for the variance: 
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Let us do it one more time: 

Port = 0.25*usa+0.75*hongkong 

Var(Port) =  

(0.25)*(0.25)*0.00111 +   

(0.75)*(0.75)*0.00521 + 

(2)*(0.25)*(0.75)*(0.00103)  

= 0.0033  
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3 inputs: 

Suppose 

Then, 

3.4. Mean and variance of a linear combination: 3 inputs 

Second, we consider the case where we have three inputs. 
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Example: Portfolio based on fidel, eqmrkt and windsor funds. 

port = 0.1*fidel+0.4*eqmrkt+0.5*windsor 

Covariance matrix 

             fidel      eqmrkt     windsor 
fidel     0.003202 
eqmrkt    0.003190    0.004700 
windsor   0.002410    0.002990   0.0023658 

Var(port) = (0.1)*(0.1)*0.003202 +  
                  (0.4)*(0.4)*0.0047 +  
                  (0.5)*(0.5)*0.0023658 + 
                  2*{(0.1)*(0.4)*0.00319+(0.1)*(0.5)*0.00241+(0.4)*(0.5)*0.00299} =  
               0.0030676 
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K inputs: Suppose 

then, 

3.5. Mean and variance of a linear combination: k inputs 
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4. Porfolio example 

Cut from a Finance Textbook: 
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Dowjones components: January 1997 to December 2006 - 2516 observations 
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100 replications of Fama’s exercise 
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You will learn everything 
about the minimum 
variance portfolio in an 
Investments course.   

For now, just keep in 
mind it is a portfolio 
whose variance is 
smaller than other 
portfolios. 

Mean        = 0.050 
Variance   = 0.921 
Stdev        = 0.960 
Kurtosis    = 3.056 
Skewness =-0.161 

Weights for the minimum 
variance portfolio  
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Mean-standard deviation plot 
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Portfolios based on the 30 Dowjones components 
Blue dot: Minimum variance portfolio. 
Red line: Minimum variance portfolio for a given mean return target.   
Positive and negative weights are allowed, as long as they add up to 1. 
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Portfolios based on 8 Dowjones components 
Blue dot: Minimum variance portfolio. 
Red line: Minimum variance portfolio for a given mean return target.   
Positive and negative weights are allowed, as long as they add up to 1. 
Black dots: Several randomly selected portfolios with weights between 0 and 1 
and adding up to 1. 

Red dot portfolio           

COMPANY                       weight 
HEWLETT-PACKARD          0.03 
IBM                                          0.12 
INTEL CORP                          0.17 
MICROSOFT CORP               0.09 
JOHNSON&JOHNSON         0.09 
MERCK & CO                        0.27 
PFIZER                                   0.06 
PROCTER & GAMBLE         0.18 
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Excel: Constrained portfolios with 2 assets 
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Excel: Constrained portfolios with 3 assets 
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5. Simple Linear Regression 
This is data on 128 homes. 
 x=size (square feet) y = price (dollars) 
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Covariance matrix 

                     SqFt            Price 
SqFt      44762.89      3143533 
Price 3143533.22   721930821 

Hard to say what “721930821” means. 

Correlation matrix 

                   SqFt          Price 
SqFt  1.0000000 0.5529822 
Price 0.5529822 1.0000000 

That is better!   

Size and Price are clearly linearly correlated! 145 



But what is the equation of the line you would draw through the 
data? 

Linear regression fits a line to the plot. 

When I "run a regression" I get values for the intercept and the 
slope 

PRICE =   intercept  + slope*SIZE 

PRICE = -10091.13 +  70.23*SIZE 

146 



Here is the scatter plot with the line drawn through it. 

Looks reasonable! 
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5.1. Regression and Prediction 

Suppose you had a house and you knew the size = 2000 
but you do not know the price. 

How could you use regression to guess or "predict" 
the price? 

Just plug the size into the equation of the line: 

estimated price =  -10091.13 +70.23*2000 
                          =   130368.9 
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Correlation and covariance are "symmetric". 
The covariance between y and x is the same 
thing as the covariance between x and y. 

Regression is not symmetric. 

We regress y on x. 
  y: dependent variable 
  x: independent variable. 

We say that “y depends on x”. 

In our example y=price depends on x=size. 
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Basic Probability 

1.  Probability and Random Variables 
2.  Bivariate Random Variables 
3.  The Marginal Distribution 
4.  The Conditional Distribution 
5.  Independence 
6.  Computing Joints from Conditionals and Marginals  
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Summary of the lecture 
In this lecture we will enter the realm of statistical modeling.  However, in order 

to set the stage for more complex scenarios, such as estimation, hypothesis 
testing and linear regression, we must introduce the notation, the jargon of 
probability.  We begin by  

•  Defining probability and presenting properties; 

•  Discrete random variables: where the outcomes are countable, such as 
number of votes for candidate A per county, number of children per family, 
and number of collisions monthly claimed in a certain insurance company; 

•  Bivariate random variables by contingency tables: For instance, should 
salary level have 4 categories (low,medium,high,extreme) and happiness have 
3 categories (unhappy, indifferent, happy), then one could argue that there are 
8 joint levels of salary by happiness in a 4 by 3 contingency table; 

•  Marginal distributions: Looking at the margins of a table; 

•  Conditional distributions: looking at a column/row of a table. 
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Book material 
•  Chapter 5:  

  Probability, experiment, outcome and event (141-142 
 (12), 140-141 (13)) 

  Events mutually exclusive (143 (12), 142 (13))  
  Events collectively exhaustive (page 144 (12),  143 
(13))  

  Classical probability (143 (12), 142 (13)) 
  Empirical probability (144 (12), 143 (13)) 
  Subjective probability (145 (12), 144 (13)) 
  Rules for computing probabilities (147-154 (12),  174-155 
(13)) 

  Contingency tables (155-157 (12), 156-158 (13)) 
•  Chapter 6 

  Discrete random variable (184 (12 &13)) 
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In this section of the course we learn about 
random variables and probability. 

This is a very important  
topic that gets used 
in a variety of situations. 

In order to think about many 
real world problems 
we have to face the fact 
that we are uncertain about 
some important aspects of the situation. 
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Monty Hall Problem 

http://www.youtube.com/watch?v=mhlc7peGlGg 

Birthday Problem 
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Example 1: S7P500 ups and downs in 2008 

1. Probability and Random Variables 

69 days 
33 ups (33 1’s) 
36 downs (36 0’s) 
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The average tells us the percentage of days that  
resulted in a positive SP500 return.  

48% of the days resulted in a positive return. 
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What will happen the next day?  
• Let X denote the outcome. Then X is either 0 or 1. 

• X is a numerical quantity about which we are uncertain.  

• Random Variable:  We do not know what X will be, but 
we do know that it will be either 1 or 0 with certain 
probabilities.  

What are these probabilities?   
Tough questions!  47.8% is simply a rough estimate of 
the actual chance that SP500 is up in a given day.  It is a 
rough estimate because it is based only on a very recent 
past, which may or may not represent the TRUE process 
driving the SP500 movement. 157 



Example 2: Tossing a “fair” coin 
Let us see a (much simpler) example where we are more 
comfortable assessing these probabilities 

They are Pr(X=1)=0.5 and Pr(X=0)=0.5. 
The probability of a 1 is 0.5. 
The probability of a 0 is 0.5. 

What does it mean? 

The two possible outcomes are equally likely  
(by the very nature of a coin). 

Over the long run, if we tossed the coin over and over again, 
we expect a 1 (or, equivalently, a zero) 50% of the time. 158 



Probability as the long-run frequency 

How often it happens 

That is, if we toss the coin n times with n really big and 

           n1 is the number of 1’s 
           n0 is the number of 0’s 

then, 
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10 tosses 
Of course, if we toss a coin10 times 
we do not necessarily expect to get 
exactly 5 heads and 5 tails. 

1,000 tosses 
If we toss it 1000 times we 
expect the proportion to work  
out in the long run. 

10,000 tosses 
For “all” the tosses we expect to 
get 50% heads.  For some, we 
could get something different. 
The closer to “all” we get, the 
more likely it is that the observed 
fraction will be close to .5. 
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The larger the “sample size” the closer the observed 
frequency of heads is to true probability of 50%. 
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Example 3: defects 

Suppose  
we are 
making 
computer 
chips. 

We record  
1 if defective 
0 if good. 

Mean of defects = 0.12000 

12% are defective 
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Suppose we are about to  
make the next chip. 

What will happen? 

We will get either a  
one (a defective part) or a  
zero (a good part)  
with some probabilities. 

Again, we think of Y as an uncertain quantity (a random 
variable) with two possible outcomes, 1 and 0 (defective  
and good) having probabilities: 
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Important 

Unlike the coin example, it is not obvious 
what to use for the probabilities here (why?). 

In our sample we have 12% defectives. 

Does that mean that the probability of a defective =  .12?  
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Later in the course we will think of the sample frequency  
as an estimate of the true probability. 

So, we might estimate probabilities: 

But, we could be wrong! 

Of course, NOT!  
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Example 4: tossing 3 coins simultaneously 

Suppose we toss three coins.   

Let H:head and T: tail.   

Then, the eight possible outcomes are  

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. 

Let X denote the number of heads (it is a random variable). 
X has three possible outcomes: 0, 1, 2 or 3.  
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Tree diagram 
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Definition of discrete random variable  

A discrete Random Variable is a numerical quantity we  
are unsure about. We quantify our uncertainty by: 

The word “discrete” refers to the fact that we just 
have a  list of outcomes.  Later we will study continuous 
random variables where “any” outcome is possible. 

2.  Assigning to each number a probability. 
     Probabilities are numbers between 0 and 1  

 and sum up to 1.  

1.  Listing the numbers it could turn out to be, i.e.,the 
possible outcomes. 
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Example 

Pr(X=x) x 
  0.25   0 
  0.50   1 
  0.25   2 

Each probability tells us how often the corresponding 
outcome happens. 
Interpret. 25% of the time we get 2 heads. 

Important: a probability distribution is a list of 
probabilities, one for each outcome. 

This table gives the  
probability distribution 
of the random variable X. X: 

For the random variable denoted by X,  we often use x to 
denote a possible outcome. 

169 



Notation 

We use various notations for the probability that the 
random variable X takes on the value (outcome) x: 

These all mean the same thing. 

With p(x) it must be understood from the context that 
you are talking about the outcome x of the random  
variable X. 
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Example 5: 

Suppose we toss a die, let z denote the outcome: 
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Note: 
To get the probability that any one of a bunch of 
outcomes occurs we sum up their probabilities. 

Example 5 (cont.) 

Suppose you role a die.   

Let X be the number. 

P(2<X<5)=P(X=3)+P(X=4)=1/6+1/6=2/6=1/3. 
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Example 6:  

Suppose we toss two dice.  
Let Y denote the sum. 

 y  p(y) 

What is the probability of  
getting more than 8? 

Pr(Y>8) =  
Pr(Y=9)+Pr(Y=10)+Pr(Y=11)+ Pr(Y=12) 
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Example 7: Investing in an asset 

Suppose you are considering investing in an asset. 

Let R denote the return next month.  
We think of R as a random variable.  
We do not know what the return will be (it is random) but we assume 
we know what the possible outcomes and probabilities are.  
In other words, we are truly modeling a future event. 

         r    0.05   0.10  0.15 

Pr(R=r)    0.1     0.5    0.4 

The probability that the return will be greater  
than 0.05 is 0.9. 
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Graphing discrete random variables 

We can use a graph to see the probability distribution 
of a random variable. Simply plot p(y) versus y: 

Example 8:  Y = the sum of two dice. 
 y  p(y) 
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Example 9: Y = the sum of three dice 
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The Bernoulli distribution 

The situation where something happens or not and we want to talk 
about the probability of it happening is our most basic scenario.   

To describe this situation we use a random variable which is 1 if 
something happens and 0 otherwise and probability (“it happens”) = p. 

Such a random variable is said to have the Bernoulli distribution.  

Notation: Y ~ Bernoulli(p)  means P(Y=1)=p, P(Y=0)=1-p 

Example 10:  Toss a coin.  X=1 if head, 0 else. 

Then,  
                            X ~ Bernoulli(0.5). 

One of the most  famous discrete random variable. 
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The random variable X has the Bernoulli distribution 
with parameter p (between 0 and 1) if 

In general, we think of X=1 as the thing happens and X=0  
as the thing does not happen. 
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The word random variable refers to the outcome before 
it happens. 

A random variable describes what we think will happen. 

After we have an outcome (say, after we toss a coin), the 
obtained value is sometimes called a draw from the 
common distribution (it is a data point or an observation 
from the sample). 

Something to think about 
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The Bernoulli distribution is named after Jakob Bernoulli, who 
was born in Basel, Switzerland on December 27, 1654 and 
lived until August 16, 1705.  He is one of the eight 
prominent mathematicians in the Bernoulli family. 
Erhard Weigel                     1650 Universitat Leipzig 
Gottfried Leibniz                 1666 Universitat Altdorf 
Jakob Bernoulli                   ???? 
Johann Bernoulli                1694 
Leonhard Euler                   1726 Universitat Basel 
Joseph Louis Lagrange      Ecole Polytechnique 
Simeon Denis Poisson       Ecole Polytechnique 

Michel Chasles                   1814 Ecole Polytechnique 
Hubert Anson Newton          1850 Yale University 
Eliakim Hastings Moore       1885 Yale University 
Robert Lee Moore                1905 The University of Chicago 
John Kline                            1916 University of Pennsylvania 
Donald Flanders                  1927 University of Pennsylvania 
Jacob Wolfowitz                   1942 New York 

Jack Kiefer                            1952 Columbia 
Lawrence Brown                   1964 Cornell 
James Berger                        1974 Cornell 
Peter Müller                           1991 Purdue 
Hedibert Freitas Lopes        2000 Duke  
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2. Bivariate Discrete Random Variables 
Let X be the return on the nasdaq. 
Let Y be the return on the djia. 
We can think of both as random variables 
We need probability to describe what both turn out to be 
Could there be a relationship? If one “turns out big,” will the other 
tend to be big as well? 

Source: Jan/2004 to Dec/2008 - http://finance.yahoo.com 181 



We give the bivariate probability distribution of 
a pair of random variables by: 

1.  Listing out all the possible pairs of values  
      that they could take on. 

2.  For each pair we give a probability. 
     The sum of the probabilities over all pairs = 1. 
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Example 10:  
SP&500 and Dowjones ups and downs in 2008 

Let X=1 if SP&500 is up and X=0 if it is down 
Let Y=1 if DOW     is up and Y=0 if it is down 

(x,y)        p(x,y) 

(0,0)        0.478 
(0,1)        0.072 
(1,0)        0.044 
(1,1)        0.406 

Then, the  
joint distribution 
of X and Y is 
given by this table 

We simply list out all possibilities for the pairs  
and give each one a probability. 
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Example 11: Tossing two coins 

Let X be the result of tossing a coin (1=H, 0=T). 
Let Y be the result from a second coin toss. 

(x,y)        p(x,y) 

(0,0)         0.25 
(0,1)         0.25 
(1,0)         0.25 
(1,1)         0.25 

Then, the  
joint distribution 
of X and Y is 
given by this table 

We simply list out all possibilities for the pairs  
and give each one a probability. 
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As before, we might also write 

The joint  bivariate distribution of X and Y is specified by  
the numbers  

for all possible x and y (for all possible pairs). 
The distribution is discrete in that there is just a list (a finite 
number) of possible (x,y) pairs. 

Notation: 
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Note: An alternative way to display the probabilities is: 

X 

0                     1 

Y 

0          0.478               0.044 

1          0.072               0.406 

We have a two way table where each spot in the 
table corresponds to a possible (x,y) pair. 
At each spot we give the probability of the  
corresponding pair. 

(x,y)        p(x,y) 

(0,0)        0.478 
(0,1)        0.072 
(1,0)        0.044 
(1,1)        0.406 
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Example 12: Investing in 2 assets 

0.10      0.07   0.07 

0.03      0.30   0.03 

0.05      0.05   0.30 

X 

5%     10%   15% 

5% 

10% 

15% 

Y 

Let X and Y 
be returns on two 
different assets. 

