Large Bayesian Additive Vector Autoregressive Tree Models

Hedibert Freitas Lopes¹ INSPER Institute of Education and Research

VII COBAL and XVII EBEB UFMG, Belo Horizonte, December 2024

 1 Co-authors: Lima, Carvalho and Herren. FAPESP-2023/02538-0. $1/34$

An helicopter view on VARs

- Vector autoregressive (VAR) models are the main workhorse in empirical macroeconomics: forecasting, impulse response and policy analysis.
- For *m*-dimensional *y^t* and *p* lags, the standard Gaussian VAR model is defined as

$$
y_t = \mu + \sum_{l=1}^p \Phi_l y_{t-l} + \epsilon_t, \quad \epsilon_t \text{ iid } N(0, \Sigma_t),
$$

for $t = 1, \ldots, T$.

- Intercept $+ mp$ regressors per equation.
- $m(1 + mp)$ parameters in $(\mu, \Phi_1, \dots, \Phi_p)$.

Evolution of Bayesian VAR models

- Small/medium size VAR
	- ▶ Doan, Litterman and Sims (1984/1986) Litterman's prior
	- \triangleright Kadiyala and Karlsson (1993/1997) MC + MCMC
	- \blacktriangleright Lopes, Moreira and Schmidt (1999) VAR $+$ TVP via SIR
	- \triangleright Primiceri (2005) Structural VAR + TVP + SV
- Large/huge size VAR
	- ▶ Banbura et al. (2010) Large VAR
	- \triangleright Koop and Korobilis (2013) Large VAR + TVP
	- \triangleright [Carriero et al. \(2019\)](#page-32-1) Large VAR + SV
	- ▶ Kastner and Huber (2020) Huge VAR (sparsity)
- Nonparametric VAR
	- ▶ [Huber and Rossini \(2022\)](#page-33-0) BART
	- \triangleright [Clark et al. \(2023\)](#page-32-2) BART
	- ▶ [Huber and Koop \(2024\)](#page-33-1) Dirichlet process mixture (DPM)
	- ▶ [Hauzenberger et al. \(2024\)](#page-33-2) Gaussian processes (GP)

Two-fold extension of [Huber and Rossini \(2022\)](#page-33-0) and [Clark et al. \(2023\)](#page-32-2):

- Allowing for high-dimensional data and variable selection via the approach by [Linero \(2018\)](#page-33-3), and
- Introducing a Minnesota-type shrinkage specification into the BART node splitting selection.

We replace the linear autoregressive structure by a nonlinear one:

$$
y_t = G(x_t) + \epsilon_t, \quad \epsilon_t \sim \text{ iid } N(0, \Sigma_t)
$$

- $y_t = (y_{t1}, ..., y_{tm})'$.
- $x_t = (y'_{t-1}, \ldots, y'_{t-p}).$
- $G(x_t) = (g_1(x_t), \ldots, g_m(x_t))'$ is a m-dimensional vector BART mean fucntions.

Modeling Σ_t : a factor analysis approach

Stochastic volatility specifications are crucial for producing accurate density forecasts, [Chan \(2023\)](#page-32-3). Therefore, we model Σ*^t* as follows:

 $\Sigma_t = \Lambda Ω_t \Lambda_t + H_t$

where Λ is an $m \times q$ factor loadings matrix $(q \ll m)$, $H_t = \text{diag}(h_{t1}, \ldots, h_{tm})$ and $\Omega_t = \text{diag}(t_1, \ldots, \omega_{ta}).$

The full (hierarchical) model is written as

$$
y_t = G(x_t) + \epsilon_t
$$

\n
$$
\epsilon_t = \Lambda \delta_t + \eta_t
$$

\n
$$
\delta_t \sim N(0, \Omega_t)
$$

\n
$$
\eta_t \sim N(0, H_t),
$$

The components of H_t and Ω_t follow standard stochastic volatility (SV) models.

A brief introduction to a tree model

The vector of mean functions, $G(x_t)$

Each component of $G(x_t)$ is modeled as a decision tree ensemble:

$$
g(x_t) = \sum_{r=1}^N g_r(x_t; \mathcal{T}_r, \mathcal{M}_r),
$$

where

- \mathcal{T}_r denotes a *decision tree* shape,
- M*^r* denotes a collection of leaf node parameters, and
- \bullet $g_r(x_t; \mathcal{T}_r, \mathcal{M}_r)$ is a *regression tree function* that returns the prediction associated to x_t for the pair $(\mathcal{T}_r, \mathcal{M}_r)$.

Prior specification:

 $\pi(\mathcal{T}_r, \mathcal{M}_r) \sim \pi_{\mathcal{T}}(\mathcal{T}_r) \, \pi_{\mathcal{M}}(\mathcal{M}_r \mid \mathcal{T}_r)$

BART prior

BART proceeds by placing a prior on the regression trees.

