Large Bayesian Additive Vector Autoregressive Tree Models

Hedibert Freitas Lopes¹ INSPER Institute of Education and Research

VII COBAL and XVII EBEB UFMG, Belo Horizonte, December 2024

¹Co-authors: Lima, Carvalho and Herren. FAPESP-2023/02538-0.

An helicopter view on VARs

- Vector autoregressive (VAR) models are the main workhorse in empirical macroeconomics: forecasting, impulse response and policy analysis.
- For *m*-dimensional y_t and *p* lags, the standard Gaussian VAR model is defined as

$$y_t = \mu + \sum_{l=1}^p \Phi_l y_{t-l} + \epsilon_t, \quad \epsilon_t \text{ iid } N(0, \Sigma_t),$$

for t = 1, ..., T.

- Intercept + mp regressors per equation.
- m(1+mp) parameters in $(\mu, \Phi_1, \dots, \Phi_p)$.

Evolution of Bayesian VAR models

- Small/medium size VAR
 - ▶ Doan, Litterman and Sims (1984/1986) Litterman's prior
 - Kadiyala and Karlsson (1993/1997) MC + MCMC
 - ▶ Lopes, Moreira and Schmidt (1999) VAR + TVP via SIR
 - Primiceri (2005) Structural VAR + TVP + SV
- Large/huge size VAR
 - Bańbura et al. (2010) Large VAR
 - ▶ Koop and Korobilis (2013) Large VAR + TVP
 - Carriero et al. (2019) Large VAR + SV
 - ► Kastner and Huber (2020) Huge VAR (sparsity)
- Nonparametric VAR
 - Huber and Rossini (2022) BART
 - Clark et al. (2023) BART
 - ▶ Huber and Koop (2024) Dirichlet process mixture (DPM)
 - ► Hauzenberger et al. (2024) Gaussian processes (GP)

Two-fold extension of Huber and Rossini (2022) and Clark et al. (2023):

- Allowing for high-dimensional data and variable selection via the approach by Linero (2018), and
- Introducing a Minnesota-type shrinkage specification into the BART node splitting selection.

The BAVART model

We replace the linear autoregressive structure by a nonlinear one:

$$y_t = G(x_t) + \epsilon_t, \quad \epsilon_t \sim \text{ iid } N(0, \Sigma_t)$$

- $y_t = (y_{t1}, \ldots, y_{tm})'$.
- $x_t = (y'_{t-1}, \ldots, y'_{t-p}).$
- $G(x_t) = (g_1(x_t), \dots, g_m(x_t))'$ is a m-dimensional vector BART mean functions.

Modeling Σ_t : a factor analysis approach

Stochastic volatility specifications are crucial for producing accurate density forecasts, Chan (2023). Therefore, we model Σ_t as follows:

 $\Sigma_t = \Lambda \Omega_t \Lambda_t + H_t$

where Λ is an $m \times q$ factor loadings matrix ($q \ll m$), $H_t = \text{diag}(h_{t1}, \ldots, h_{tm})$ and $\Omega_t = \text{diag}(_{t1}, \ldots, \omega_{tq})$.

The full (hierarchical) model is written as

$$\begin{array}{lll} y_t &=& G(x_t) + \epsilon_t \\ \epsilon_t &=& \Lambda \delta_t + \eta_t \\ \delta_t &\sim& N(0, \Omega_t) \\ \eta_t &\sim& N(0, H_t), \end{array}$$

The components of H_t and Ω_t follow standard stochastic volatility (SV) models.

A brief introduction to a tree model

The vector of mean functions, $G(x_t)$

Each component of $G(x_t)$ is modeled as a decision tree ensemble:

$$g(\boldsymbol{x}_t) = \sum_{r=1}^N g_r\left(\boldsymbol{x}_t; \mathcal{T}_r, \mathcal{M}_r\right),$$

where

- T_r denotes a *decision tree* shape,
- \mathcal{M}_r denotes a collection of *leaf node parameters*, and
- $g_r(x_t; \mathcal{T}_r, \mathcal{M}_r)$ is a *regression tree function* that returns the prediction associated to x_t for the pair $(\mathcal{T}_r, \mathcal{M}_r)$.

Prior specification:

 $\pi(\mathcal{T}_r, \mathcal{M}_r) \sim \pi_{\mathcal{T}}(\mathcal{T}_r) \, \pi_{\mathcal{M}}(\mathcal{M}_r \mid \mathcal{T}_r)$

BART prior

BART proceeds by placing a prior on the regression trees.