What does 
this table say 
about the 
relationship 
between X and Y? 

What is the probability 
that they are equal? 
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Probability means the same thing as in the univariate case 

0.10     0.07    0.07 

0.03     0.30    0.03 

0.05     0.05    0.30 

X 

5%     10%   15% 

5% 

10% 

15% 

Y 

We expect  
to see the pair 
(x,y)=(10%,10%) 
0.30 of the time. 
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3. The Marginal Distribution 

The joint distribution of X and Y tells us what we 
expect to happen for both of them. 

From this, we should be able to figure out what happens 
for one of them. 

That is, we should be able to get 

and 

from 
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Example 12 (cont.) 

0.10    0.07     0.07 

0.03    0.30     0.03 

0.05    0.05     0.30 

X 

5%     10%   15% 

5% 

10% 

15% 

Y 

What is ? 
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The marginal distributions 

Given the joint distribution of X and Y 
defined by 

the marginal (individual) distributions of X and Y  
are given by, 
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Example 12 (cont.) 

0.10      0.07    0.07          0.24 

0.03      0.30    0.03          0.36 

0.05      0.05    0.30          0.40 

0.18      0.42    0.40          1.00 

X 

5%     10%    15% 

5% 

10% 

15% 

Y 

Let us write out the marginal distributions (or, based on a  
common jargon, the marginals) using our standard two way  
table.  
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4. The Conditional Distribution 

Example 13: In 1971 the Gallup company estimated  
the following joint probability distribution for Y=happiness  
and X= income (at 4 levels). 
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1) What is the chance a randomly chosen 
 person is rich and happy? (Easy) 

2) What is the chance that a person is rich?  
 (Easy) 

3) What is the chance that a person is happy? 
 (Easy) 

4) Given you know they are rich, what is the  
 chance they are happy? (Yikes…) 

Review questions 
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To see what the answer to the fourth question is, 
let us first rephrase it. 

Out of the people that are rich, what percent are also  
happy? 
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Out of the times X=x, what fraction also has Y=y ? 

In general, for random variables X and Y,we ask 
what is Pr(Y=y) given we know X=x. 

= 
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The conditional distribution 

Given discrete random variables X and Y with 
associated probabilities 

The probability that Y=y given X=x is denoted by 

and 
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For a fixed x, the numbers p(y|x) (for the various possible y) 
give the conditional distribution of Y given X=x. 

Of course, 

Notation 

is sometimes used as a symbol for the conditional  
probability distribution of Y given X=x. 
Recall: probability distributions are lists of probabilities 
(one probability for every possible outcome). 
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Example 13 (cont.) 

The conditional 
distribution of 
Y given X = 17.5 
is 

y          Pr(y|x=17.5) 

0       0.01/0.24 = 0.0416 
1       0.09/0.24 = 0.3750 
2       0.14/0.24 = 0.5833 

Note that the conditional 
probabilities have to sum up to 1. 

Note, also, that given x=17.5 
the first three rows of the table 
become irrelevant. 

Pr(Y|X=17.5) 
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Let us compare the marginal distribution of Y 
to the conditional distribution of Y given X = 17.5:  
What do you notice? 

y          p(y|17.5) 

0       .01/.24 = .0416 
1       .09/.24 = .375 
2       .14/.24 = .5833 

y      p(y) 

0        .07 
1        .47 
2        .46 

Learning that X=17.5 changes what you expect Y to be  
(the probabilities are different). 

Important: conditional probability shows us how to  
change our ideas about what we expect given information. 
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Example 13 (cont.) 

What is 
the distribution 
of X given 
Y=0 ? 

x          p(x|Y=0) 

2.5        3/7 
7.5        2/7 
12.5      1/7 
17.5      1/7  

202 



Example 12 (cont.) 

0.10    0.07    0.07        0.24 

0.03    0.30    0.03        0.36 

0.05    0.05    0.30        0.40 

0.18    0.42     0.40      1.00 

X 

5%     10%   15% 

5% 

10% 

15% 

Y 

What is 
Y | X=5%? 

y                     5%       10%       15% 
p(y|X=5%)    0.56       0.17        0.28 

What is 
Y | X=15%? 

y                          5%      10%     15% 
p(y|X=15%)    0.175     0.075     0.75 
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Action 1: do not swap unopened doors 
Pr(win car | action 1)=1/3 

Action 2: swap unopened doors 

Pr(win) = Pr(win car |goat behind selected door)Pr(goad behind selected door)+ 
                 Pr(win car |car behind selected door)Pr(car behind selected door) 
              =  (1)(2/3)  +  (0)(1/3)  =  2/3 

Therefore,  
Pr(win car | action 2)=2/3  

Example: The Monty Hall Problem 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5. Independence 

In our happiness/money example, knowing how much  
money a person has changes your expectations 
about how happy the person is. 

This makes us think that happiness and money 
have something to do with each other (i.e., they are 
not independent). 

Learning X=x changed our probabilities for Y. 

There was information in X=x about Y. 
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X 

0                     1 

Y 

0            .25                  .25 

1            .25                  .25 

What is the dist 
of Y given X=0? 

y    p(y|0) 

0     .25/.5 = .5 
1     .25/.5 = .5 

What is the dist 
of Y given X=1? 

y    p(y|1) 

0     .25/.5 = .5 
1     .25/.5 = .5 

What is the marginal p(y)? 

y    p(y) 

0     .25+.25 = .5 
1     .25+.25 = .5 
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All three of p(y|0), p(y|1), and p(y) are the same! 

What does this mean? 

What you expect for Y does not depend on what 
you know about X. 

There is no information in X about Y. They 
have nothing to do with each other. 
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If X is the toss of the first coin, and Y is the toss 
of the second coin, this makes sense. 

Knowing whether the first coin is 0 or 1 (tails or heads) 
does not affect what you expect for the next one. 

When two things have nothing to do with each other 
we say that they are 

independent 
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Independence 

Let X and Y be discrete random variables. 

If for all x,y 

we say the random variables are independent. 
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Another (equivalent) definition of Independence 

Suppose X and Y are independent. Then, 

So, 

The joint is the product of the marginals (this is the 
standard textbook definition). 

Example               X 
         0        1 
    0  .25     .25   .5 
Y 
    1 .25      .25   .5 
        .5        .5 

The two 
coins again: 210 



Example 12 (cont.) 

What isY | X=5%? y                     5%       10%       15% 
p(y|X=5%)    0.56       0.17        0.28 

What is Y | X=15%? y                          5%      10%     15% 
p(y|X=15%)    0.175     0.075     0.75 

Clearly, X and Y are not independent in this example. 
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Example 14: 

The Gallup Organization did a nationwide poll asking the 
following question: 

The Supreme Court has ruled that a woman may go to a doctor to end 
pregnancy at any time during the first 4 months of pregnancy, do you 
favor or oppose this ruling? 

0.27 Male 

Female 

Favor Opposed 

0.21 

0.24 0.28 

Are they independent ? 212 



Solution: 

Pr(male) = 0.48   and   Pr(female) = 0.52 

Pr(favor) = 0.51   and   Pr(opposed) = 0.49 

Therefore, 

P(favor|male)=Pr(favor,male)/Pr(male)=0.27/0.48=0.5625 

P(favor|female)=Pr(favor,female)/Pr(female)=0.24/0.52= 0.4615 

Since P(favor|male) and P(favor|female) are not the same, it 
follows that gender and view towards pregnancy are not 
independent. 
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Same Gallup poll as before, now with people classified 
by political views (Leftist or rightist). 

Left   

Right 

Favor Opposed 

0.441 0.459 

0.051 0.049 

Example 15: 

Are they independent ? 
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Solution: 

Pr(left) = 0.9   and   Pr(right) = 0.1 

Pr(favor) = 0.51   and   Pr(opposed) = 0.49 

Pr(left)Pr(favor)         =(0.9)(0.51)=0.459=Pr(left,favor) 

Pr(left)Pr(opposed)   =(0.9)(0.49)=0.441=Pr(left,opposed) 

Pr(right)Pr(favor)       =(0.1)(0.51)=0.051=Pr(right,favor) 

Pr(right)Pr(opposed) =(0.1)(0.49)=0.049=Pr(right,opposed) 

Conclusion: Since the joint equals the product of the 
marginals, political view and and view towards pregnancy are 
independent. 
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6. Computing joints from conditionals and marginals 

Remember the definition of conditional probability? Here it is: 

We can rewrite the previous formula as follows: 
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Interpret. We are simply saying: 

prob that x and y happen  = 

prob that y happens  
times  
prob that  
x happens given that y happened 

Alternatively (but equivalently), 

How often we get x and y equals how often we get y times 
the fraction of those times we then get x. 

This is a very straightforward way to interpret and compute 
joint probabilities. Let us see a couple of examples: 
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Example 16: 

Suppose you have 10 voters. 
5 are Republicans, 5 are Democrats. 
You randomly pick two. 
This would be a random sample of two voters from 10. 

What is the probability of two Republicans? 

Think of randomly picking the first, and then the second. 

Probability that both are Republicans = 
 probability the first is a Republican times the 
 probability the second is a Republican given  
 that the first is = (5/10)*(4/9) = 2/9 
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Is the outcome for the second chosen voter 
independent of the outcome for the first? 

Suppose we have 5 million Democrats and 5 million  
Republicans. 

Is the outcome for the second chosen voter independent  
of the outcome for the first in this case? 
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Example 17: Birthday problem 
The birthday problem asks whether any of the persons 

in this classroom have a matching birthday with any 
of the others — not one in particular.  

In a list of 50 people, for example, comparing the 
birthday of the first person on the list to the others 
allows 49 chances for a matching birthday,. 

Comparing every person to all of the others allows 1225 
distinct chances: in a group of 50 people there are 
50×49/2 = 1225 pairs.  
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To compute the approximate probability that in a room of n people, at least 
two have the same birthday, we disregard variations in the distribution, 
such as leap years, twins, seasonal or weekday variations, and assume that 
the 365 possible birthdays are equally likely.  

Real-life birthday distributions are not uniform since not all dates are equally 
likely.  

It is easier to first calculate the probability p(n) that all n birthdays are 
different. If n ≤ 365, it is 

because the second person cannot have the same birthday as the first 
(364/365), the third cannot have the same birthday as the first two 
(363/365), etc. 
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The event of at least two of the n persons having the same 
birthday is complementary to all n birthdays being different.  
Therefore, its probability p(n) is 

The following table shows the probability for some other values 
of n: 

n          p(n)                       
10     11.7%                      A reasonable approximation is 
20    41.1%  
30    70.6%  
50    97.0%  
57    99.0%                        where e = 2.72. 
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Example 18: Inverse Probability 
X = 1 : patient is ill  
X = 0 : patient is not ill  
Doctor’s expert opinion : Pr(X=1)=0.05  

Clinical trial characteristics 
T=1 : test indicates patient is ill  
T=0 : test indicates patient is not ill  
Pr(T=1|X=1) = 0.90  
Pr(T=0|X=0) = 0.80  
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It is easy to see that 
Pr(T=1,X=1)=Pr(T=1|X=1)Pr(X=1)=(0.9)(0.05)=0.045 
Pr(T=1,X=0)=Pr(T=1|X=0)Pr(X=0)=(0.2)(0.95)=0.190 
Pr(T=0,X=1)=Pr(T=0|X=1)Pr(X=1)=(0.1)(0.05)=0.005 
Pr(T=0,X=0)=Pr(T=0|X=0)Pr(X=0)=(0.8)(0.95)=0.760 

The joint distribution of X and Y and the marginal 
distributions of X and Y are: 

                            T        
                       0       1         P(X)               
X  0        0.760    0.190    0.950  
    1        0.005    0.045    0.050  
P(T)       0.765    0.235    1.000  
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Therefore, 

Pr(X=1 | T=1) = Pr(X=1,T=1)/Pr(T=1) 
                         = 0.045/0.235  
                         = 0.1915 

Pr(X=1 | T=0) = Pr(X=1,T=0)/Pr(T=0) 
                         = 0.005/0.765  
                         = 0.0065 
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More on Probability 

  1. Continuous Distributions 
  2. The Normal Distribution 
  3. The Cumulative Distribution Function 
  4. Expectation as a Long Run Average 
  5. Expected Value and Variance of Continuous RV's 
  6. Random Variables and Formulas 
  7. Covariance/correlation for pairs of random variables 
  8. Independence and correlation 
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Summary of the lecture 
In this lecture we will learn about  

Continuous distributions, such as the famous normal distributions, 

How to compute probabilities under continuous distributions, 

Independent and identically distributed (i.i.d.) draws: random sample, 

How to related actual data to the normal model: model fitting, 

How to compute means, variances, covariances of functions of random variables 

The binomial distribution to model the number of times a particular characteristic appears in your 
sample 

The famous (or infamous) Central Limit Theorem (C.L.T.) 
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Book material 
•  The family of normal distributions  
       (pages 217-231 (12), 227-241 (13)) 

•  The standard normal distribution  
        (pages 219-223 (12), 229-233 (13)) 

•  Finding areas under the normal curve  
       (pages 224-228 (12), 234-238 (13))  

•  The mean, variance, and standard deviation of a probability distribution  
        (184-187 (12), 185-187 (13)) 

•  Sampling distribution of the sample mean  
       (pages 259-263 (12), 270-273 (13)) 

•  The Central limit theorem 
        (pages 263-269 (12), 274-280 (13)) 
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1. Continuous distributions 

Example: Suppose we have a  
machine that cuts cloth.  When pieces  
are cut, there are remnants. 

We believe that the length of a  
remnant could be anything  
between 0 and 0.5 inches and,  
any value in the interval is equally  
likely. 

The machine is about to cut, leaving a  
new remnant.  The length of the remnant  
is a number we are unsure  
about, so it is a random variable.   

How do we describe our beliefs? 229 



Example: 99.87% of S&P500 returns falls in the range 
-4.922 and 4.925, with 1st,2nd and 3rd quartiles given by  
-0.404, 0.0368 and 0.0448, respectively.  

Returns above -5.00   and below -3.89   =        8          0.4%          
Returns above -3.89  and  below -1.67   =    366          2.5% 
Returns above -1.67  and  below -0.56   =  2447        16.7% 
Returns above -0.56  and  below  0.56   =  8522        58.2% 
Returns above  0.56  and  below  1.67   =  2787        19.0% 
Returns above  1.67  and  below  2.78   =    380          2.6% 
Returns above  2.78  and  below  5.00   =      60          0.6% 
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These are examples of continuous random variables. 

The random variables can take on any value in an interval. 

In both examples each value in the interval is equally 
likely. 
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We can not list out the possible values and give each a 
probability.  Instead we give the probability of intervals. 

Instead of  

     Pr(X=x) = 0.1 

we have 

    Pr(a<X<b) = 0.1 

Example (cont.): 14391 distinct returns out of 14665 
days.  Therefore, 0.007% is the approximate probability 
that a future return equals any of the previous 14391 
returns. 
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Probability density function 
One convenient way to specify the probability of 
any interval is with the probability density function (pdf). 

In this example values 
closer to 0 are more 
likely. 

The probability of an interval is the area under the pdf. 
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For this random variable the probability that it is in the 
interval [0,2] is 0.477. (47.7%  of the time it will fall in  
this interval). 

area is 
0.477 
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Note: The area under the entire curve must be 1 (Why?) 

Here is another p.d.f: 

Most of the probability is concentrated in 1 to 15, but 
you could get a value much bigger. This kind of 
distribution is called skewed to the right. 235 



For a continuous random variable X, the probability 
of the interval (a,b), denoted by 

 Pr(a < X < b) 

is the area under the probability density function 
from a to b. 
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2. The Normal Distribution 

This pdf describes 
the standard 
normal distribution. 

We often use 
Z to denote 
the RV which has 
this pdf. 

Note: 
any value in  

is "possible". 
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Properties of the standard normal 

In these notes I will usually act as if 1.96 = 2. 

Also 
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X~N(µ,σ2) 

The standard normal is not of much use by itself. 
How often would you use that pdf to describe a 
quantity of interest ? 

When we say "the normal distribution", we really 
mean a family of distributions all of which have 
the same "shape" as the standard normal. 

