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An helicopter view on VARs

® Vector autoregressive (VAR) models are the main workhorse in empirical
macroeconomics: forecasting, impulse response and policy analysis.

® For m-dimensional y; and p lags, the standard Gaussian VAR model is defined as

P
yi=u+Y Oy +e, e iid N(O,X),
I=1
fort=1,...,T.
® |ntercept + np regressors per equation.

® n(1+np) parameters in (y, Py,..., P,).
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Evolution of Bayesian VAR models

® Small/medium size VAR

» Doan, Litterman and Sims (1984/1986) - Minnesota prior
» Kadiyala and Karlsson (1993/1997) - MC + MCMC

» Lopes, Moreira and Schmidt (1999) - VAR + TVP via SIR
» Primiceri (2005) - Structural VAR + TVP + SV

® Large/huge size VAR
> Baribura et al. (2010) - Large VAR
» Koop and Korobilis (2013) - Large VAR + TVP
» Carriero et al. (2019) - Large VAR + SV
» Kastner and Huber (2020) - Huge VAR (sparsity)

® Nonparametric VAR

» Huber and Rossini (2022) - BART

» Clark et al. (2023) - BART

» Huber and Koop (2024) - Dirichlet process mixture (DPM)
» Hauzenberger et al. (2024) - Gaussian processes (GP)
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Minnesota Prior

Let us focus on the 1st equation of the VAR(p) model

P m
Yyn =pm + Z Z b11jYt—1j +€n
I=1j=1

The Minnesota prior induces an random walk behavior for 1/41:

E(¢p111) =1 and E(¢1;) =0 VI,j#1

and
At
w o J=1
Vi(grj) = IAZ ,
l/\3 ] ?é 1

Doan, Litterman and Sims (1984) Forecasting and conditional projection using realistic prior
distributions. Econometric reviews, 3(1),1-100. Litterman (1986) Forecasting with Bayesian vector
autoregressions - five years of experience. JBES, 4(1), 25-38.
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Modeling 2_;
Recall the VAR(p) structure

P
yi=pu+Y Py +e, e iid N(O,Z),
=1

Stochastic volatility specifications are crucial for producing accurate density forecasts,
Chan (2023).

We model 2; via a factor analysis approach:
X = ANy + Hy

where
® Ais an n x r factor loadings matrix (r < 1 ),
® H; = diag(hs, ..., hy), and

°* () = diag(wt,n+1/ e /wt,n+r>-
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Our contribution: Minnesota BART

Two-fold extension of Huber and Rossini (2022) and Clark et al. (2023):

e Allowing for high-dimensional data and variable selection via the approach by
Linero (2018), and

® |ntroducing a Minnesota-type shrinkage specification into the BART node
splitting selection.
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The BAVART model

We replace the linear autoregressive structure by a nonlinear one:

Y = G(xt)+€t, € ~ iid N(O,Zt)

® Y= (]/tl;---/]/tn)/-
® xi= (Vi1 Yip)
® G(x;) = (g1(xt),...,8n(xt))" is a n-dimensional vector BART mean fucntions.

6/39



The full (hierarchical) model

v = G(x)+ e
€ = Afi+mn
ft ~ N(0,Q)
e ~ N(0,Hy),

The components of H; and (); follow standard stochastic volatility (SV) models.
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A brief introduction to a tree model

g(X, Th7 Mh)

Hh2

» X3 d Hh1

HKh3

X1

Leaf/End node parameters
Mp = (pr1, th2, ph3)
g(x, Th, Mh) = WUht if x € Apt (for 1<t< bh)

Partition Ap = {Ap1, An2, An3}
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The vector of mean functions, G(x;)

Each component of G(x;) is modeled as a decision tree ensemble:

M
g(xf) = Z Im (xt?,ﬁn/ Mm) ’
m=1
where
e 7, denotes a decision tree shape,
® M, denotes a collection of leaf node parameters, and

® 0. (x;; T, M) is a regression tree function that returns the prediction
associated to x; for the pair (7, M,,).