Prior independence, given the model hyperparameters *θ*:

$$
\pi((\mathcal{T}_1,\mathcal{M}_1),\ldots,(\mathcal{T}_N,\mathcal{M}_N)\mid\theta)=\prod_{r=1}^N\pi_{\mathcal{T}}(\mathcal{T}_r\mid\theta)\pi_{\mathcal{M}}(\mathcal{M}_r\mid\mathcal{T}_r).
$$

The prior distribution for the trees $\pi_{\mathcal{T}}$ consists of three steps:

- 1. A prior on the shape of the tree \mathcal{T} ;
- 2. A prior for the splitting rules that first selects a predictor by sampling $k_b \sim \textsf{Categorical}(s)$ where $s = (s_1, \ldots, s_k)^\top$ is a probability vector.
- 3. A prior on the splitting rules $[x_{k_b}\leq C_b]$ for each branch node of the tree, given k_b

BART splitting rule

• Select a predictor by sampling *k^b* ∼ Categorical(*s*), where

 $s = (1/k, \ldots, 1/k).$

- What if $m = 100$ and $p = 5$? [Linero \(2018\)](#page-33-3): break down in the presence of larger number of potentially irrelevant features.
- Bias will increase as *k* increases (VAR: $k = mp$).
- Credible intervals will widen as well.

Exercise: BART in a high dimensional setting

Consider the following nonlinear regression

$$
y_i = g(x_i) + \epsilon_t,
$$

\n
$$
g(x_i) = 10\sin(\pi x_{i1}x_{i2}) + 20(x_{i3} - 0.5)^2 + 10x_{i4} + 5x_{i5},
$$

where

- \bullet $\epsilon_t \sim \mathcal{N}(0,1),$
- $T = 100$ observations.
- 5 relevant predictors,
- *k* − 5 irrelevant predictors,
- $k = \{10, 100, 1000\}.$

Predictions degrade as *k* increases, [Linero \(2018\)](#page-33-3)

11 / 34

Solution: DART prior

If many predictor are potentially irrelevant, why should s_k constant over k ?

[Linero \(2018\)](#page-33-3) propose a solution when *k* is close or much larger than *T*:

s ∼ Dirichlet(*α*/*k*, . . . , *α*/*k*)

Full Bayesian variable selection:

$$
\frac{\alpha}{\alpha+k} \sim \text{Beta}(0.5, 1).
$$

Minnesota DART

Rule 1: The past values of a specific variable play a more significant role in predicting its current value compared to the past values of other variables.

Rule 2: The most recent past is considered more influential in predicting current values than events further in the past.

Therefore, we model *s* for any node in equation *m* as follows:

 s_1 , . . . , *s*^{*k*}</sup> $|$ ϕ ∼ Dirichlet(ϕ_1 , . . . , ϕ_k)

 $\phi_k \propto \frac{\lambda_1}{12}$

with

 $\frac{1}{l^2}$ when *k* represents lag *l* of y_m , for $l = 1, ..., p$, and

$$
\phi_k \propto \frac{\lambda_2}{l^2}
$$

when k represents lag l of y_j , for $j \neq m$.

Bayesian inference

- Prior features (in a nutshell)
	- ▶ Choice of prior and hyperparameters from BART literature.
	- ▶ Horseshoe prior used for any linear conditional mean coefficients
- MCMC features (in a nutshell)
	- ▶ Standard MCMC steps from BVAR and BART.
	- \triangleright Novel updating step for the split probabilities:

*s*1, . . . ,*s^k* |*ϕ*, data ∼ Dirichlet(*ϕ*¹ + *n*1, . . . , *ϕ^k* + *n^k*)

where n_k are the number of splits on predictor k over the ensemble.

Another simulation exercise

- In order to illustrate the properties of the proposed priors we conduct a simulation study where we aim to assess the efficacy of DART-VAR and Minnesota DART in recovering the sparsity pattern.
- We will be reporting the *posterior inclusion probability* as metric for variable selection.

 $PIP_k = Pr(predictor k appears in the ensemble | data).$

• We will report the results of the **first equation** of the estimated dynamic system.

Experiment A

The data is generated from a linear *m* dimensional VAR(1) model:

 $\Phi = 0.5I_m$

and with $m = 10, 20, 50, 100$.

True sparsity: behavior of each variable only depends on its own past.

 $m = 100$: Each equation has 99 redundant variables.

Linero's DART prior

Experiment B

The data is generated from a VAR(5) model:

$$
\Phi_1 = 0.65I_m \tag{1}
$$

and

$$
\Phi_j = (-1)^{j-1} (0.4225) I_m, \quad j = 2, \dots, 5,
$$
 (2)

for $m = 10$ or $m = 20$.

The coefficients decrease for distant lags, reflecting the conventional wisdom that recent lags hold greater importance than those further in the past.