If X is a normal random variable we write: 
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X~N(µ, σ2) means X has this pdf: 

P(µ-2σ<X<µ+2σ) = 0.95 

P(µ-σ<X<µ+σ) = 0.68 
f(x

) 

m-2s
 m+2s
m
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Z~N(0,1) Y~N(1,0.52) 

X~N(0,4) 

The normal 
family has 
two parameters 

µ: where the curve 
is centered 

σ: how spread 
out the curve is 

Z, X, and Y are all "normally distributed". 
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Intepretation of µ and σ 

We will see that 
     µ is the “mean” 
           σ is the “standard deviation” 
            σ2 is the “variance” 
  of the normal random variable. 

But we have not yet defined the mean and variance 
of a continuous random variable. 

I will use these names right away, but explain what they 
mean later. 
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µ: what you think will happen 

+/- 2σ: how wrong you could be 

X~N(µ,σ2): 

Interpreting the normal 

There is a 95% chance X is in the interval µ +/- 2σ


µ: where the curve is 

σ: how spread out the curve is 
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Example: 

You believe the return next month on a certain 
mutual fund, denoted by R, can be described by  

R ~ N(0.1,0.01) 

Normality allows us to 
say that there is a  
95% probability that 
R will be in the interval 
(-0.1,0.3)  

Why? 
0.1 – 2*(0.1) = -0.1 
0.1 + 2*(0.1)  = 0.3 244 



3. The Cumulative Distribution Function 

The cumulative distribution function (c.d.f.) is just  
another way (besides the p.d.f.) to specify the  
probability of intervals for a continuous random variable. 

Definition: For a random variable X the c.d.f., which we 
denote by F, is defined by 

                            F(x) = Pr(X≤x) 

which is the area to the left of x. 
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Example: c.d.f. of the standard normal distribution.    

F(0) = .5 
F(-1) = .16 
F(1) = .84 
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The c.d.f. is handy for  
computing the probabilities of intervals. 

Example: 

For Z (standard normal), 
we have:  

P(-1<X<1)             =  
F(1)   -   F(-1)        = 
84.13% - 15.87%  = 68.26% 
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Example (cont.): 

--------------------- 
 x                F(x) 
--------------------- 
-5   0.00000029 
-4   0.00003167 
-3   0.00134990 
-2   0.02275013 
-1   0.15865525 
 0   0.50000000 
 1   0.84134475 
 2   0.97724987 
 3   0.99865010 
 4   0.99996833 
 5   0.99999971 
--------------------- 248 



x 

F ( x
 ) 

Note: for x big enough, F(x) must get close to 1. 
          for x small enough,  F(x) must get close to 0. 

The probability of an interval is the jump in the c.d.f. over 
that interval. 
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Example: S&P500 and NASDAQ 

The 14665 daily returns were used to  
compute the empirical  c.d.f. for the S&P500 returns. 
Sample mean=0.0368 and sample variance=0.7291. 
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Comparing the empirical c.d.f. of S&P500 returns  
with  
the normal model with mean 0.0368 and variance 0.7291. 
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A closer look between -2 and 2: 
The normal model IS NOT a good model for the SP500 returns. 
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NASDAQ composite returns from 2000-2008 
Mean return = -0.02369155 
Standard deviation = 1.945645 
Skewness = 0.3094729 
Excess kurtosis = 4.687585 
Sample size = 2262 

I propose the “other” model as 
an alternative to the normal 
model.  The “other” model fits 
the data “better” than the 
normal model both in the 
center and the tails of the 
empirical distribution. 
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The normal model gives negligible probability to nasdaq returns  
above 6. 

The “other” model mimics the empirical quantiles all the way to  
returns equal to 10. 

Empirical c.d.f. versus models 
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A closer look at the right tail 

                            DATA                    NORMAL 
MODEL 

Extreme       Prob.   Years               Prob.         
Years 

4.386             98%       0.2            98.83%            0.3 
5.526             99%       0.4            99.78%               2 
10.231        99.9%       4.0          100.00%      59,000 

Prob. = Probability of the right tail 
Years = expected number of years until rare event. 255 



A special report on the future of finance 
In Plato's cave 
Jan 22nd 2009 
From The Economist print edition 
Mathematical models are a powerful way of predicting financial markets. But they are fallible 

ROBERT RUBIN was Bill Clinton’s treasury secretary. He has worked at the top of Goldman Sachs and Citigroup. But he made arguably the single most 
influential decision of his long career in 1983, when as head of risk arbitrage at Goldman he went to the MIT Sloan School of Management in Cambridge, 
Massachusetts, to hire an economist called Fischer Black.  A decade earlier Myron Scholes, Robert Merton and Black had explained how to use share 
prices to calculate the value of derivatives. The Black-Scholes options-pricing model was more than a piece of geeky mathematics. It was a manifesto, part 
of a revolution that put an end to the anti-intellectualism of American finance and transformed financial markets from bull rings into today’s quantitative 
powerhouses. Yet, in a roundabout way, Black’s approach also led to some of the late boom’s most disastrous lapses.  Derivatives markets are not new, nor 
are they an exclusively Western phenomenon. Mr Merton has described how Osaka’s Dojima rice market offered forward contracts in the 17th century and 
organised futures trading by the 18th century. However, the growth of derivatives in the 36 years since Black’s formula was published has taken them from 
the periphery of financial services to the core. 

Poetry in Brownian motion 
Black-Scholes is just a model, not a complete description of the world. Every model makes simplifications, but some of the simplifications in Black-
Scholes looked as if they would matter. For instance, the maths it uses to describe how share prices move comes from the equations in physics that describe 
the diffusion of heat. The idea is that share prices follow some gentle random walk away from an equilibrium, rather like motes of dust jiggling around in 
Brownian motion. In fact, share-price movements are more violent than that.  Over the years the “quants” have found ways to cope with this—better ways 
to deal with, as it were, quirks in the prices of fruit and fruit salad. For a start, you can concentrate on the short-run volatility of prices, which in some ways 
tends to behave more like the Brownian motion that Black imagined. The quants can introduce sudden jumps or tweak their models to match actual share-
price movements more closely. Mr Derman, who is now a professor at New York’s Columbia University and a partner at Prisma Capital Partners, a fund of 
hedge funds, did some of his best-known work modelling what is called the “volatility smile”—an anomaly in options markets that first appeared after the 
1987 stockmarket crash when investors would pay extra for protection against another imminent fall in share prices.  The fixes can make models complex 
and unwieldy, confusing traders or deterring them from taking up new ideas. There is a constant danger that behaviour in the market changes, as it did after 
the 1987 crash, or that liquidity suddenly dries up, as it has done in this crisis. But the quants are usually pragmatic enough to cope. They are not seeking 
truth or elegance, just a way of capturing the behaviour of a market and of linking an unobservable or illiquid price to prices in traded markets. The limit to 
the quants’ tinkering has been not mathematics but the speed, power and cost of computers. Nobody has any use for a model which takes so long to 
compute that the markets leave it behind.  The idea behind quantitative finance is to manage risk. You make money by taking known risks and hedging the 
rest. And in this crash foreign-exchange, interest-rate and equity derivatives models have so far behaved roughly as they should. 

http://www.economist.com/specialreports/displaystory.cfm?story_id=12957753&CFID=41139322&CFTOKEN=74942824 256 



Almost as damaging is the hash that banks have made of “value-at-risk” (VAR) calculations, a measure of the potential losses of 
a portfolio. This is supposed to show whether banks and other financial outfits are being safely run. Regulators use VAR 
calculations to work out how much capital banks need to put aside for a rainy day. But the calculations are flawed. The 
mistake was to turn a blind eye to what is known as “tail risk”. Think of the banks’ range of possible daily losses and gains 
as a distribution. Most of the time you gain a little or lose a little. Occasionally you gain or lose a lot. Very rarely you win or 
lose a fortune. If you plot these daily movements on a graph, you get the familiar bell-shaped curve of a normal distribution 
(see chart 4). Typically, a VAR calculation cuts the line at, say, 98% or 99%, and takes that as its measure of extreme losses. 

However, although the normal distribution closely matches the real world in the middle of the curve, where most of the gains or 
losses lie, it does not work well at the extreme edges, or “tails”. In markets extreme events are surprisingly common—their 
tails are “fat”. Benoît Mandelbrot, the mathematician who invented fractal theory, calculated that if the Dow Jones 
Industrial Average followed a normal distribution, it should have moved by more than 3.4% on 58 days between 1916 and 
2003; in fact it did so 1,001 times. It should have moved by more than 4.5% on six days; it did so on 366. It should have 
moved by more than 7% only once in every 300,000 years; in the 20th century it did so 48 times..  In Mr Mandelbrot’s 
terms the market should have been “mildly” unstable. Instead it was “wildly” unstable. Financial markets are plagued not by 
“black swans”—seemingly inconceivable events that come up very occasionally—but by vicious snow-white swans that 
come along a lot more often than expected.  This puts VAR in a quandary. On the one hand, you cannot observe the tails of 
the VAR curve by studying extreme events, because extreme events are rare by definition. On the other you cannot deduce 
very much about the frequency of rare extreme events from the shape of the curve in the middle. Mathematically, the two 
are almost decoupled.  The drawback of failing to measure the tail beyond 99% is that it could leave out some reasonably 
common but devastating losses. VAR, in other words, is good at predicting small day-to-day losses in the heart of the 
distribution, but hopeless at predicting severe losses that are much rarer—arguably those that should worry you most.  When 
David Viniar, chief financial officer of Goldman Sachs, told the Financial Times in 2007 that the bank had seen “25-
standard-deviation moves several days in a row”, he was saying that the markets were at the extreme tail of their 
distribution. The centre of their models did not begin to predict that the tails would move so violently. He meant to show 
how unstable the markets were. But he also showed how wrong the models were.  Modern finance may well be making the 
tails fatter, says Daron Acemoglu, an economist at MIT. When you trade away all sorts of specific risk, in foreign exchange, 
interest rates and so forth, you make your portfolio seem safer. But you are in fact swapping everyday risk for the 
exceptional risk that the worst will happen and your insurer will fail—as AIG did.  
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Even as the predictable centre of the distribution appears less risky, the unobserved tail risk has grown. Your traders and managers will look as if they 
are earning good returns on lower risk when part of the true risk is hidden. They will want to be paid for their skill when in fact their risk-weighted 
returns may have fallen.  Edmund Phelps, who won the Nobel prize for economics in 2006, is highly critical of today’s financial  services.  “Risk-
assessment and risk-management models were never well founded,” he says.   “There was a mystique to the idea that market participants knew the 
price to put on this or that risk.   But it is impossible to imagine that such a complex system could be understood in such detail and with such  
amazing correctness…the requirements for information…have gone beyond our abilities to gather it.”  Every trading strategy draws upon a model, 
even if it is not expressed in mathematical symbols.  But Mr Phelps believes that mathematics can take you only so far. There is a big role for 
judgment and  intuition, things that managers are supposed to provide. Why have they failed? 
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Example: 

Let R denote the return on our portfolio next month. 
We do not know what R will be. Let us assume we can  
describe what we think it will be by: 

R~N(0.01,0.042) 
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What is the probability of a negative return? 

What is the probability of a return between 0 and 0.05? 

=NORMDIST(0,0.01,0.04,TRUE) 

In excel we use: 

And then the cell will be: 0.4013 

P(R<0) = F(0) = 0.4013 

=NORMDIST(.05,0.01,0.04,TRUE) = .8413 

P(0<R<0.05) = 0.84 - 0.4 = 0.44 
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4. Introducing Expectation via Long Run Average 

We have seen that one  
Interpretation of probability 
is "long run frequency". 

At right is the result 
of tossing a coin  
5000 times. 

After each toss we 
compute the fraction 
of heads so far. 

Eventually, it settles down to 0.5. 

line is drawn at .5 
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We can interpret probability as the long run 
frequency from i.i.d. draws. 

We can also interpret expectation (or expected value)  
as the long run average from i.i.d. draws. 

262 



We can interpret probability as the long run frequency from i.i.d. 
draws. 

We can also interpret expectation (or expected value) as 
the long run average from i.i.d. draws. 

Example: Tossing a pair of coins 10 times 
Each time we record the number of heads. 

   1   0   2   1   0   1   2   0   2   0 

Mean of x = (4(0) + 3(1) + 3(2))/10 = 0.9 

Question: what is the sample mean of the number of heads? 
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Now suppose we toss the pair of coins 1000 times: 
   2   1   1   2   2   2   1   2   2   0   2   1   1   2   1   2   0   0 
   1   0   1   0   1   2   1   1   1   1   2   2   1   1   1   1   1   1 
   1   1   0   0   1   0   2   1   1   0   2   1   2   2   1   2   1   1 
   0   1   2   1   1   1   1   1   2   1   1   1   1   1   2   1   1   2 
   2   1   2   1   1   2   1   1   1   0   0   2   2   0   1   1   0   1 
   2   1   1   0   1   1   1   1   1   2   2   0   2   1   1   1   0   1 
   1   1   1   0   2   2   0   0   1   0   2   2   2   1   1   0   1   1 
   1   0   2   2   0   1   0   2   1   0   1   0   0   2   1   2   1   1 
   0   0   2   1   1   1   1   1   2   1   1   1   1   0   1   0   0   1 
   1   0   2   1   0   1   0   1   1   2   0   1   1   1   0   1   1   1 
   1   1   0   0   1   1   2   1   0   0   1   0   2   1   1   2   1   1 
   1   1   1   1   0   1   1   1   1   0   2   1   1   2   2   1   2   2 
   2   2   0   1   1   0   2   0   1   0   2   1   1   1   1   1   1   0 
   2   2   1   1   2   1   1   0   1   2   1   2   0   1   1   1   1   1 
   1   1   2   1   2   2   1   2   2   1   2   1   2   2   1   0   2   1 
   1   2   1   0   2   2   1   1   0   1   2   0   1   0   2   0   1   0 
   1   1   1   2   2   2   1   1   1   2   0   2   1   1   1   1   0   2 
   1   0   2   0   1   0   1   1   2   1   0   0   0   1   0   1   1   0 
   0   1   2   0   2   1   1   0   1   1   1   2   0   1   1   1   1   1 
   1   1   2   1   1   0   1   1   1   1   0   1   2   0   1   2   2   2 
   2   0   1   1   2   2   0   1   0   0   2   1   1   1   0   0   0   0 
   1   1   0   0   1   1   1   1   1   2   2   1   1   1   2   1   1   2 
   1   1   2   1   0   1   1   1   1   1   2   2   2   2   1   2   1   2 
   1   1   1   2   2   2   1   1   1   1   1   1   0   1   2   2   2   2 
   1   0   1   1   0   1   1   1   0   0   1   2   1   2   1   2   1   2 
   1   0   2   0   1   0   1   2   2   2   2   1   1   1   1   2   2   0 
   0   1   2   2   1   0   2   1   1   0   1   1   1   0   1   2   0   1 
   1   0   1   1   1   1   0   1   0   2   1   1   1   0   1   1   0   0 

   0   0   2   0   2   1   1   2   1   2   1   2   0   1   2   0   2   2 
   2   1   1   1   2   2   1   1   2   1   1   0   1   2   1   1   1   1 
   1   0   0   2   2   1   1   1   0   2   1   1   0   0   1   2   1   2 
   1   0   0   2   0   0   1   1   1   2   1   1   1   2   0   0   1   2 
   1   1   1   2   1   1   0   1   1   2   0   0   1   1   0   0   2   0 
   1   2   0   2   2   0   2   0   0   1   1   0   1   0   0   2   1   1 
   1   2   1   1   2   2   1   1   0   0   0   0   1   2   1   1   1   1 
   1   1   1   0   1   1   2   1   1   1   1   1   1   0   1   1   0   1 
   1   1   2   1   2   1   1   2   0   1   0   1   1   0   1   0   1   1 
   0   2   1   0   2   1   1   2   0   1   0   1   1   2   1   2   0   1 
   2   1   0   2   1   1   2   0   1   2   0   1   1   2   1   0   1   1 
   1   1   1   1   0   2   0   0   1   2   1   1   0   2   2   0   1   0 
   0   2   1   0   2   2   2   0   2   0   1   1   1   1   0   1   1   1 
   2   1   1   1   0   0   2   2   1   2   0   0   1   1   1   2   2   2 
   1   1   0   0   1   0   1   0   1   0   2   1   2   2   1   1   1   1 
   1   1   1   2   1   0   2   1   1   2   0   1   1   2   0   1   1   2 
   1   1   0   0   1   2   1   2   1   1   1   0   0   0   1   1   1   2 
   0   1   1   1   2   0   0   2   2   0   0   0   0   1   1   1   1   0 
   2   2   2   1   0   1   1   1   1   1   2   2   0   1   1   1   1   1 
   0   0   1   1   1   1   0   1   0   2   0   1   2   2   1   2   1   1 
   2   2   0   1   1   0   1   2   2   0   2   0   0   1   0   2   1   1 
   0   1   0   0   2   1   2   0   0   2   1   1   1   2   1   0   1   1 
   2   0   1   0   1   0   1   1   1   1   1   2   2   0   0   2   1   2 
   0   1   0   1   2   0   0   1   1   2   1   1   0   0   2   1   2   0 
   2   0   1   1   2   1   1   1   2   2   1   1   2   0   1   1   1   2        
   0   2   2   1   1   0   0   0   1   0   1   2   0   1   1   1   2   0 
   0   0   1   2   1   2   1   0   1   1   0   1   1   2   0   0   1   1 
   1   1   1   1   2   2   2   0   0   2 

What is the sample mean? 

