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An helicopter view on VARs

• Vector autoregressive (VAR) models are the main workhorse in empirical
macroeconomics: forecasting, impulse response and policy analysis.

• For m-dimensional yt and p lags, the standard Gaussian VAR model is defined as

yt = µ +
p

∑
l=1

Φlyt−l + ϵt, ϵt iid N(0, Σt),

for t = 1, . . . , T.

• Intercept + np regressors per equation.

• n(1 + np) parameters in (µ, Φ1, . . . , Φp).
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Evolution of Bayesian VAR models
• Small/medium size VAR

▶ Doan, Litterman and Sims (1984/1986) - Minnesota prior
▶ Kadiyala and Karlsson (1993/1997) - MC + MCMC
▶ Lopes, Moreira and Schmidt (1999) - VAR + TVP via SIR
▶ Primiceri (2005) - Structural VAR + TVP + SV

• Large/huge size VAR

▶ Bańbura et al. (2010) - Large VAR
▶ Koop and Korobilis (2013) - Large VAR + TVP
▶ Carriero et al. (2019) - Large VAR + SV
▶ Kastner and Huber (2020) - Huge VAR (sparsity)

• Nonparametric VAR

▶ Huber and Rossini (2022) - BART
▶ Clark et al. (2023) - BART
▶ Huber and Koop (2024) - Dirichlet process mixture (DPM)
▶ Hauzenberger et al. (2024) - Gaussian processes (GP)
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Minnesota Prior

Let us focus on the 1st equation of the VAR(p) model

yt1 = µ1 +
p

∑
l=1

m

∑
j=1

ϕl,1jyt−l,j + ϵt1

The Minnesota prior induces an random walk behavior for yt1:

E(ϕ1,11) = 1 and E(ϕl,1j) = 0 ∀l, j ̸= 1

and

V(ϕl,1j) =


λ1
lλ3

j = 1
λ2
lλ3

j ̸= 1

Doan, Litterman and Sims (1984) Forecasting and conditional projection using realistic prior
distributions. Econometric reviews, 3(1),1-100. Litterman (1986) Forecasting with Bayesian vector
autoregressions - five years of experience. JBES, 4(1), 25-38.
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Modeling Σt

Recall the VAR(p) structure

yt = µ +
p

∑
l=1

Φlyt−l + ϵt, ϵt iid N(0, Σt),

Stochastic volatility specifications are crucial for producing accurate density forecasts,
Chan (2023).

We model Σt via a factor analysis approach:

Σt = ΛΩtΛt + Ht

where
• Λ is an n × r factor loadings matrix (r ≪ n ),
• Ht = diag(ht1, . . . , htn), and
• Ωt = diag(ωt,n+1, . . . , ωt,n+r).
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Our contribution: Minnesota BART

Two-fold extension of Huber and Rossini (2022) and Clark et al. (2023):

• Allowing for high-dimensional data and variable selection via the approach by
Linero (2018), and

• Introducing a Minnesota-type shrinkage specification into the BART node
splitting selection.
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The BAVART model

We replace the linear autoregressive structure by a nonlinear one:

yt = G(xt) + ϵt, ϵt ∼ iid N(0, Σt)

• yt = (yt1, . . . , ytn)′.

• xt = (y′t−1, . . . , y′t−p).

• G(xt) = (g1(xt), . . . , gn(xt))′ is a n-dimensional vector BART mean fucntions.
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The full (hierarchical) model

yt = G(xt) + ϵt

ϵt = Λ ft + ηt

ft ∼ N(0, Ωt)

ηt ∼ N(0, Ht),

The components of Ht and Ωt follow standard stochastic volatility (SV) models.
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A brief introduction to a tree model
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The vector of mean functions, G(xt)

Each component of G(xt) is modeled as a decision tree ensemble:

g(xt) =
M

∑
m=1

gm (xt; Tm,Mm) ,

where

• Tm denotes a decision tree shape,

• Mm denotes a collection of leaf node parameters, and

• gm(xt; Tm,Mm) is a regression tree function that returns the prediction
associated to xt for the pair (Tm,Mm).

Prior specification:
π(Tr,Mr) ∼ πT (Tr)πM(Mr | Tr)
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BART prior

BART proceeds by placing a prior on the regression trees.

Prior independence, given the model hyperparameters θ:

π ((T1,M1), . . . , (TM,MM) | θ) =
M

∏
m=1

πT (Tm | θ)πM(Mm | Tm).

The prior distribution for the trees πT consists of three steps:

1. A prior on the shape of the tree T ;

2. A prior for the splitting rules that first selects a predictor by sampling
kb ∼ Categorical(s) where s = (s1, . . . , sk)

⊤ is a probability vector.