Prior specification:

(Tr, My) ~ o7 (Tr) T (Mo [ T7)
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BART prior

BART proceeds by placing a prior on the regression trees.

Prior independence, given the model hyperparameters 0:

777((7—1/-/\/11)/ (TM/MM | 9 H 7TT Tn | 9)777/\/1(-/\/1/71 ‘ 7711)

m=1

The prior distribution for the trees 777 consists of three steps:
1. A prior on the shape of the tree T;

2. A prior for the splitting rules that first selects a predictor by sampling
ky ~ Categorical(s) where s = (s1,...,s;) ' is a probability vector.
3. A prior on the splitting rules [x;, < Cj| for each branch node of the tree, given k;,
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BART splitting rule

Select a predictor by sampling k;, ~ Categorical(s), where

s=(1/k,...,1/k).

What if m = 100 and p = 57
Linero (2018): break down in the presence of larger number of potentially
irrelevant features.

Bias will increase as k increases (VAR: k = mp).

Credible intervals will widen as well.
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Exercise: BART in a high dimensional setting

Consider the following nonlinear regression

yi = g(xi)+es,
¢(x;) = 10sin(mxpxip) + 20(x;3 — 0.5)2 + 10x;4 + 5x;5,

where
e ¢, ~N(0,1),
® T — 100 observations,
® 5 relevant predictors,
® /i — 5 irrelevant predictors,
e k= {10,100,1000}.
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Predictions degrade as k increases, Linero (2018)

BART, P =10 BART, P = 100 BART, P = 1000

DART, P = 10 DART, P = 100 DART, P = 1000

Random Forest, P = 10 Random Forest, PP = 100 Random Forest, P = 1000
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DART prior

If many predictor are potentially irrelevant, why should s, constant over k?

Linero (2018) propose a solution when k is close or much larger than T:

s ~ Dirichlet(a/k, ..., a/k)

Full Bayesian variable selection:

o
~ B 5,1).
P eta(0.5,1)
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Minnesota BART

Rule 1: The past values of a specific variable play a more significant role in predicting
its current value compared to the past values of other variables.

Rule 2: The most recent past is considered more influential in predicting current
values than events further in the past.

Therefore, for equation 7, the prior for the splits probability is defined::

(Slnr sy Skn) ~ DiriChlet<¢1n/ ceey (Pkn) (1)

The scale parameters of the Dirichlet distribution are defined are defined as follows:
%, for the scale on the [-th lag of variable i,
Pin = /\IZ—Z"O, for the coefficient on the I-th lag of variable j, j # i,
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Minnesota BART

Draws from Dirichlet (A, 4, %). This figure illustrates the effect of varying A on the
concentration parameters of the Dirichlet prior on the simplex for A = (1,3,10). The
vertices of the simplex correspond to one-sparse probability vectors, the edges represent

two-sparse vectors, and the interior points indicate denser probability distributions.
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Bayesian inference

® Prior features (in a nutshell)

» Choice of prior and hyperparameters from BART literature.
» Horseshoe prior used for any linear conditional mean coefficients

¢ MCMC features (in a nutshell)

» Standard MCMC steps from BVAR and BART.
» Novel updating step for the split probabilities:

S1,...,5|¢,data ~ Dirichlet(¢r + ny, ..., P + ng)

where 11 are the number of splits on predictor k over the ensemble.
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Another simulation exercise

® |n order to illustrate the properties of the proposed priors we conduct a simulation
study where we aim to assess the efficacy of DART-VAR and Minnesota DART in

recovering the sparsity pattern.

® We will be reporting the posterior inclusion probability as metric for variable
selection.

PIP, = Pr(predictor k appears in the ensemble | data).

® \We will report the results of the first equation of the estimated dynamic system.
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Experiment A

The data is generated from a linear 1 dimensional VAR(1) model:

® = 0.5],
and with m = 10,20, 50, 100.

True sparsity: behavior of each variable only depends on its own past.

m = 100: Each equation has 99 redundant variables.
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Linero's DART prior
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Experiment B

The data is generated from a VAR(5) model:
®; = 0.651, (2)

and '
®; = (—1)71(04225)L,,, j=2,...,5, (3)

for m = 10 or m = 20.