Number of  heads:       0       1       2  
Frequencies         :   241   507   252 

Therefore, the sample mean is 1.011  264 



What should the mean be? 

Let be the number of 0’s, 1’s and 2’s. 

Then, the average would be 

which is the same as 
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Now note that the values are i.i.d draws from the  

TRUE PROBABILITY DISTRIBUTION. 

Pr(x)  x 
0.25  0 
0.50  1 
0.25  2 
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0.25(0) + 0.5(1) + 0.25(2) = 1.00 

So, for n large, we should have 

Hence, the average should be about 

but this is  the expected value of the random 
variable X. 
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The actual sample mean is: 

Hence, with a very, very, very, ....large number of tosses 
we would expect the sample mean (the empirical mean  
of the numbers) to be very close to 1 (the expected value) 

To summarize, we can think of the expected value,  
which in this case is equal to  

as the long run average (sample mean) of i.i.d 
draws. 268 



For n large                      converges to  

where the X’s are iid all having the same  
distribution as X. 

We can think of E(X) as the long run average 
of iid draws. 

This works for X continuous and discrete !! 

Expectation as long run average 
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Expected value and variance of a discrete r.v. 

If X is a discrete random variable that takes values 

                              x1, x2, …, xk 

Then, the Expected value of X, or simply expectation of X 
is given by 

      E(X) = x1Pr(X=x1) + x2Pr(X=x2) +…+ xkPr(X=xk) 

Similarly, the variance of X is given by 

    V(X) = (x1-E(X))2Pr(X=x1) +…+ (xk-E(X))2Pr(X=xk) 
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Example: 

Toss two coins over and 
over.  As before, 
count number of heads. 

average is 0.974. 
average of (x-1)2 is 0.51 

Var(X) = 0.25(0-1)2 + 0.5(1-1)2 + 0.25(2-1)2 = 0.5 

If X is number of 
heads from one 
toss of two coins: 
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Thus, for "large samples" the quantities we talked 
about for samples should be similar to the quantities 
we talked about for random variables: 

If we really believe we are taking i.i.d. draws!! 
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5. Expected Value and Variance of Continuous RV's 

If X is a continuous random variable with p.d.f. p(x) then 

The variance is 
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If you know calculus that's fairly intuitive. 

If you don't, it is completely incomprehensible. 

Good news: 

Intuitively, whether X is discrete or continuous, we can 
always think of E(X) as 

for i.i.d. Xi all having the same distribution as X. 

Same for the variance. 
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Example: 

500 i.i.d. draws 
from N(0,1). 

What is E(Z)? 

Not so obvious: 
Var(Z)=1. 
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For Z ~ N(0,1) 
Expectation: E(Z)=0    

Variance: Var(Z)=1 
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TRUE MODEL 
X           Pr(X) 
0      0.03125 
1      0.15625 
2      0.31250 
3      0.31250 
4      0.15625 
5      0.03125 

Example: Modeling the number of heads 
(X) when tossing 5 fair coins. 
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I asked 150 students to toss 5 coins and 
counting the number of heads. 

2    3    3    2    1    1    2    4    4     2     2     2     3     2     2 
4    3    3    3    4    2    3    1    1     2     3     3     3     3     2 
1    4    3    1    2    3    3    4    2     3     3     1     2     2     4 
2    2    2    2    2    4    4    2    3     3     2     4     2     0     3 
3    3    3    2    2    2    3    3    2     3     4     2     3     3     2 
3    3    2    0    1    4    3    1    2     4     2     2     2     2     2 
2    1    3    2    2    2    3    3    4     2     2     2     3     3     2 
1    2    4    2    1    2    2    2    3     3     3     1     2     3     2 
1    2    3    3    5    1    1    4    4     3     3     2     4     1     3 
2    3    2    3    2    1    2    1    1     3     2     2     3     2     3 

Sample mean= 2.426667       
Sample standard deviation=0.9365556 
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             Observed      True model 
x         Frequency                   P(x) 
0             0.01333           0.03125 
1             0.13333           0.15625 
2             0.40000           0.31250 
3             0.32667           0.31250 
4             0.12000           0.15625 
5           0.00667           0.03125 

Sample mean= 2.42667       
Sample standard deviation=0.93656 
True mean = 2.5 
True standard deviation = 1.12 
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Example: Modeling the number of heads 
(X) when tossing 10 fair coins. 
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6    8    6    4    5    4    4    8    4     5     5     6     4     5     3 
7    6    4    4    4    4    7    7    7     9     5     6     7     2     5 
3    3    4    6    2    3    3    3    6     6     3     3     4     5     6 
7    6    6    8    5    6    3    6    5     6     6     6     8     3     5 
3    4    7    6    5    7    6    7    6     8     5     7     4     6     7 
3    4    7    8    5    4    5    4    5     3     6     4     7     4     7 
7    6    5    3    8    4    5    4    6     5     6     6     9     7     7 
7    6    6    3    6    8    2    8    4     5     5     6     5     7     4 
6    7    7    6    5    6    4    3    6     5     4     5     6     6     5 
5  4    5    4    4    7    5    4    5     1     4     6     6     8     3 

Estimated mean =  5.287 
Estimated standard deviation  =  1.586 

I asked the same 150 students to toss10  coins and 
counting the number of heads. 
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True mean = 5.0   (Estimated =  5.287) 
True standard deviation = 1.581 (Estimated = 1.586) 

282 



6. Random Variables and Formulas 

We use mathematical formulas to express 
relationships between variables. 

Even though a random variable is not a  
variable in the usual sense, we can still 
use formulas to express relationships. 

We will develop formulas for linear combinations 
of random variables that are analogous to the ones 
we had for samples! 
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Example:  A contractor estimates the probabilities for the time 
(in number of days) required to complete a certain type of job 
as follows: 

Review question: what is the probability that a project will 
take less than 3 days to complete? 

t    Pr(T=t) 
1     0.05 
2     0.20 
3     0.35 
4     0.30 
5     0.10 

Let T denote the time. 
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The longer it takes to complete the job, the greater the cost. 

Let C denote the cost. 

Then, 
                          C = 20000 + 2000T 

There is a fixed cost of 20000 and an additional 2000 per day. 

Before the project is completed, both T and C are unknown 
and hence random variables. 

Whatever T and C turn out to be, they will satisfy 
the equation. 
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Mean and Variance of a Linear Function 

Let Y and X be random variables  
such that 

Then, 
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These formulas mirror what we had for sample means and 
variances. 

Intuitively, we get the same sort of result because the 
quantities for RV's can be thought of as long run averages. 

The intuition and rules are the same for continuous and 
discrete RV's !!! 

Careful !! 

While we have stressed the analogies, the mean 
(expectation) of an RV is not the same thing as  
the mean of a sample. 

287 



The expected value of time is E(T) = 3.2. 
The variance of time is Var(T) = 1.06. 

Example (cont.): 

t    p(t) 
1   0.05 
2   0.20 
3   0.35 
4   0.30 
5   0.10 

Recall our time to project completion example. 

C = 20000 + 2000T 

E(C) = 20000 + 2000E(T) = 20000+2000(3.2) = 26,400 

Var(C) = 20002*Var(T) = 4,240,000 

sC = sqrt(424000) = 2000*sqrt(1.06) = 2,059 

Since C is a linear function of T, we easily get 
its mean and variance from those of T: 
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An important example: the non-standard normal 

Suppose  Z~N(0,1) 

If X = µ + σ Z, then it can be shown that X ~ N(µ, σ2) 

E(X) = µ + s E(Z) = m.  

Var(X) = σ2Var(Z) = σ2. 

For  X~N(µ, σ2) 

             E(X) = µ,  Var(X) = σ2 
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7. Covariance/correlation for pairs of random variables 

Suppose we have a pair of random variables (X,Y). 

Also, suppose we know what their bivariate probability 
distribution is. 

A meaningful question to ask is: are X and Y related  
(independent)? 

In this subsection we will define the covariance and 
correlation between two random variables to summarize 
their linear relationship. 
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The covariance between bivariate discrete random 
variables X and Y is given by: 

For discrete random variables we have a (relatively) simple 
formula: 
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Example: 

µX = 0.1    µY = 0.1


X 

0.05                 0.15 

0.05      0.40                0.10 

0.15      0.10                0.40 

Y σX = 0.05  σY = 0.05  

cov(X,Y) = σXY 

.4*(.05-.1)*(.05-.1) + .1*(.05-.1)*(.15-.1) +.1*(.15-.1)*(.05-.1) + .4*(.15-.1)*(.15-.1) 

= 0.0015 

Intuition: we have an 80% chance that X and Y are both 
above the mean or both below the mean together. 
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The correlation between random variables 
(discrete or continuous) is 

293 



ρ: the basic facts


If ρ is close to 1, then it means there is a line, with  
positive slope, such that (X,Y) is likely to fall  
close to it. 

If ρ is close to -1, same thing, but the line has a  
negative slope. 

294 



X 

.05                  .15 

.05          .4                    .1 

.15          .1                    .4 

Y 

The correlation is:  

ρXY = .0015/(.05*.05)= 0.6 

Example (cont.): 
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Example: X 

0                     1 

Y 

0            .25                  .25 

1            .25                  .25 

Let us compute the covariance: 
.25(-.5)(-.5) + .25(-.5)(.5) + .25(.5)(-.5) +.25(.5)(.5)=0 

The covariance is 0 and so is the correlation: not 
surprising, right? 

296 



For continuous random variables: 

Or, the long run average: 

where (Xi,Yi) i=1,2,3,.....n  are a large number of i.i.d draws 
from the bivariate distribution of (X,Y). 

As earlier in the case of the expected value and variance, the 
theoretical covariance can be interpreted as the long run sample 
covariance. 

(for large n) 
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8. Independence and correlation 

Suppose two random variables are independent. 

That means they have nothing to do with each other. 

That means they have nothing to do with each other linearly. 

That means the correlation is 0. 

If X and Y are independent, then  The converse is not necessarily true.  

DOES NOT necessarily mean they 
are independent.  
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Example: Zero correlation DOES NOT imply independence 

P(X=0,Y=0)=0 
and 
P(X=0)P(Y=0)=0.09 
are not equal, so 
X and Y are 
not independent. 

COV(X,Y) = (-1)(-1)(0.1)+(-1)(1)(0.1)+(1)(-1)(0.1)+(1)(1)(0.10)=0, 
so X and Y are uncorrelated.  
INDEPENDENCE IS STRONGER THAN UNCORRELATION 

0.10    0.15    0.10        0.35 

0.15    0.00    0.15        0.30 

0.10    0.15    0.10        0.35 

0.35    0.30    0.35        1.00 

X 
   -1         0         1 

-1 

 0 

 1 

Y 
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Statistical inference 
0.    I.I.D. draws from the normal distribution 
1.  The Binomial Distribution 
2.  The Central Limit Theorem 
3.  Estimating p, population and sample values 
4.  The sampling distribution of the estimator 
5.  Confidence interval for p 

BOOK: 
Point estimates and confidence intervals  (283–296 (12), 294-308 (13)) 

A confidence interval for a proportion  (297-299 (12), 309-312 (13)) 
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0.   I.I.D Draws from the Normal Distribution 

We want to use the normal distribution to model data in the 
real world. 

Surprisingly often, data looks like i.i.d. draws from a 
normal distribution. 
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Note: We can have i.i.d. draws from any distribution. 

By writing 

we mean that each random variable X will be an 
independent draw from the same normal distribution. 

We have not formally defined independence for 
continuous distributions, but our intuition is the same 
as before! 

Each draw is has no effect on the others, and the 
same normal distribution describes what we think 
each variable will turn out to be. 
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We can simulate i.i.d draws from the normal distribution. 

There is no pattern, 
they look “random” 

Here are 300 "draws" simulated from the standard  
normal distribution. 

What do i.i.d. normal draws look like? 
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Same with lines drawn in at µ=0, +/- 1s and +/- 2s 

In the long run, 95% will be between +2 and –2. 

Do you remember the empirical rule? 304 



Draws from a normal other than the standard one. 

These are 200 i.i.d. draws from N(5,4), ie. a normal 
distribution with mean 5, variance 4 and, therefore, 
standard deviation 2. 
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Here is the histogram of 5000 draws from the standard 
normal. 

The height of 
each bar tells 
us the number 
of observations in 
the interval. 

All the intervals 
have the same width. 
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For a large number of iid draws, the observed percent 
in an interval should be close to the probability. 

For the density 
the area is the  
probability 
of the interval. 

For the histogram  
the area is the  
observed 
percent in 
the interval. 

In large samples these are close.  See next page. 307 



The histogram of a “large” number of i.i.d draws from any 
distribution should look like the p.d.f. 
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We look, once again, at the Canadian returns data. 
We have monthly returns from Feb ‘88 to Dec ‘96. 

No 
apparent 
pattern! 
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Conclude: The returns look like i.i.d. normal draws! 

Normality  
seems 
reasonable! 
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Example: non-normal data 

Not all data looks normal… 

Daily volume of trades 
in the Cattle pit. 

Skewed to the right. 
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Dow Jones 

Beer Production Lake Level 

…and not all time series 
look independent. 

Example: dependent data 
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1. The Binomial Distribution 

Suppose you are about to make three parts. 
The parts are iid Bernoulli(p), where 1 means 
a good part and 0 means a defective. 

 X1, X2, X3 ~ Bernoulli(p) iid. 

Let Xi denotes the outcome for part i, i=1,2,3. 

How many parts will be good ? 

Let Y denote the number of good parts. 

Y =  X1 + X2 + X3 
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p 

1-p 

1 

0 

p 

1-p 

1 

0 

p 

1-p 

1 

0 

p 

1-p 

1 

0 

y=3, p*p*p 

y=2, p*p*(1-p) 

X1 

X2|X1=1 

X2|X1=0 

X3|X1=1,X2=1 

X3|X1=1,X2=0 

X3|X1=0,X2=1 

X3|X1=0,X2=0 

p 

1-p 

1 

0 

y=2, p*(1-p)*p 

y=1, p*(1-p)*(1-p) 

p 

1-p 

1 

0 

y=2, (1-p)*p*p 

y=1, (1-p)*p*(1-p) 

p 

1-p 

1 

0 

y=1, (1-p)*(1-p)*p 

y=0, (1-p)*(1-p)*(1-p) 

y   p(y) 

3    p3 

2    3p2(1-p) 
1    3p(1-p)2 

0    (1-p)3    

What is the distribution of Y? 
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It can be shown that the probability distribution of Y is 

n! = n*(n-1)*(n-2)*...*3*2*1 

n "trials" each of which results in a success or a failure. 

Each trial is independent of the others.   

On each trial  we have the same chance p of "success". 