3. A prior on the splitting rules [xkb ≤ Cb] for each branch node of the tree, given kb
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Highlighting the 2010 AOAS BART paper

• Out of sample predictive comparisons on 42 data sets.

• p = 3 − 65, n = 100 − 7, 000.

• For each data set, 20 random splits into 5/6 train and 1/6 test.

• 5-fold CV on train to pick hyperparameters.

• gives 20×42 = 840 out-of-sample predictions, for each prediction, divide rmse
of different methods by the smallest
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Competitors

• Linear regression with L1 regularization - Efron et al. (2004).

• Gradient boosting - Friedman (2001)
Implemented as gbm in R by Ridgeway (2004)

• Random forests - Breiman (2001)
Implemented as randomforest in R.

• Neural networks with one layer of hidden units
Implemented as nnet in R by Venables and Ripley (2002)
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Comparison

+ Each boxplots represents 840 predictions for a method

+ 1.2 means you are 20% worse than the best

+ BART-cv best

+ BART-default (use default prior) does amazingly well!!
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Relative RMSE

Relative RMSE > 1.5
• Lasso: 29.5%
• Random forests: 16.2%
• Neural net: 9.0%
• Boosting: 13.6%
• BART-cv: 9.0%
• BART-default: 11.8%
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UT Austin gang

Antonio & Jared
Hill, Linero, and Murray (2020) Bayesian Additive Regression Trees: A Review and
Look Forward, Annual Review of Statistics and Its Application, Volume 7, pages
251-278 - https://doi.org/10.1146/annurev-statistics-031219-041110

Carlos, Drew, Rafael & Pedro
stochtree (short for ”stochastic trees”) - https://stochtree.ai

Boosted decision tree models (like xgboost, LightGBM, or scikit-learn’s
HistGradientBoostingRegressor) are great, but often require time-consuming
hyperparameter tuning. stochtree can help you avoid this, by running a fast Bayesian
analog of gradient boosting (called BART – Bayesian Additive Regression Trees).
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BART splitting rule

• Select a predictor by sampling kb ∼ Categorical(s), where

s = (1/k, . . . , 1/k).

• What if m = 100 and p = 5?
Linero (2018): break down in the presence of larger number of potentially
irrelevant features.

• Bias will increase as k increases (VAR: k = mp).

• Credible intervals will widen as well.
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Exercise: BART in a high dimensional setting

Consider the following nonlinear regression

yi = g(xi) + ϵt,
g(xi) = 10sin(πxi1xi2) + 20(xi3 − 0.5)2 + 10xi4 + 5xi5,

where

• ϵt ∼ N (0, 1),
• T = 100 observations,

• 5 relevant predictors,

• k − 5 irrelevant predictors,

• k = {10, 100, 1000}.

17 / 43



Predictions degrade as k increases, Linero (2018)
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DART prior

If many predictor are potentially irrelevant, why should sk constant over k?

Linero (2018) propose a solution when k is close or much larger than T:

s ∼ Dirichlet(α/k, . . . , α/k)

Full Bayesian variable selection:

α

α + k
∼ Beta(0.5, 1).
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Minnesota BART
Rule 1: The past values of a specific variable play a more significant role in predicting
its current value compared to the past values of other variables.

Rule 2: The most recent past is considered more influential in predicting current
values than events further in the past.

Therefore, for equation n, the prior for the splits probability is defined::

(s1n, . . . , skn) ∼ Dirichlet(ϕ1n, . . . , ϕkn) (1)

The scale parameters of the Dirichlet distribution are defined are defined as follows:

ϕin =


λ1
l2 , for the scale on the l-th lag of variable i,
λ2·ρ

l2 , for the coefficient on the l-th lag of variable j, j ̸= i,
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Minnesota BART

Draws from Dirichlet
(
λ, λ

4 , λ
9

)
. This figure illustrates the effect of varying λ on the

concentration parameters of the Dirichlet prior on the simplex for λ = (1, 3, 10). The
vertices of the simplex correspond to one-sparse probability vectors, the edges represent
two-sparse vectors, and the interior points indicate denser probability distributions.
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Bayesian inference

• Prior features (in a nutshell)
▶ Choice of prior and hyperparameters from BART literature.
▶ Horseshoe prior used for any linear conditional mean coefficients

• MCMC features (in a nutshell)
▶ Standard MCMC steps from BVAR and BART.
▶ Novel updating step for the split probabilities:

s1, . . . , sk|ϕ, data ∼ Dirichlet(ϕ1 + n1, . . . , ϕk + nk)

where nk are the number of splits on predictor k over the ensemble.
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Another simulation exercise

• In order to illustrate the properties of the proposed priors we conduct a simulation
study where we aim to assess the efficacy of DART-VAR and Minnesota DART in
recovering the sparsity pattern.