Minnesota DART prior

Real data exercise

- Data: 15 series from FRED-QD, [Jurado et al. \(2015\)](#page-33-4).
- Time span: 1965Q1 2001Q4.
- Expanding window: 2002Q1 to 2010Q4.
- Horizons: $h = 1, 2, 3, 4$.
- Evaluation metric: Root mean squared predictive error (RMSPE)
- Baseline models:
	- ▶ BART
	- ▶ BVAR-SV with Minnesota prior

Relative to RMSPE(BART) - CPI

Table: CPI Forecasting Results

Relative to RMSPE(BVAR-SV) - CPI

Table: CPI Forecasting Results

Inclusion probabilities

variables

Relative to RMSPE(BART) - GDP

Table: GDP Forecasting

Relative to RMSPE(BVAR-SV) - GDP

Table: GDP Forecasting

Inclusion probabilities

variables

variables

Final remarks

- Methodological contribution:
	- ▶ Extension of [Huber and Rossini \(2022\)](#page-33-0) and [Clark et al. \(2023\)](#page-32-2), by allowing for high-dimensional data and variable selection using [Linero \(2018\)](#page-33-3).
	- \triangleright Node splitting prior that resembles the well-known Minnesota-type shrinkage priors.
- Empirical results :
	- ▶ Better forecasting performance when compared to the baseline BART.
	- ▶ Better forecasting performance (for some horizons) when compared to a BVAR-SV.
- Current questions:
	- \triangleright What is the best way to set a prior for λ ?
	- ▶ Do the sparsity-inducing variable selection aligns with economic theory?
	- ▶ The sparsity/density debate: [Giannone et al. \(2021\)](#page-33-5), [Fava and Lopes \(2021\)](#page-32-4)

Epic slide 1: É tempo de Botafogo!

Epic slide 2: Glória Eterna

BOTAFOGO CAMPEÃO DA LIBERTADORES 2024

FOLHA DE S.PAULO 29 / 34

Epic slide 3: Gamerman, Lopes and Gonalves (2026)

Thanks!

Any thoughts? plima@utexas.edu hedibertfl@insper.edu.br

Bibliography I

- Bańbura, M., D. Giannone, and L. Reichlin (2010). Large bayesian vector auto regressions. Journal of applied Econometrics 25 (1), 71–92.
- Carriero, A., T. E. Clark, and M. Marcellino (2019). Large bayesian vector autoregressions with stochastic volatility and non-conjugate priors. Journal of Econometrics 212(1), 137–154.
- Chan, J. C. (2023). Comparing stochastic volatility specifications for large bayesian vars. Journal of Econometrics 235(2), 1419–1446.
- Clark, T. E., F. Huber, G. Koop, M. Marcellino, and M. Pfarrhofer (2023). Tail forecasting with multivariate bayesian additive regression trees. International Economic Review 64(3), 979–1022.
- Fava, B. and H. F. Lopes (2021). The illusion of the illusion of sparsity: An exercise in prior sensitivity. Brazilian Journal of Probability and Statistics 35 (4), 699–720.

Bibliography II

- Giannone, D., M. Lenza, and G. E. Primiceri (2021). Economic predictions with big data: The illusion of sparsity. Econometrica 89(5), 2409–2437.
- Hauzenberger, N., F. Huber, M. Marcellino, and N. Petz (2024). Gaussian process vector autoregressions and macroeconomic uncertainty. Journal of Business & Economic Statistics, 1–17.
- Huber, F. and G. Koop (2024). Fast and order-invariant inference in bayesian vars with nonparametric shocks. Journal of Applied Econometrics.
- Huber, F. and L. Rossini (2022). Inference in bayesian additive vector autoregressive tree models. The Annals of Applied Statistics 16 (1), 104–123.
- Jurado, K., S. C. Ludvigson, and S. Ng (2015). Measuring uncertainty. American Economic Review 105(3), 1177–1216.
- Linero, A. R. (2018). Bayesian regression trees for high-dimensional prediction and variable selection. Journal of the American Statistical Association 113 (522), 626–636.

Bibliography III

- Doan, Litterman and Sims (1984) Forecasting and conditional projection using realistic prior distributions, Econometric Reviews, 3, 1-100.
- Litterman (1986) Forecasting with BVARs: Five Years of Experience, Journal of Business and Economic Statistics, 4(1), 25-38.
- Kadiyala and Karlsson (1993) Forecasting with generalized BVARs. Journal of Forecasting, 12, 365-78.
- Kadiyala and Karlsson (1997) Numerical methods for estimation and inference in BVAR models, Journal of Applied Econometrics, 12, 99-132.
- Lopes, Moreira and Schmidt (1999) Hyperparameter estimation in forecasting models, Computational Statistics and Data Analysis, 29, 387-410.
- Primiceri (2005) Time varying structural VARs and monetary policy. The Review of Economic Studies, 72(3), 821-852.
- Koop and Korobilis (2013) Large time-varying parameter VARs, Journal of Econometrics, 177, 185-198.
- Kastner and Huber (2020) Sparse Bayesian vector autoregressions in huge dimensions, Journal of Forecasting, 39(7), 1142-1165.

You can access the slides using this QR code