The number of successes is Binomial(n,p) 
  n: number of trials. 
  p: probability of success on each trial. 
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Example: Below we plotted y vs p(y) for the binomial  
with n=10 and p=0.1,0.2,0.5,0.95.  The p=0.5 distribution  
looks symmetric, while the others are skewed. 
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Example: 

Suppose the next 20 returns on an asset are modeled  
as i.i.d.  
                         X1,…,X20 ~ N(0.1,0.01). 

Let S denote the number of positive returns out of  
the next 20.  What is the mean and  variance of S? 

Solution:  
Probability of success = p = Pr(X>0) = 0.8413 

Therefore, S ~ Binomial(20,0.8413) 

E(S) = 20*0.8413 = 16.826 
V(S) = 20*0.8413*0.1587 = 2.6703 
Stdev. S = 1.6341 318 



Notes: 

The term success refers to what is being counted. 

For example if the probability of a defect is 0.1, then the 
number of defects in a sample of size n is Binomial(n,
0.1), where a success means a defect. 

If we count good ones, then it is Binomial(n,0.9). 

In terms of the underlying Bernoulli, you can make 
either of the two possible outcomes correspond to 1 
(and the other to 0). 

Bernoulli(p) is the same as Binomial(1,p). 
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Two easy special cases are: 

Example: 

Suppose the probability of a defect is 0.01 and you 
make 100 parts.   

What the probability they are all good? 

(0.99)100 = 0.366 
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Example: Suppose  you are repeatedly making a part 
and 1 means defective, 0 else. 

Let Xi corresponds to the ith part. 

Assume the model Xi ~ Bernoulli(p) i.i.d. 

Suppose you are about to make n parts and are interested 
in 
                        Y = X1 + X2 + .... + Xn 

the total number of defective parts out of the n. 

2. The Central Limit Theorem 

321 



What is the distribution of Y? 

It is a Y ~ Binomial(n,p), but we already knew that! 

There is a probability result (the central limit theorem) that says  
that we can get a simple approximate answer by using a normal  
with the mean equal to the mean of Y and variance equal to the  
variance of Y.   

We already know that E(Y)=np and V(Y)=np(1-p).  Therefore, 

  Y ~ N(np,np(1-p))  approximately 

The bigger n is, the better the normal approximation  
to the binomial. 
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Example: From the pictures it can be seen that as we increase the 
number of random variables n, the distribution of Y gets closer and closer 
to a normal distribution with the same mean and variance as the binomial. 
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Example: 

Suppose defects are i.i.d. Bernoulli(0.1). You are about to  
make 100 parts. 

Based on the normal approximation, there is a 95% 
chance that the number of defects is in the interval:  

   10 +/- 6  = [4,16] 

We know that number of defects, Y, is Binomial(100,0.1) 

Let us use the normal approximation, first. 
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Exact answer based on the true binomial probabilities. 

BINOMDIST(number_s,trials,probability_s,cumulative) 
Number_s  is the number of successes in trials. 
Trials  is the number of independent trials. 
Probability_s   is the probability of success on each trial. 
Cumulative   If TRUE, then BINOMDIST returns c.d.f.; if FALSE, then BINOMDIST returns the p.d.f. 

From just the mean and the standard deviation (using the central 
limit theorem and the normal approximation) we get a pretty good 
idea of what is likely to happen. 

In general, if the distribution looks roughly normal shaped, you can 
try to approximate it with a normal curve having the same mean  
and variance. 325 



Example: 
Front page of Chicago Tribune, 1/14/2004: 

"700 likely Illinois voters in the November general election  
were polled". 

"48% would not like to see Bush re-elected." 

"The survey has an error margin of 4 percentage points  
among general election voters..“ 

What do these figures mean? 

3. Estimating p, Population and Sample Values 
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Suppose we have a large population of voters. 
Each will vote either democratic or republican. 

We would like to know the proportion that will vote  
democratic. 

Doesn’t this scenario seem appropriate to the famous  
Bernoulli model? 

We can't ask them all.  Too costly! 

If we ask a sample of some of them, how much do we  
know about all of them? 
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We will take a random sample of voters and use  

the sample proportion of democrats as a  

guess or estimate of  

the true proportion in the whole population. 

The sample proportion is called an estimator. 

The resulting (after we have the sample) actual value  
or guess is called the estimate. 

p : proportion of democrats in the population. 
   : proportion of democrats in the sample. 328 



Before we take the sample      is a random variable. 

We wonder how close       will be to p. 

After we take the sample, the resulting sample proportion  
    is just a number, it is just our estimate of p. 
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4. The Sampling Distribution of the Estimator 

Well, we have our plan. 
What are our chances? 

After we have our sample we are either close or not. 

Before we have the sample we can think about 
what the properties of our estimator are. 

How wrong could we be ? 
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To get a feeling for the properties of our estimator, 
we see what it will do given a value for p. 

Of course, the whole point is that we don't know p, 
but we can understand what we are doing by asking 
"given a value for p, how would we do?". 

What if  p=0.5 and n=700, then what kind of estimate  
could I get ? 

Conjecture: If I knew p=0.5 and n=700,then I would be  
surprised (even be willing to bet against!) if there were  
less than 300 or more than 500 successes! 331 



Given p, we know the distribution of our estimator. 
Let Xi = 1 if the ith sampled voter is a dem, 0 if repub. 
Let Y denote the number of democrats in the sample. 

This is called the sampling distribution of the estimator. 

Remember: We know the distribution of     because we are 
taking a random sample from a large population of size N,  
where N is much, much, much larger than the sample size n,  
ie. n < < N. 
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Don't confuse the probability distribution of    with how  
the 1's and 0's are "distributed" in the population.   

The distribution of 1’s and 0’s in the population is 
summarized by the unknown proportion p. 

Notice that the probability distribution of    when n=100, 
for instance, is not the same as the probability distribution 
of    when n=1000. 
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We can compute the mean and variance of  
our estimator to summarize its properties: 

The estimator is unbiased. 

Our estimate can turn out to be too big 
or too small, but it has no tendency to be wrong. 
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Question 

Suppose instead of asking 700 randomly chosen 
people, you asked 700 friends. 

Would the proportion of democratic voters in 
that sample  be an unbiased estimate of the 
population proportion? 
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Not too useful by itself. 

But we can combine it with the central limit 
theorem to get: 

the variance: 
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This gives us a simple way of thinking about 
what kind of estimate our estimator is likely to give us!! 

A simple approximate sampling distribution is: 

337 



1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 
0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1 
0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 
1 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 0 0 
0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1 
0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 
0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 
1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 
0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 
0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 
1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 1 0 
1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 1 0 
1 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 
0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 
0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 
0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 
0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 
0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 
0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 
0 1 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0 
1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 
1 1 0 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 
0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 

Example: Suppose we have a coin and we are not certain whether the coin is 
fair.  We run an experiment: each one of us (me + 149 students) flip the coin 10 
times and record the proportion of 1’s (1=head and 0=tail). 
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The 150 proportions are 

0.4 0.2 0.4 0.3 0.4 0.3 0.3 0.2 0.4 0.3 0.2 0.1 0.8 0.4 0.2 0.1 0.5 0.3 0.4 0.5 0.3 0.2 0.2 0.3 0.3 
0.3 0.2 0.2 0.5 0.5 0.4 0.7 0.1 0.5 0.3 0.4 0.6 0.3 0.2 0.5 0.5 0.3 0.1 0.1 0.2 0.4 0.4 0.6 0.4 0.2 
0.2 0.2 0.3 0.5 0.5 0.5 0.2 0.4 0.2 0.3 0.3 0.1 0.2 0.4 0.3 0.5 0.5 0.3 0.5 0.1 0.2 0.3 0.3 0.4 0.4 
0.4 0.5 0.3 0.5 0.5 0.5 0.2 0.5 0.3 0.1 0.4 0.6 0.3 0.4 0.4 0.2 0.6 0.3 0.6 0.3 0.1 0.3 0.4 0.3 0.4 
0.4 0.2 0.4 0.4 0.3 0.4 0.4 0.5 0.5 0.2 0.5 0.4 0.3 0.3 0.5 0.2 0.6 0.4 0.1 0.6 0.3 0.2 0.4 0.5 0.4 
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Let us suppose that now me and 1499 
students toss the coin 10 times each. 
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Let us suppose that now the same 1500 
persons toss the coin 100 times each. 

Information accumulation: None of the 1500 persons 
obtained less than 20 or more than 53 heads when 
tossing the coin 100 times. 341 



The  
true  

proportion  
of  

heads  
is  

35%! 
342 



Since the true proportion of heads is p=0.35, we can  
check how good the normal approximation is. 
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The approximate probabilities (under normality) are 

Pr(20 heads or less) = 0.08308472% 

and 

Pr(53 heads or more) = 0.008038164%  

The true probabilities are  

Pr(20 heads or less) = 0.07836153%  

and 

Pr(53 heads or more) = 0.007757356% 
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Example: 

suppose 
p = 0.6 
n = 200 

then 
m = 0.6 
s = 0.0346  

The normal curve tells us what kinds of estimates we could 
get if we about to take a sample of size n=200 and the true 
population p = 0.6. 
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Notice that the bigger n is, the better our chances are!! 

In general 
this is what 
we expect 
    to be like: 
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Example (cont.) 
Sample size: n=100  
True proportion: p=0.35  

Estimated proportion: phat  ~ N(0.35,0.002275) 

The approximate 95% probability interval for phat is  
(0.35-2*0.047697 ;0.35+2*0.047697)=(0.255;0.445). 

Example (cont.) 
Sample size: n=200  
True proportion: p=0.6  

 Estimated proportion: phat  ~ N(0.6,0.0012) 

The approximate 95% probability interval for phat is  
(0.6-2* 0.0346 ;0.6+2*0.0346)=(0.531; 0.669). 
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5. Confidence Interval for p 

Well, that's all very well, but we still don't have 
an answer to our real question: 

Given the data, how do we feel about p? 

The confidence interval is the classic solution. 

It builds directly on all that we have done. 
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Confidence Interval for p: 

How different is our estimate from p? 

Since we don't know p, we just plug in the estimate for 
the standard deviation.  This is wrong, but we hope 
not too wrong!  
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The difference between the sample and population  
proportions is approximately:  
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Front page of chicago trib, 1/14/2004: 

"700 likely Illinois voters in the November 
 general election were polled". 

"48% would not like to see Bush re-elected." 

"The survey has an error margin of four percentage points 
among general election voters.." 

(abuse of notation!) 

Example (cont.): 
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The 95% confidence interval for the true p is 

                     0.48 +/- 0.038 

             "estimate +/-  error" 

Interval:      (0.442 ; 0.518) 

So the difference between our estimate of 0.48 and the  
unknown true value is about 0.038. 
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Is that a big interval ? 

If the election is tomorrow and we want to know 
the winner it is big. 

If the election is three months away and last month 
Bush was at 70% approval then the interval is small 
enough to tell us things have really changed. 
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Example: Leading up to a democratic primary in Wisconsin, a poll of 600 showed  
Kerry with 53% ± 4% and Edwards with 16% ± 4%.  The actual results a few days  
later were Kerry 40% and Edwards 34%. 

Example: Results are based on telephone interviews with 1,002 national adults, 
aged 18 and older, conducted Feb. 9-12, 2004. For results based on the total 
sample of national adults, one can say with 95% confidence that the margin of 
sampling error is ±3 percentage points. 

In addition to sampling error, question wording and practical difficulties 
in conducting surveys can introduce error or bias into the findings of 
public opinion polls.  

Do our estimates of p always pan out? 

In practice, getting a random sample, or, more generally, 
a sample that is not biased towards some particular subset, 
can be tough !! 
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Example: Dowjones (6/18/1929 to 2/6/2009) 

A total of 20100 days. 

Below are the proportions of positive returns for consecutive samples of 
size 50 days, so 402 samples. 

0.50 0.60 0.66 0.38 0.56 0.66 0.54 0.56 0.36 0.52 0.44 0.34 0.46 0.42 0.38 0.36 0.46 0.58 0.46 0.48 0.44 0.62 
0.50 0.52 0.50 0.54 0.44 0.44 0.54 0.58 0.56 0.58 0.64 0.66 0.50 0.56 0.54 0.58 0.60 0.52 0.54 0.52 0.52 0.42 
0.46 0.42 0.52 0.54 0.54 0.50 0.50 0.62 0.52 0.48 0.42 0.50 0.54 0.60 0.52 0.44 0.44 0.54 0.44 0.38 0.38 0.42 
0.52 0.58 0.60 0.58 0.56 0.62 0.56 0.46 0.44 0.52 0.64 0.50 0.52 0.56 0.66 0.58 0.58 0.50 0.56 0.52 0.44 0.46 
0.40 0.58 0.46 0.48 0.54 0.52 0.46 0.54 0.58 0.48 0.56 0.50 0.46 0.46 0.60 0.52 0.62 0.64 0.62 0.50 0.62 0.60 
0.50 0.46 0.64 0.38 0.56 0.42 0.58 0.58 0.50 0.60 0.46 0.44 0.52 0.62 0.54 0.58 0.70 0.60 0.62 0.62 0.60 0.68 
0.66 0.60 0.52 0.64 0.38 0.62 0.38 0.46 0.48 0.64 0.42 0.44 0.54 0.44 0.54 0.70 0.58 0.66 0.60 0.52 0.62 0.50 
0.54 0.46 0.50 0.48 0.40 0.60 0.60 0.52 0.54 0.46 0.52 0.46 0.30 0.56 0.44 0.64 0.60 0.54 0.46 0.62 0.58 0.68 
0.48 0.60 0.60 0.48 0.64 0.56 0.46 0.58 0.56 0.46 0.48 0.42 0.40 0.50 0.54 0.56 0.48 0.52 0.44 0.40 0.60 0.46 
0.68 0.46 0.52 0.42 0.44 0.48 0.36 0.48 0.34 0.52 0.58 0.72 0.58 0.52 0.48 0.38 0.60 0.42 0.54 0.44 0.40 0.58 
0.36 0.40 0.44 0.60 0.38 0.54 0.48 0.34 0.36 0.50 0.56 0.56 0.44 0.50 0.58 0.60 0.46 0.44 0.46 0.56 0.50 0.46 
0.52 0.42 0.50 0.42 0.58 0.54 0.52 0.48 0.48 0.52 0.56 0.54 0.50 0.52 0.44 0.64 0.58 0.52 0.62 0.46 0.40 0.44 
0.46 0.46 0.56 0.38 0.40 0.54 0.52 0.58 0.52 0.58 0.54 0.32 0.48 0.42 0.52 0.46 0.42 0.50 0.62 0.48 0.62 0.52 
0.62 0.52 0.50 0.60 0.60 0.56 0.54 0.56 0.50 0.56 0.54 0.52 0.46 0.54 0.62 0.52 0.54 0.60 0.50 0.56 0.52 0.60 
0.52 0.46 0.54 0.50 0.56 0.44 0.44 0.54 0.48 0.58 0.48 0.48 0.46 0.62 0.56 0.56 0.60 0.60 0.52 0.50 0.54 0.48 
0.48 0.54 0.66 0.54 0.46 0.60 0.62 0.60 0.48 0.56 0.62 0.56 0.54 0.64 0.48 0.52 0.60 0.54 0.48 0.44 0.58 0.52 
0.56 0.50 0.42 0.48 0.50 0.52 0.54 0.56 0.46 0.48 0.56 0.48 0.40 0.56 0.52 0.48 0.34 0.44 0.54 0.40 0.56 0.56 
0.56 0.58 0.54 0.46 0.48 0.54 0.56 0.52 0.44 0.60 0.50 0.58 0.48 0.54 0.48 0.52 0.64 0.54 0.68 0.58 0.54 0.46 
0.54 0.48 0.48 0.54 0.38 0.50 
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A total of 10431 days (out of 20100) with positive returns.   

Therefore, phat = 0.5189552. 

The difference between the sample and population proportions is approximately 
2*sqrt(phat*(1-phat)/50) = 0.1413197. 

The approximate 95% confidence interval for the true p is  

(0.5189552 - 0.1413197 ; 0.5189552 +0.1413197)  

or (0.3776;0.6603). 