• We will be reporting the posterior inclusion probability as metric for variable
selection.

PIPk = Pr(predictor k appears in the ensemble | data).

• We will report the results of the first equation of the estimated dynamic system.
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Experiment A

The data is generated from a linear m dimensional VAR(1) model:

Φ = 0.5Im

and with m = 10, 20, 50, 100.

True sparsity: behavior of each variable only depends on its own past.

m = 100: Each equation has 99 redundant variables.
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Linero’s DART prior
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Experiment B

The data is generated from a VAR(5) model:

Φ1 = 0.65Im (2)

and
Φj = (−1)j−1(0.4225)Im, j = 2, . . . , 5, (3)

for m = 10 or m = 20.

The coefficients decrease for distant lags, reflecting the conventional wisdom that
recent lags hold greater importance than those further in the past.
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Minnesota DART prior
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Real data exercise

• Data: 22 series from FRED-QD, McCracken and Ng (2016).

• Time span: 1965Q1 - 2019Q4.

• Expanding window: 2005Q1 to 2019Q4.

• Horizons: h = 1, 2, 3, 4.

• Evaluation metric: Root mean squared predictive error (RMSPE)

• Baseline model: BVAR-FSV with Minnesota prior
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RMSPE
real GDP growth, federal funds rate, inflation
BART/SPARSE/MINN = Uniform/Dirichlet/Minnesota splitting
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Inclusion probabilities - CPI
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Comparing the priors through log predictive density scores

• To obtain a more comprehensive evaluation, we consider a metric that account for
for the models ability to predict higher-order moments of the predictive
distribution - Log Predictive Density Score

LPDS = log p(yt0+1, . . . , yT | ytr) =
T

∑
t=t0+1

log p(yt | yt−1)

• The first t0 time series observations, ytr = (y1, . . . , yt0), are designated as the
“training sample,” while the remaining observations, yt0+1, . . . , yT, are used for
evaluation based on the log predictive density.

• Each probability split prior specification for the mean function is shown under
both the homoskedastic and stochastic volatility (SV) settings, where the former
is represented by a continuous line and the latter by a dashed line.
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Marginal Log Predictive Density Score - CPI
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Marginal Log Predictive Density Score - GDPC1
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Marginal Log Predictive Density Score - FedFunds
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Joint Distribution Log Predictive Density Score
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Prior Elicitation

• The choice of λ is of critical importance, as it plays a central role in determining
the expected level of shrinkage in the model.

• Empirical Analysis: We evaluate different levels of λ using a grid of values
(λ1 = {1, 3, 5, 10, 20}, λ2 = {0.5, 1, 1.5, 2.5, 5, 10}) and assess their impact on the
log-predictive density score relative to the standard BART prior.

• Impact of λ on Shrinkage Forecasting: Higher values of λ lead to a more
gradual decay in posterior inclusion probabilities, preserving the influence of lags
and cross-lags over a longer range. This highlights the importance of carefully
selecting λ, as it directly affects variable selection, model interpretability, and
forecasting accuracy.
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Prior Elicitation : Posterior Inclusion Probability - CPI
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Figure: Own-Lag Posterior Inclusion Probability. In-sample Posterior Inclusion Probability
(PIP) for the CPI’s own lag across different grid values of λ1 = {1, 3, 5, 10, 20} and
λ2 = {0.5, 1, 1.5, 2.5, 5, 10}.
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Prior Elicitation : Posterior Inclusion Probability - CPI
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Figure: Posterior Inclusion Probability for different shrinkage parameters.
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Prior Elicitation
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Figure: Log Predictive Density Score for different shrinkage values. Cumulative log
predictive scores for the last 56 time points (labeled with time index T − t0, where t0 = 160),
across different grid values of λ1 = {1, 3, 5, 10, 20} and λ2 = {0.5, 1, 1.5, 2.5, 5, 10}.
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Final Remarks

• Advancing Multivariate BART for High-Dimensional Analysis: We introduce
a structured prior that enables shrinkage in split probabilities, addressing sparsity
and time dependence limitations in high-dimensional VARs.

• Empirical Validation & Forecasting Gains: Our priors improve forecast
accuracy, particularly for higher-order moments, with the Minnesota specification
outperforming the sparse alternative.

• Broader Applications & Future Directions: The framework extends to
structural analysis (GIRFs, LP) and can be further improved through scalable
sampling methods and time-varying parameters.
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