The coefficients decrease for distant lags, reflecting the conventional wisdom that
recent lags hold greater importance than those further in the past.
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Minnesota DART prior
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Real data exercise

Data: 22 series from FRED-QD, McCracken and Ng (2016).

® Time span: 1965Q1 - 2019Q4.

Expanding window: 2005Q1 to 2019Q4.

Horizons: h = 1,2,3,4.

Evaluation metric: Root mean squared predictive error (RMSPE)

Baseline model: BVAR-FSV with Minnesota prior
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RMSPE

real GDP growth, federal funds rate, inflation
BART/SPARSE/MINN = Uniform/Dirichlet/Minnesota splitting

12

10

0.9

0.7

GDPC1 FEDFUNDS cPiAuCSL
— — et — ot
o - BARTFSV T ey - earrsv
LN soese = sorse = sease
- S Soarse-rsy & T Soarsersy o T ShaseFsy|
- — WINN q — | —
B o ) S
o * oo MINerSY T ersy
G
’ o
4 w
. 8 |
L S
, -
. @
J =N
N 2
3 |
. S
—_——
N\
\ Y-S - - -0
~ \ X
S \ N
\ N o 8
N 2
\ N S
LN .
N 2
= N &
T+ T+2 T+3 T+ TH T+2 T+3 T+ T+ T+2 T+3 T+

24/39



Inclusion probabilities - CPI

BART-FSV SPARSE-FSV Minn-FSV.
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Comparing the priors through log predictive density scores

® To obtain a more comprehensive evaluation, we consider a metric that account for
for the models ability to predict higher-order moments of the predictive
distribution - Log Predictive Density Score

T
LPDS = IOgP(]/tU+1/- YT | ]/tr) - Z 10gp(]/l‘ ‘ ytil)

t=to+1

® The first fj time series observations, y“' = (Y1,.-.,V,), are designated as the
“training sample,” while the remaining observations, v 1,...,yT, are used for
evaluation based on the log predictive density.

® Each probability split prior specification for the mean function is shown under
both the homoskedastic and stochastic volatility (SV) settings, where the former
is represented by a continuous line and the latter by a dashed line.
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Marginal Log Predictive Density Score - CPI
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Marginal Log Predictive Density Score - GDPC1
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Marginal Log Predictive Density Score - FedFunds
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Joint Distribution Log Predictive Density Score
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Prior Elicitation

® The choice of A is of critical importance, as it plays a central role in determining
the expected level of shrinkage in the model.

e Empirical Analysis: We evaluate different levels of A using a grid of values
(A =1{1,3,5,10,20}, A, = {0.5,1,1.5,2.5,5,10}) and assess their impact on the
log-predictive density score relative to the standard BART prior.

® Impact of A on Shrinkage Forecasting: Higher values of A lead to a more
gradual decay in posterior inclusion probabilities, preserving the influence of lags
and cross-lags over a longer range. This highlights the importance of carefully
selecting A, as it directly affects variable selection, model interpretability, and
forecasting accuracy.
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Prior Elicitation : Posterior Inclusion Probability - CPI
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Figure: Own-Lag Posterior Inclusion Probability. In-sample Posterior Inclusion Probability
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Predictors

32/39



Prior Elicitation : Posterior Inclusion Probability - CPI
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Prior Elicitation
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Final Remarks

¢ Advancing Multivariate BART for High-Dimensional Analysis: We introduce
a structured prior that enables shrinkage in split probabilities, addressing sparsity
and time dependence limitations in high-dimensional VARs.

¢ Empirical Validation & Forecasting Gains: Our priors improve forecast
accuracy, particularly for higher-order moments, with the Minnesota specification
outperforming the sparse alternative.

¢ Broader Applications & Future Directions: The framework extends to
structural analysis (GIRFs, LP) and can be further improved through scalable
sampling methods and time-varying parameters.
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Gamerman, Lopes and Gongalves (2026)

Texts in Statistical Science

Markov Chain
Monte Carlo

Stochastic Simulation for Bayesian Inference
Third Edition
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