Note: There are several (hidden and  strong) assumptions here!  
One is the assumption that overtime positive returns are i.i.d.  
Ber(p).  This is nothing but a model, which can be fundamentally  
wrong!  Later in this class we will test statistically whether a  
sequence of measurements is i.i.d. 
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Note 

We use the term standard error to denote the estimate of a  
standard deviation. 

Before you get the sample, you have an (approximate) 
95% chance the true value will be in the confidence  
interval.  After you get the data and compute the interval  
it is either in there or not.   

We call the interval a "confidence interval" rather than a  
probability interval to emphasize this difference. 

The "root n" in the formula precisely captures the fact 
that with larger samples we know more !! 
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Question: 

How much do I know about the parameter? 

Answer: 

Confidence interval small: I know a lot. 

Confidence interval big: I know little. 
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Example: 

Suppose   phat =0.2 and n=100. 

Standard error: s.e. = 0.04 

suppose  phat = 0.2 and n=10,000. 

Standard error: s.e.= 0.004 

If I want to half the s.e., I have to increase the sample 
size by a factor of 4! 

This is the “the tragedy of root n”. 

(n went up by a factor of 100) 

(s.e. went down by 1/10) 
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Example: How many observations should you collect to 
guarantee that, on average, the different between the true p 
and the estimated p, namely phat, is less than 0.01? 

What you want is to find n such that  

2*sqrt(p(1-p)/n) < 0.01 
or  

n > 40000*p(1-p). 

   p           n 
0.1     3600 
0.3     8400 
0.5   10000 <=   A conservative decision maker would  
0.6     9600          probably choose n around 10000 
0.8     6400 
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If now you wanted the different between p and phat to be, on 
average, less than 0.04 (like in example 1)?  Again, you want 
to find n such that 2*sqrt(p(1-p)/n) < 0.04 or n > 2500*p(1-p). 
p    0.1   0.3   0.5   0.6   0.8 
n  225   525  625  600  400 
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Hypothesis testing 

1.  Hypothesis testing 
2.  P-values. 
4.  Confidence intervals, tests, and p-values in general. 
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1. Hypothesis testing for p 

Example: Suppose we have an important manufacturing 
process.  The manager claims that the defect rate is 10%. 

What does this mean? 

If defects are i.i.d. Bernoulli with p = 0.1, then in the long run 
we will have 10% defective. 

We want to test the claim or hypothesis that p=0.1. 
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Experiment 1: 
Suppose we make 5 parts and 1 of the parts is defective. 
The estimated defect rate is 0.2. 
What does that tell us about p=0.1? 

Experiment 2:  
Suppose we make 20 parts and 4 of the parts is defective. 
The estimated defect rate is 0.2. 
What does that tell us about p=0.1? 

Experiment 3: 
Suppose we make 1000 parts and 200 parts are defective  
The estimated defect rate is 0.2. 
What does that tell us about p=0.1? 
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Experiment 1: 
If we get 1 out of 5, then we have 20% defective. 

This is highly probable if p=0.1. 

In fact, the chance of 1 out of 5 is 32.8% when p=0.1. 

So, it seems hard to reject the claim. 

Experiment 2: 
If we get 4 out of 20, then we have 20% defective. 

That is somewhat likely if p=0.1.  

In fact, the chance of 4 out of 20 is 8.98% when p=0.1. 

So, it seems hard to reject the claim. 365 



Experiment 3: 
If we get 200 out of 1000, then we have 20% defective. 

That is highly unlikely if p=0.1.  

In fact, the chance of 150 or more out of 1000 is negligible. 

So, we are likely to reject the claim. 
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Under the hypothesis that p=0.1, the data is 

Experiment 1:  Highly probable     => 32.80% 

Experiment 2:  Somewhat likely    =>   8.98% 

Experiment 3:  Very unlikely          =>   0.00% 

Basic Intuition (and strategy) 

If the outcome of an experiment  
is very unlikely under the tested hypothesis,  
then the data provides evidence to reject the hypothesis. 
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Clearly,  
we  

have  
to  

trust  
the  

data! 368 



Now that we have the intuition, let us be more formal 

Example: Suppose we have the data below where n=100 
and 18% are defective. We want to test whether p=0.1? 
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The question that we are interested in is:  

Can we get                if p = 0.1? 

To put it differently:  

Is it possible to obtain 18% defects out of 100 observations, if the 
true defect rate is 10%.  

Or, again, is the difference between 18% and 10% so big that it 
could not happen just “by chance”? 
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The flip side of the coin: 

If p=0.1, what kind of value can we expect for    ? 

Recall that, under the hypothesis that p=0.1, it follows 
that 

If p=0.1, then the possible values of     will be (approximately) 
normal with mean 0.1 and variance 0.032.  
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If p=0.1, then 

It is very unlikely to obtain a value that big given that p=0.1.  

Since we trust what we see (the estimated value from the 
data) we infer that a distribution with p=0.1 is not likely to be 
the generating one. 

We should probably reject the claim. 

There is a very small probability 
of getting a value as big as 0.18 
(which is what we obtain from 
our specific sample). 
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It is easy to see that 0.18 is roughly 2.7 standard deviations to  
the right of 0.1: 

In other words,  
obtaining 0.18 from a normal 
distribution with mean 0.1 and 
variance 0.032  
is the same as  
obtaining 2.67 from a normal 
distribution with mean 0 and 
variance 1 (the standard normal). 

2.67 is pretty unlikely.  
It is reasonable to reject the claim. 373 



If the null hypothesis p=po is true then, 

should look like a draw from the standard normal distribution !! 

Basic Logic: 
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To test the null hypothesis  

against the alternative  

We reject H0 at  the 5% level if 

Otherwise, we fail to reject H0. 

We have outlined 
the main intuition 
of what we do. 
But we really want  
to be precise. 

We now describe  
a precise rule to 
assess (test) the 
validity of a 
hypothesis. 
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Note (1)  

The quantity is called the test statistic. 

The numerator is simply the difference between  
the estimated p,  
and  
the conjectured p,     . 

We are truly comparing the estimated p and the conjectured p taking  
statistical uncertainty into account. 

When the estimated p is more that 2 standard errors away from the  
conjectured p, then we reject the null hypothesis at the 5% level. 
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If we do not reject, we do not say that we accept.  

We say that we fail to reject. 

This is because if we do not reject we have not 
proven that the null is true, we just do not have  
enough evidence to reject it.  

Note (2) 
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The level has the interpretation: 

Decision rule:  
Reject H0 whenever the test 
statistics is bigger than 2 or 
smaller than –2. 

If H0 is true, then 5% of the 
time, on average, the above 
decision rule will be a 
mistake. 

Note (3) 
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Example: Let us check the claim that H0: the daily closing 
price of GE in 2008 is just as likely to go up as down. 

Model:  Assume that, day to day, it is i.i.d Bernoulli (p) whether 
the price of GE goes up or not.  Record a 1 if it goes down and  
a 0 if it goes up.  Then, p is the probability that the stock  
goes down.  We want to test H0: p=0.5. 
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Data summary:  
It went down 133 days out of 252 days. 
It went up      119 days out of 252 days. 

The estimated p is 133/252 = 0.52778 

The test statistic is 

Since 0.8819876 is in the interval (-2,2), we DO NOT have  
strong evidence to reject H0.  We fail to reject H0. 380 



2. p-values 
Example: Suppose that an i.i.d. sample of size n=100 is 
taken from a Bernoulli(p) model, for some unknown value 
p (just like with the previous GE example).  We want to test 
Ho: p = 0.2. 

Case I: Suppose  the  data produces      = 0.278. 
Test statistic: (0.278-0.2)/sqrt(0.2*0.8/100)  = 1.95. 

Case II: Suppose  the data produces      = 0.282. 
Test statistic: (0.282-0.2)/sqrt(0.2*0.8/100) = 2.05. 

Not very interesting decision rule:  
Failing to reject H0 in Case I and Rejecting H0 in Case II. 
The evidence is only a little different,  
but we act totally differently !! 
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Remember our basic idea:  Reject if what we see is unlikely  
given the hypothesis. 

The standard normal tells 
us what kind of test statistic 
we should get if the null 
hypothesis is true. 

The farther out in the tail 
the test statistics is, the  
more we want to reject !! 

Rather than picking a cutoff, the p-value measures 
how far out in the tail the test stat is. 
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Null hypothesis H0: p = po  

The p-value for H0 is defined as  

            p-value = 1 - P(Z<|test statistic|) 

where Z ~ N(0,1). 

p-value is the probability of getting a test statistic  
as far out or farther than the one we got. 
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Example: 

Suppose the test statistic = 1. 
What is the p-value? 

Suppose the test statistic = 2. 
What is the p-value? 

Suppose the test statistic = 3. 
What is the p-value? 

Suppose the test statistic = 4.   
What is the p-value? 
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Suppose the test statistic = 1. 
What is the p-value? 
0.3173105 

Suppose the test statistic = 2. 
What is the p-value? 
0.04550026 

Suppose the test statistic = 3. 
What is the p-value? 
0.002699796  

Suppose the test statistic = 4.   
What is the p-value? 
0.00006334248 385 



Here is a table of test statistics and p-values. 

The p-value is just a 
measure of how "far out" 
the test statistic is. 
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Example (cont.):  
Null hypothesis: p=0.1. 
Sample size: n=100 parts. 
Sample proportion of defective: 0.18. 
Test statistic: (0.18-0.1)/0.03 = 2.666667. 

The p-value is 0.007660761. 
Strong data evidence against the null hypothesis. 

Example (cont.):  
Null hypothesis: p=0.5. 
Sample size: n=252 days. 
Sample proportion of downs: 0.52778. 
Test statistic: (0.52778-0.5)/0.03149704 = 0.8819876. 

The p-value is 0.3777835. 
Lack of data evidence against the null hypothesis. 387 



Rejection and the p-value 

If the test statistic is less than 2 (in absolute value) then  
the p-value is greater than 0.05. 

If the test statistic is greater than 2 (in absolute value) then 
the p-value is less than 0.05. 

If you want to accept/reject you can just look at the p-
value. 

But the p-value tells you much more. 

The p-value tells you about the strength of the data  
evidence against a particular hypothesis. 
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To test the null hypothesis at level 0.05, 
we reject if the p-value is less than 0.05. 

SMALL P-VALUE 
BIG TEST STATISTIC 
REJECT 

To test the null hypothesis at level a, 
we reject if the p-value is less than a. 
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3. Confidence Intervals, Tests, and p-values in 
General 

We have discussed confidence intervals for two parameters:  

NORMAL 
m , the mean of i.i.d. normal observations 

BERNOULLI 
p, the probability of 1, for i.i.d. Bernoulli observations 
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More generally, we could have a parameter which we 
could call q. 

q  represents a true feature of the process or 
population under study. 

Given a sample we obtain an estimate of q, say . 

Here are some examples: 
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Let  denote an estimate of q. 

The expected value 

The probability of 
success 

The standard deviation 

The sample mean 

The ratio of successes 
over number of trials. 

The sample standard 
deviation 

We think of each sample quantity as an estimate of the  
corresponding “population” quantity (assuming our observations  
are i.i.d) 
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Because of the variation inherent in our data, 
we know our estimates could be wrong. 

How wrong can we be? 

The standard error tells us. 

In general, we have (at least approximately, by  
the central limit theorem, for a sufficient number of  
observations) a 95% chance that the true value will be  
within 2 standard errors of the estimate. 

Confidence Intervals 
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In general: 

m: 

Bernoulli p: 

Now that we have the basic idea, we can look at 
confidence intervals for any quantity without necessarily  
knowing the details (i.e., the formula per se). 
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Example: We can get a confidence interval for s in  
the i.i.d. normal model!! 

We don't know how the 
confidence interval for 
s is computed!! 

We're not going into 
the details anymore !! 
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Hypothesis Tests 

Here someone has some hypothesis about the real world. 

Given the data we ask:  

Could this data have arisen if the hypothesis is true? 

The p-value provides an answer for us. 
A small p-value means something weird happened if the 
hypothesis were true.  We reject the hypothesis! 

In particular, if the p-value < a, we reject at level  a! 
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Example: Assuming Canadian returns are i.i.d. normal,  
we can test the null hypothesis that Ho: m = mo . 

Here is the p-value 
for Ho: m = 0. 
We reject at level 5%. 397 



Again, even though we don't know the details of  
the test, we have some sense of how to interpret it. 

But, 

it only means something if we understand what  
hypothesis is being tested!!! 

The calculation of the p-value assumes iid returns!! 

If the returns are not iid, it is garbage!!! 

You don't have to understand the details of the test, 
you do have to understand the modeling assumptions 
that underlie it !! 
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Example: There is a test for whether a sequence  
looks like it is i.i.d.!! 

Null hypothesis: 
Ho: data are i.i.d.  

The p-value is 0.2 
Fail to reject !! 
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Example: Daily volume of shares traded. 

Null hypothesis: 
Ho: data are i.i.d. 
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Summary 

In general, given a model we compute a confidence 
interval as estimate +/- 2 standard errors. 

In general we can assess a hypothesis by the p-value. 
Small p-value => reject. 

The standard errors and p-values are computed given the 
basic assumptions of the model.  To use them properly, 
you must understand what these are !! 

401 



Warning: Tests are not infallible. 

Inevitably, for complex hypotheses, the tests will 
be more sensitive to some alternatives than others. 

The best test is the intra-ocular test:  look at your data, 
it should hit you right between the eyes !! 
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Simple Linear Regression 

 1. The Simple Linear Regression Model 
 2. Estimates and Plug-in Prediction 
 3. Confidence Intervals and Hypothesis Tests 
 4. Fits, resids, and R-squared 
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Book material 
•  What is correlation analysis and drawing the line of regression 

(pages 429-445 (12), 458-477 (13))  

•  Assumptions underlying linear regression (pages 449-450 (12), 
480-482 (13))  

•  The standard error of estimate Confidence and prediction 
intervals (pages 446-448 and 451-454 (12), 477-480 and 482-486 (13))  

•  The relationships among the coefficient of correlation, the 
coefficient of determination, and the standard error of estimate 
(pages 457-459 (12), 489-491 (13))  
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 1. The Simple Linear Regression Model 

price vs size 
from the housing 
data we looked 
at  before. 

Two numeric 
variables. 

We want to 
build a formal 
probability model 
for the variables. 

price: thousands of dollars 
size: thousands of square feet 
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Do you remember  conditional probabilities? 

Regression looks at the conditional distribution of Y given X. 

Instead of coming up with a story for the joint p(x,y), regression 
just talks about p(y|x): 

Given that I know x, what will y be? 

Example 1:  

Given I know that x = 6’5” (height), what will y (weight) be?  
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Why regression is so popular?   

Lots of reasons but two would be: 

(i) Sometimes you know x and just need to predict y, 
    as in the house price data; 

(ii) As we discussed before, the conditional distribution 
     is an excellent way to think about the relationship 
     between two variables. 
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What kind of model should we use? 

In the housing data, the "overall linear relationship" 
is striking. 

Given x, y is approximately a linear function of x. 

y = linear function of x + error 
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The Simple Linear Regression Model 

We need the normal distribution to describe what 
kinds of errors we might get !!! 

How far      is from the line               ?  
409 



X 

e for this 
observation


x1 

a+b x1


Realized e1


y1 = a+b x1 + e1


Here is a picture of our model. 
How do we get y1 from x1 ? "true" linear 

relationship 
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Of course, the model is "behind the curtain", 
all we see are the data. 

We'll have to estimate 
 or guess the "true" model 
parameters from the data. 

X 

Y 
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The role of s  
s large s small 

We need s in the model to describe how close 
the relationship is to linear, how big the errors are. 
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Another way to think about the model 

e independent of X


is, 

Note that we dropped 
the subscripts. 
(Y instead of Yi). 
Here we just write 
Y and x. 
We must assume that 
the model applies 
to all (x,y) pairs we have 
seen (the data) and 
those we wish to think 
about in the future.  

since given x, Y is just the normal e plus the constant a+bx.. 
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Given the model, and x, 
 what do you think Y will be? 

Your guess: 

Of course we don't know the b's and s so 
we have to estimate them !! 

How wrong could you be? 
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2. Estimates and Plug-in Prediction 

Example 2:  
Here is the output from the regression of price on size 

a   b 

se 

a is our estimate of a  
b is our estimate of b 
se is our estimate of s. 
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Now we think of the fitted regression line 
as an estimate of the true line. 

If the fitted line is 

         y = a + bx 

then a is our estimate of a and b is our estimate of b. 

"StErr of Est" is our estimate of s. 

We'll denote this by se. 

We may give the formulas for the estimators later! 
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If we plug in our estimates for the true values 
then a "plug-in" predictive interval given x is: 

Suppose we know x=2.2. 

a+bx = 144.41 
2se = 44.95 

interval for y = 
144.41 +/- 44.95 

y=a+bx 

y=a+bx-2se 

y=a+bx+2se 

y = a+bx +/- 2se 
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summary: 

parameter         estimate 
a                        a 
b                        b 
s                        se 

plug-in predictive interval given a value for x: 

a+bx +/- 2se 
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3. Confidence Intervals and Hypothesis Tests 

I randomly picked 
10 of the houses 
out of our data set. 

With just those 
10 observations, 
I get the solid line 
as my estimated 
line. 

The dashed line 
uses all the data. 

Which line would you rather use to predict? 

(the sold red 
points are the selected 
subset) 
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With more data we expect we have a better 
chance that our estimates will be close to the  
true (or "population" values). 

The "true line" is the one that "generalizes" 
to the size and price of future houses, 
not just the ones in our current data. 

How big is our error? 

We have standard errors and confidence intervals 
for our estimates of the true slope and intercept. 
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Let sa denote the standard error associated with the estimate a. 
Let sb denote the standard error associated with the estimate b. 

sa sb 

Notation: it might make more sense to use se(b)  
               instead of sb, but I am following the book. 
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(in excel) 

95% confidence interval for a: 

(in excel) 

95% confidence interval for b: 

If n is bigger than 30 or so, tval is about 2. 

estimate 
+/- 
2 standard errors 

!!!!!!! 
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Example 2 (cont.) 

For the housing data the 95% confidence interval 
for the slope is: 

70.23 +/- 2(9.43) =  70.23 +/- 18.86 = (51.4,89.1) 

big !!  (what are the units?) 
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With only 10 observations b=135.50 and sb = 49.77. 

Note how much bigger the standard error is than 
with all 128 observations!! 

135.5 +/- 2.3*(50) = (20.5,250.5) 

really big !! 
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Note: 

It the confidence inteval for slope and intercept are  
big the plug-in predictive interval can be misleading!! 

There are ways to correct for plugging in estimates 
but we won't cover them. 

The predictive interval just gets bigger!! 
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Example 2 (cont.) 
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Hypothesis tests on coefficients: 

To test the null hypothesis  

vs.  

We reject at level .05  if 

Otherwise, we fail to reject. 

t is the 
"t statistic" 

reject if 
the t statistic 
is bigger 
than 2 !! 

Intuitively, we reject if estimate is more than 2 se's away 
from proposed value. 427 



Same for slope: 

To test the null hypothesis  

vs.  

We reject at level .05  if 

Otherwise, we fail to reject. 

Intuitively, we reject if estimate is more than 2 se's away 
from proposed value. 428 



Note: 

the hypothesis:  Ho: b = 0 

is often tested. 

Why? 

If the slope = 0, then the conditional distribution 
of Y does not depend on x => they are independent ! 
(under the assumptions of our model) 
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Example 2 (cont.) 

To test b=0, the t-statistic is (b-0)/sb = 70.2263/9.4265 = 7.45 

We reject the null at level 5% because the t-stat is bigger 
than 2 (in absolute value). 

Stats packages automatically print 
out the t-statistics for testing 
whether the intercept=0 and  
whether the slope=0. 
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p-values 

Most regression packages automatically print out 
the p-values for the hypotheses that the intercept=0 
and that the slope is 0. 

That's the p-value column in the StatPro output. 

Is the intercept 0?, p-value = .59, fail to reject 

Is the slope 0?, p-value = .0000, reject 
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Note: 

For n greater than about 30, the t-stat can be interpreted 
as a z-value.  Thus we can compute the p-value. 

For the intercept: 

2*(the standard normal cdf at -.53) = .596 
which is the p-value given by the package. 

standard normal pdf 
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Example  3: The market model 

In finance, a popular model is to regress stock returns against 
returns on some market index, such as the S&P 500.  

The slope of the regression line, referred to as “beta”, is a 
measure of how sensitive a stock is to movements in the 
market. 

Usually, a beta less than 1 means the stock is less risky than 
the market, equal to 1 same risk as the market and greater 
than 1, riskier than the market. 
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We will examine the market model for the stock General 
Electric, using the S&P 500 as a proxy for the market.  

Three years of 
monthly data 
give 36 
observations. 
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The regression equation is 
ge = 0.00301 + 1.20 sp500 

Predictor       Coef       Stdev    t-ratio        p 
Constant    0.003013    0.006229       0.48    0.632 
sp500         1.1995      0.1895       6.33    0.000 

s = 0.03454     R-sq = 54.1%     R-sq(adj) = 52.7% 

We can test the hypothesis that the slope is zero: 
that is, are GE returns related to the market? 

Regression ouput: 
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The test statistic is 

and  

so we reject the null hypothesis at level .05. We could 
have looked at the p-value (which is smaller than .05) and 
said the same thing right away. 
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We now test the hypothesis that GE has the same risk as the 
market: that is, the slope equals 1. 

The t statistic is: 

Now, 1.055 is less than 2.03 so we fail to reject. 

What is the p-value ?? 
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What is the 95% confidence interval for the GE beta? 

1.2 +\- 2(.2) = [.8,1.6] 

Question: what does this interval tell us about our level of 
certainty about the beta for GE? 
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4. Fits, resids, and R-squared 

Our model is: 

We think of each (xi,yi) as having been generated by 

part of y that depends on x part of y that has nothing to do with x 
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It turns out to be useful to estimate these two 
parts for each observation in our sample. 
For each (xi,yi) in the data: 

have, 

fitted value for ith observation. 

residual for ith observation. 

y=a+bx 
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Fits and 
resids 
for the  
housing data. 
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Regression chooses 
a,b so that: 

Intuition: 

model: E(e)=0,cor(x,e)=0 
=> make sample quantities 
exactly so: 

resid off line vs x y vs x 

reg 
line 

slope 
too 
big 
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Note: 

Have: 
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because resids and fits have 0 sample correlation. 

because resids have 0 sample average 

total variation in y =  
                 variation explained by x + unexplained variation 
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R-squared 

the closer R-squared is to 1, the better the fit. 
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R-squared =28036.3627/(28036.3627 + 63648.8516) = 0.3057894 

R2 
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 .553^2 = 0.305809 

Note: 
R2 is also equal to the square of the correlation between y and x. 

Note: 

R2 = the square of the correlation between 
             y and the fits !! 

line has intercept 0 and slope 1 
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Example 4 

The correlation is .974. 

R2 = .974^2= 0.948676 

Housing data from 
a different neighborhood. 

price: thousands of dollars 
size: thousands of square feet 
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The regression equation is 
price = 5.76 + 14.8 size 

Predictor       Coef       Stdev    t-ratio        p 
Constant       5.763       1.633       3.53    0.003 
size         14.8159      0.8829      16.78    0.000 

s = 2.210       R-sq = 94.9%     R-sq(adj) = 94.6% 

Analysis of Variance 

SOURCE       DF          SS          MS         F        p 
Regression    1      1374.7      1374.7    281.58    0.000 
Error        15        73.2         4.9 
Total        16      1447.9 

     Fit  Stdev.Fit         95% C.I.             95% P.I. 
  38.358      0.669   (  36.932,  39.783)  (  33.436,  43.279)    

Regression output: 
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For any x, the plug-in predictive interval has error 

+/- 2se = +/-4.4 thousands of dollars: 

Even though R2 is big, we still have a lot 
of predictive uncertainty !!! 

I think people over-emphasize R2. 
I like se !! 

big!!! 
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Multiple Linear Regression 

 1. The Multiple Linear Regression Model 
 2. Estimates and Plug-in Prediction 
 3. Confidence Intervals and Hypothesis Tests 
 4. Fits, resids, R-squared, and the overall F-test 
 5. Categorical Explanatory Variables: Dummy Variables 
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Book material 
•  What is correlation analysis and drawing the line of regression 

(pages 429-445 (12), 458-477 (13))  

•  Assumptions underlying linear regression (pages 449-450 (12), 
480-482 (13))  

•  The standard error of estimate Confidence and prediction 
intervals (pages 446-448 and 451-454 (12), 477-480 and 482-486 (13))  

•  The relationships among the coefficient of correlation, the 
coefficient of determination, and the standard error of estimate 
(pages 457-459 (12), 489-491 (13))  

•  Multiple regression analysis (pages 475-483 (12), 512-519 (13)  
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1. The Multiple Linear Regression Model 

The plug-in predictive interval for the price of a house 
given its size is quite large. 

How can we improve this? 

If we know more about a house, we should have 
a better idea of its price !! 
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Our data has more variables than just size and price: 

The first 7 rows are: 

Suppose we know the number of bedrooms 
and bathrooms a house has as well as its size, 
then what would our prediction for price be ? 

(price and size /1000) 
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The Multiple Linear Regression Model 

y is a linear combination of the x variables + error. 

The error works exactly the same way as in simple linear reg!! 
We assume the e are independent of all the x's. 
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Another way to think about the model 

Y is normal with the mean depending on the  
x's through a linear combination. 
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If we model price as depending on size, nbed, nbath, 
then  we have: 

Given data, we have estimates of a, bi, and s. 

a is our estimate of a. 
bi is our estimate of bi. 
se is our estimate of s. 
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2. Estimates and Plug-in Prediction 

Here is the output from the regression of price on size (SqFt), 
nbed (Bedrooms) and nbath (Bathrooms): 

se 

So, for example, b2 = 13.5461 458 



Our estimated relationship is: 

Price = -5.64 + 10.46*nbed + 13.55*nbath + 35.64*size 

                               +/- 2( 20.36)   

Interpret: 

With size, and nbath held fixed, adding one bedroom 
adds 10.460 thousands of dollars. 

With nbed and nbath held fixed, 1 square foot increases 
the price $36.  
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Suppose a house had size = 2.2, 3 bedrooms 
and 2 bathrooms. 

What is your (estimated) idea of the price?  

This is our multiple regression plug-in predictive interval. 

The error is still estimated to be +/- 2se ! 

-5.64 + 10.46*3 + 13.55*2 + 35.64*2.2  = 131.248 

2se=40.72 

131.248 +/- 40.72 
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Note: 

When we regressed price on size the coefficient 
was about 70. 

Now the coefficient for size is about 36. 

Without nbath and nbed in the regression, 
an increase in size can by associated with an  
increase in nbath and nbed in the background. 

If all I know is that one house is a lot bigger than another 
I might expect the bigger house to have more beds and baths! 

With nbath and nbed held fixed, the effect of size is smaller.  
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Note: 

With just size, our predictive +/- was 

2*22.467 = 44.952 

With nbath and nbed added to the model the +/- is 

2* 20.36 = 40.72 

The additional information makes our prediction  
more precise  (but not a whole lot in the case, 
we still need some "better x's"). 
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3. Confidence Intervals and Hypothesis Tests 

(in excel) 

95% confidence interval for a: 

(in excel) 

95% confidence interval for bi: 

estimate 
+/- 
2 standard errors 

!!!!!!! 

(recall the k is the number of x's) 463 



eg 

StatPro prints out all the confidence intervals. 

the interval for b2 is 13.57 +/- 2(4.22) 
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Hypothesis tests on coefficients: 

To test the null hypothesis  

vs.  

We reject at level .05  if 

Otherwise, we fail to reject. 

t is the 
"t statistic" 

reject if 
the t statistic 
is bigger 
than 2 !! 

Intuitively, we reject if estimate is more than 2 se's away 
from proposed value. 465 



Same for slope: 

To test the null hypothesis  

vs.  

We reject at level .05  if 

Otherwise, we fail to reject. 

Intuitively, we reject if estimate is more than 2 se's away 
from proposed value. 466 



Example 

Packages automatically print out the t-statistics for testing 
whether the intercept=0 and  whether each slope=0 as well 
as the associated p-values. 

eg.            = 35.64/10.67=3.34 => reject 467 



4. Fits, resids, and R-squared 

In multiple regression the fit is: 

"the part of y related to the x's " 

as before, the residual is the part left over: 
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In multiple regression, the resids have sample mean 0 and 
are uncorrelated with each of the x's and the fitted values: 

estimated x part of y estimated part of y 
that has nothing to do with x's 
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This is the plot of the residuals from the multiple regression 
of price on size, nbath, nbed  vs  the fitted values. 
We see the 0 correlation. 

The correlation is also 0, for each of the x's. 470 



So, just as with one x we have: 

total variation in y =  
                 variation explained by x + unexplained variation 471 



R-squared 

the closer R-squared is to 1, the better the fit. 
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In our housing example: 
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R2 is also the square of the correlation between 
the fitted values and y: 

 .663^2 = 0.439569 

Regression 
finds the 
linear combination 
of the x's which 
is most correlated 
with y. 

(with just size, the correlation 
between fits and y was .553) 
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The "Multiple R" is the correlation between y and 
the fits 
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The overall F-test 

The p-value beside "F" if testing the null hypothesis: 

(all the slopes are 0) 

We reject the null, at least some of the slopes are not 0. 
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5. Categorical Explanatory Variables: Dummy Variables 

Here, again, is the first 7 rows of our housing data: 

Does whether a house is brick or not affect the 
price of the house? 

This is a categorical variable. 
How can we use multiple regression with categorical x's ??!! 

What about the neighborhood?  (location, location, location !!) 
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Adding a Binary Categorical x 

To add "brick" as an explanatory variable in our regression 
we create the dummy variable which is 1 if the house is 
brick and 0 otherwise: 

. 

. 

. 

the  
"brick dummy" 
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Note: 

I created the dummy by using the excel formula: 

=IF(Brick="Yes",1,0) 

but we'll see that StatPro has a nice utility for creating 
dummies. 
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As a simple first example, let's regress   
     price on size and brick. 

Here is our model: 

How do you interpret b2 ? 
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What is the expected price of a brick house 
given the size? 

What is the expected price of a non-brick house 
given the size? 

b2 is the expected difference in price between a 
brick and non-brick house. 

481 



Note: 

You could also create a dummy which was 1 
if a house was non brick and 0 if brick. 

That would be fine, but the meaning of b2 which 
change. 

You can't put both dummies in though because 
given one, the information in the other is redundant. 
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Let's try it !! 

+/- 2se = 39.3, this is the best we've done ! 

what is the brick effect: 
               23.4 +/- 2(3.7) = 23.4 +/- 7.4 
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We can 
see the effect 
of the dummy 
by plotting 
the fitted values 
vs size. 

The upper line 
is for the brick 
houses and  
the lower line 
is for the non-brick 
houses. 
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We can interpret b2 as a shift in the intercept. 

Notice that our model assumes that the price 
difference between a brick and non-brick house 
does not depend on the size! 

The two variables do not "interact". 

Sometimes we expect variables to interact. 
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Now let's add brick to the regression of price on  
size, nbath, and nbed: 

+/- 2se = 35.2 

Adding brick seems to be a good idea !! 
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. 

. 

. 

I created one dummy for each the neighborhoods. 

eg. Nbhd_1 indicates if the house is in neighborhood 1 or not 
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Now we add any two of the three dummies. 
Given any two, the information in the third is 
redundant. 

Let's first do price on size and neighborhood: 

where now I've use N1 to denote the dummy 
for neighborhood 1 and same for 2. 
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b3: difference between hood 2 and hood 3 
b2: difference between hood 1 and hood 3 

The neighborhood corresponding to the dummy we 
leave out becomes the "base case" we compare to. 
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Let's try it! 

+/- 2se = 30.52 !!! 
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Here is 
fits vs size. 

Which line 
corresponds 
to which  
neighborhood ? 

Where do you 
want to live ? 

Again we  
are assuming 
that size and 
neighborhood do not 
interact. 
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ok, let's try price on size, nbed, nbath, brick, and  
neighborhood. 

+/- 2se = 24 !! 
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Maybe we don't need bedrooms: 

Dropping bedrooms did not increase se or  
decrease R-Square so no need to bother with it. 
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Regression 
finds a  
linear 
combination 
of the variables 
that is like y. 
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price vs size: price vs combination 
of size, nbath, brick, nbhd 
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The residuals 
are the part 
of y not 
related to 
the x's. 
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summary: adding a Categorical x 

In general to add a categorical x, you can 
create dummies, one for each possible category 
(or level as we sometimes call it). 

Use all but one of the dummies. 

It does not matter which one you drop for the fit, 
but the interpretation of the coefficients will depend 
on which one you choose to drop. 
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Topics in Regression 

 1. Residuals as Diagnostics 
 2. Transformations as Cures 
 3. Logistic Regression 
 4. Understanding Multicolinearity 
 5. Autoregressive Models 
 6. Financial Time Series 
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1. Residuals as Diagnostics 

Example 1: Here is the regression output for four  
different data sets.  In each case we have just one x. 
DATASET 1 

The regression equation is 
y1 = 3.00 + 0.500 x1 

Predictor       Coef       Stdev    t-ratio        p 
Constant       3.000       1.125       2.67    0.026 
x1            0.5001      0.1179       4.24    0.002 

s = 1.237       R-sq = 66.7%     R-sq(adj) = 62.9% 

DATASET 2 

The regression equation is 
y2 = 3.00 + 0.500 x2 

Predictor       Coef       Stdev    t-ratio        p 
Constant       3.001       1.125       2.67    0.026 
x2            0.5000      0.1180       4.24    0.002 

s = 1.237       R-sq = 66.6%     R-sq(adj) = 62.9% 

DATASET 3 

The regression equation is 
y3 = 3.00 + 0.500 x3 

Predictor       Coef       Stdev    t-ratio        p 
Constant       3.002       1.124       2.67    0.026 
x3            0.4997      0.1179       4.24    0.002 

s = 1.236       R-sq = 66.6%     R-sq(adj) = 62.9% 

DATASET 4 

The regression equation is 
y4 = 3.00 + 0.500 x4 

Predictor       Coef       Stdev    t-ratio        p 
Constant       3.002       1.124       2.67    0.026 
x4            0.4999      0.1178       4.24    0.002 

s = 1.236       R-sq = 66.7%     R-sq(adj) = 63.0% 

In each case the output is identical. 
Whatever decision you are trying to make (eg. predicition) 
would be the same !! 499 
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Moral of the Story 

Only in the first case does the plot suggest that the simple linear 
regression model is a good way to think about the data. 

In the other cases a blind use of the model would lead to bad 
decisions. 

QUESTION:  
So, how do you tell if the model is “a good way to think 
about your data”?  

Plot the data! 
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ANOTHER QUESTION:  With more than one x, how do we  
"plot" the data?  How can we diagnose a problem with the  
regression model? 

Basic idea: If the model is right then 

independent of the x's !!!! 

The residuals should look i.i.d. normal;  
The residuals should be unrelated to the x's. 
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In each example we can see something wrong or peculiar !! 

Example 2:  
Failure of basic assumption of linear relationship. 

Example 3:  
A funny point, an outlier. 

Example 4:  
The variance of errors increases with x, we have nonconstant 
variance: “heteroskedasticity”. 

Our model assumes "homoskedasticity", i.e. a constant 
variance. 505 



In multiple regression we plot the resids vs each x. 
There should be nothing funny!! 

Since the fits are a function of the x's, we also 
plot the resids vs the fits and again there should be 
no relationship. 

In principle, the resids should be unrelated to  
any function of the x's, but in practice we just 
do individual x's and the fits. 

Note: now you know why most regression  
packages/softwares, such as excel, give you the  
option of making these plots! 
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Example 5 

Here are  
resids vs  
fitted from 
house price 
on size, nbed, 
and nbath. 

Looks pretty good! 

Is there an 
outlier? 

this plot is a good thing !! 
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This is a plot of 

vs the fits. 

If the model is 
right these 
standardized 
resids should look like 
iid standard normal draws 
independent of the x's 
(and hence the fits). -2.64 
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Is -2.64 unusual? 
20 times I simulated 128 iid standard normals. 
Each time I picked off the smallest one. 

The smallest of 128 could easily be -2.6 if the 
model were true. 
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2. Transformations as Cures 

Ok, suppose you find a problem. 
What can you do about it? 

If you find an outlier you should investigate! 
Why is it weird?? 

If you find nonlinearity or heteroskedasticity 
you can sometimes "fix it" by using transformations. 

We'll look at the two most common transformations: 
Logarithms and polynomials. 
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2.1 The Log Transformation 

Suppose we have this  
relationship: 

Here (1+r) is a multiplicative error. 
r is percentage error. 

Often we see this, the size of the error is a percentage 
of the expected response. 

This would lead to heteroskedasticity. 511 



Take the log: 

where a = log(c) and e = log(1+r). 

We can regress the log of y  on the log of x  !! 
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Obviously, taking the log turns these nonlinear 
relationships into linear ones in terms of the transformed 
variables. 

It also take a multiplicative (percentage error) and 
turns it into the additive error of the regression model. 

In practice, logging y is often a good cure for  
heteroskedasticity. 
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Suppose now the relationship is: 

Here we regress  
log of y on x. 

In practice you can just  
log y or y and some of  
the x's. 

Don't log a dummy variable!!. 514 



Example 6 

Goal: relate the brain weight of a model to its body weight. 
Each observation corresponds to a mammal. 
y: brain weight (grams) 
x: body weight (grams) 

Each observation 
corresponds 
to a mammal. 

Does additive 
error make 
sense ? 
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logy vs logx 

Looks pretty nice !! 
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The big  
residual 
is the  
chinchilla. 

standardized resids vs fits 

Very few people know that the chinchilla is a master 
race of supreme intelligence. 
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The book I got this from had chinchilla at 64 grams 
instead of 6.4 grams (which I found in another book). 

The next biggest positive residual is man. 

No. 
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2.2 Polynomials 

Example 7: each observation corresponds to a service call. 

x: number of units serviced 
y: time to complete 
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Residuals versus fitted values  
for regression of  time on units. 

Yikes!! 520 



The usual linear model, 

does not look like a great idea. 

We'll try: 

a multiple regession where one x is the square of  
the other !! 

(y = quadratic + error) 

(y = linear + error) 
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Just create a new column with the squares of  
the old x column: 

=units^2 

Here is the output: 

  x            y       x2 
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Fits vs x. 

y = -9.75 + 22.22 x -0.59 x2 

To make a prediction, plug in x and x2. 
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Residuals versus fitted values 

not bad! 
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In general our model  

y = polynomial + error 

For example with two x's we might have: 

With many x's you can see that there are a lot 
of possibilities. 

Note that the product term give us interaction. 
It is no longer true that the effect of changing one x 
does not depend on the value of the others. 

525 



Example 8 

The housing data again. 

y: price 
x1: size 
x2: dummy for neighborhood 1 
x3: dummy for neighborhood 2 

model: 

interpret: 

It makes no 
sense to  
square or log 
a dummy !!! 
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Fits vs size. 

Now we  
see that 
lines don't 
have to be 
parallel ! 

But it does not 
seem that there 
is much 
interaction. 

On the other hand the lower slope for the "worst" neighborhood makes sense !! 
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here is the regression output: 

what happens if you throw out each variable 
with t-statistic less than 2? 
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3. Logistic Regression 

age sex soc edu Reg inc cola restE juice cigs antiq news ender friend simp foot 
67 2 3 1 3 12 1 0 1 0 1 0 0 0 0 0 
51 2 3 8 3 10 1 1 0 1 1 0 1 1 0 0 
63 2 3 1 2 13 1 1 0 1 1 0 1 0 0 0 
45 2 4 3 1 18 1 1 1 0 1 0 0 0 0 0 

We want to relate football viewing to demographics. 
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Linear regression: 

    relate numeric y to numeric x's. 

If you have a categorical x, you use dummies. 

Now we have a (binary) categorical y !!!! 

It does not make sense to think of y 
as a linear combination + error !! 

As usual, we will represent y as a 0-1 dummy. 

530 



The Logit Model 

Now we want a model for  

Y|x 

where Y is 0 or 1. 

Given x, what is the distribution of Y? 

Y|x ~ Bernoulli(p). 

We need p to depend on x. 

(just like m did in regression) 
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p as a function of x 

Two steps: 

(i) 

x only affects y through a linear combination 
of the x’s. 

Let, 

we assume that h captures everything the x’s 
have to say about Y !! 
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(ii) 

p is a function of h. 

We can’t have p=h because we need to have p 
between 0 and 1! 

We let, 
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What does look like ? 

Notice that 
F takes 
on values 
between 
0 and 1. 

Bigger h

means bigger 
F means  
bigger p. 
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That is, 

Given data, most packages will give you estimates 
of the b's and standard errors. 

Let's try it. 
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Example 9: Football on Age 

...... 

h= -0.8101-0.0285*age 
pfootball = exp(h)/(1+exp(h)) 

An older person has a smaller h, and then a smaller p. 
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h vs age pfootball vs age 

As age increase from 20 to 80 
h decreases from -1.2 to -3.6, 
p decreases from 0.22 to 0.03. 
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This plot is the one the really summarizes our 
estimated relationship: 

p(football|age) 

age 
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confidence intervals and hypothesis tests 

ci for age = estimate +/- 2se  
                = -.0285 +/- 2*(.007) = (-.0422, -.0148) 

It's not easy to interpret these coefficients. 
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To test whether the coefficent is 0: 

If the null were true, this should look like a draw 
from the standard normal.  We reject b=0. 
Again, the small p-value also means reject. 
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Example 10: Football on age and sex 

Just as with linear regression, we create a dummy 
for sex: sex_1: 1 if male , 0 otherwise 

Since the coefficient for sex_1 is positive,  
a man has a larger h, and hence a large prob. 

It seems the both coefficients are clearly different from 0. 
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This plot summarizes the model: 
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4.Multicolinearity 

Suppose we are regressing a Y on x’s and 
the x’s are highly correlated. 
What happens to the standard errors? 

this will be small !!!! 

Which makes the standard error large. 

What happens to the t statistic for testing  
the coefficient = 0? 
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Example 11: We have one Y and two X’s. 

How can you tell 
if a change in Y was 
caused by a change 
in X1 or X2 when 
they always change  
together!!!  They 
never do anything on 
their own!!! 

Plot x1 vs x2. 
They are highly correlated. 
There is very little variation in one x not associated with 
variation in the other. 
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The regression equation is 
y = 0.130 + 1.33 x1 - 0.14 x2 

Predictor       Coef       Stdev    t-ratio        p 
Constant      0.1304      0.1504       0.87    0.390 
x1             1.334       1.090       1.22    0.227 
x2            -0.140       1.114      -0.13    0.900 

s = 1.030       R-sq = 60.9%     R-sq(adj) = 59.2% 

Analysis of Variance 

SOURCE       DF          SS          MS         F        p 
Regression    2      77.506      38.753     36.53    0.000 
Error        47      49.856       1.061 
Total        49     127.362 

Notice that the overall F is very significant 
but neither t is!!!! 

545 



Clearly, Y is related to the X’s (the big F). 

But it is very difficult to estimate the two multiple 
regression coefficients because the X’s are so closely 
linearly related (the small t’s). 

Clearly, if we regress Y on each X one at a time the 
t values for the slopes will be big!!! 
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Multicolinearity: 

When the x’s are highly correlated it may be that there 
is not enough variation in some of the x’s which is unrelated 
to the other x’s to be able to estimated their slopes well. 

We get large standard errors and hence small t’s 
so we would fail to reject the null that the true slope is 0. 

Here is an important example where “fail to reject” 
does not mean accept.  If we get a small t because of 
multicolinearity it just means we cannot estimate the slope 
well so we don’t know that it is not 0. 

Before you run a regression check all the correlations  
between your x’s.  
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Dealing with the Problem of Multicolinearity 

Basically multicolinearity means there is not enough 
information in the data to estimate the separate slopes. 

The basic solution is to get more data with less correlation 
amongst the x’s. 

In experimental design we choose the x’s so that the  
correlation is low (0 usually). 

Sometimes people throw out some x’s or combine 
some x’s into an average. 
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5. Autoregressive models 

The mean July level  
of lake Michigan 
 in number of feet above 
 sea level in excess of 570  

One numeric variable, measured over time (annually). 

Is it iid ?? 
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If Yt denotes level at year t, then iid means: 

Now we wonder if maybe, for example, 

What happens next, is related to what happened before. 

in particular, 

550 



Autocorrelation 

Let's see if yt and yt-1 are related. 
We can do this by lagging the series. 

The second column is simply 
the previous value of the first. 

It is the first lagged once. 

Each row is (yt,yt-1). 
...... 
...... 
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Now we  
can plot 
this year's  
lake level 
against 
last year's 
to see if 
they are related. 

Note that we  
are assuming 
that the nature 
of the relationship 
between successive years does not change over time. 

they are clearly related !!!!! 
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How about this year and two years ago: 

The second lag give us (yt,yt-2) pairs. 
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This year, 
is related to 
two years ago. 
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We can summarize the relationships with 
autocorrelations: 

Level this year is correlated .839 with level last year, 
and .632 with level two years ago. 

Autocorrelation is the correlation between values of 
a variable and past values of the same variable. 
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The standard error is  

where T is the number of observations. 

Our lake data has 98 observations so the  
standard error is about .1 

An autocorrelation bigger than  

is considered "significant". 
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It is traditional to plot the autocorrelations: 

This year's lake level is related to that of past years 
but the strength of the relationship diminishes with the lag. 

This plot 
is called 
the ACF. 

(autocorrelation 
function) 
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Suppose data were iid. 

What should the ACF look like ? 
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I simulated 
100 iid 
N(0,1) 

The acf: 

none are 
bigger 
than 
 2/sqrt(100) 
=.2 
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The AR(1) Model 

Ok suppose the acf indicates dependence. 
We need a model to describe it. 

In the case 

we often try: 

where et is independent of the past = (yt-1,yt-2, ....) 
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the part of Y predictable 
from the past 

the new part of y 
unpredictable from 
the past 

We often assume: 
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How do we estimate the parameters? 
Simply run an autoregression: 
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If this year's level is 11, what is your prediction for 
next year's level ? 

y = 1.467 + .8364(11) +/- 2(.72) 

= 10.67 +/- 1.44 
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Does the model fit the data, that is, capture all 
the dependent structure? 

If the model is right, the residuals should look like 
iid normal draws. 
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Here is the acf of the resids: 

No evidence of dependent structure in the resids !! 
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The AR(p) Model 

There is no guarantee the AR(1) model work capture 
the dependence in the data. 

The current value may be related to more than just 
the previous one. 

We can try the AR(p) model: 
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Trend Plus error model 

Another popular time series model is the trend model: 

567 



6. Financial Time Series 
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There are also two types of financial volatilities: 

Historical Volatility  
These are volatility estimates arrived at from looking at the 
historical path of prices and using a model (maybe time-
varying) to estimate the future path of volatility; 

Implied Volatility  
These come from exchange based market measures 
explaining the market's current perception about what 
average future volatility will look like. VIX and VXN indices 
for the S&P500 and NASDAQ indices, respectively. 
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More about VIX 
VIX is based on the Black-Scholes option pricing model to 
calculate implied volatilities for a number of stock options. 

VIX is constructed using the S&P 500 index.  

VIX is expressed as an annual percentage.  A VIX of 15, for 
example, means the market is expecting a 15% change in 
price over the next year.  

577 



SP500: S&P 500 INDEX (^GSPC) 
NASDAQ: NASDAQ COMPOSITE (^IXIC) 
VIX: CBOE VOLATILITY INDEX (^VIX) 
VXN: CBOE NASDAQ VOLATILITY INDEX (^VXN) 
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Historical versus implied volatility 
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BUSINESS STATISTICS 
Exploratory Data Analysis 
Looking for clues and patterns in order to select better 
models. 

Probability 
The language/metric of uncertainty. 

Statistical Inference and Hypothesis Testing 
From deductions to inductions. 

Regression Analysis 
Pretty neat way of modeling conditional dependences. 
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THANK YOU! 