Prior independence, given the model hyperparameters θ :

$$\pi\left((\mathcal{T}_1,\mathcal{M}_1),\ldots,(\mathcal{T}_N,\mathcal{M}_N)\mid\theta\right)=\prod_{r=1}^N\pi_{\mathcal{T}}(\mathcal{T}_r\mid\theta)\pi_{\mathcal{M}}(\mathcal{M}_r\mid\mathcal{T}_r).$$

The prior distribution for the trees π_T consists of three steps:

- 1. A prior on the shape of the tree \mathcal{T} ;
- 2. A prior for the splitting rules that first selects a predictor by sampling $k_b \sim \text{Categorical}(s)$ where $s = (s_1, \ldots, s_k)^{\top}$ is a probability vector.
- 3. A prior on the splitting rules $[x_{k_b} \leq C_b]$ for each branch node of the tree, given k_b

BART splitting rule

• Select a predictor by sampling $k_b \sim \text{Categorical}(s)$, where

 $s = (1/k, \ldots, 1/k).$

- What if m = 100 and p = 5? Linero (2018): break down in the presence of larger number of potentially irrelevant features.
- Bias will increase as k increases (VAR: k = mp).
- Credible intervals will widen as well.

Exercise: BART in a high dimensional setting

Consider the following nonlinear regression

$$y_i = g(x_i) + \epsilon_t,$$

$$g(x_i) = 10sin(\pi x_{i1}x_{i2}) + 20(x_{i3} - 0.5)^2 + 10x_{i4} + 5x_{i5},$$

where

- $\epsilon_t \sim \mathcal{N}(0,1)$,
- T = 100 observations,
- 5 relevant predictors,
- k-5 irrelevant predictors,
- $k = \{10, 100, 1000\}.$

Predictions degrade as k increases, Linero (2018)

11 / 34

Solution: DART prior

If many predictor are potentially irrelevant, why should s_k constant over k?

Linero (2018) propose a solution when k is close or much larger than T:

 $s \sim \mathsf{Dirichlet}(\alpha/k, \ldots, \alpha/k)$

Full Bayesian variable selection:

$$rac{lpha}{lpha+k}\sim \mathsf{Beta}(0.5,1).$$

Minnesota DART

Rule 1: The past values of a specific variable play a more significant role in predicting its current value compared to the past values of other variables.

Rule 2: The most recent past is considered more influential in predicting current values than events further in the past.

Therefore, we model s for any node in equation m as follows:

 $s_1,\ldots,s_k \mid \phi \sim \text{Dirichlet}(\phi_1,\ldots,\phi_k)$

with

$$\phi_k \propto rac{\lambda_1}{l^2},$$

when k represents lag l of y_m , for l = 1, ..., p, and

$$\phi_k \propto \frac{\lambda_2}{l^2}$$

when k represents lag l of y_j , for $j \neq m$.

Bayesian inference

- Prior features (in a nutshell)
 - ► Choice of prior and hyperparameters from BART literature.
 - ▶ Horseshoe prior used for any linear conditional mean coefficients
- MCMC features (in a nutshell)
 - Standard MCMC steps from BVAR and BART.
 - Novel updating step for the split probabilities:

 $s_1,\ldots,s_k|\phi$, data ~ Dirichlet $(\phi_1+n_1,\ldots,\phi_k+n_k)$

where n_k are the number of splits on predictor k over the ensemble.

Another simulation exercise

- In order to illustrate the properties of the proposed priors we conduct a simulation study where we aim to assess the efficacy of DART-VAR and Minnesota DART in recovering the sparsity pattern.
- We will be reporting the *posterior inclusion probability* as metric for variable selection.

 $PIP_k = Pr(predictor k appears in the ensemble | data).$

• We will report the results of the first equation of the estimated dynamic system.

Experiment A

The data is generated from a linear m dimensional VAR(1) model:

 $\Phi=0.5I_m$

and with m = 10, 20, 50, 100.

True sparsity: behavior of each variable only depends on its own past.

m = 100: Each equation has 99 redundant variables.

Linero's DART prior

Experiment B

The data is generated from a VAR(5) model:

$$\Phi_1 = 0.65 I_m \tag{1}$$

and

$$\Phi_j = (-1)^{j-1} (0.4225) I_m, \quad j = 2, \dots, 5, \tag{2}$$

for m = 10 or m = 20.

The coefficients decrease for distant lags, reflecting the conventional wisdom that recent lags hold greater importance than those further in the past.

Minnesota DART prior

Real data exercise

- Data: 15 series from FRED-QD, Jurado et al. (2015).
- Time span: 1965Q1 2001Q4.
- Expanding window: 2002Q1 to 2010Q4.
- Horizons: h = 1, 2, 3, 4.
- Evaluation metric: Root mean squared predictive error (RMSPE)
- Baseline models:
 - BART
 - BVAR-SV with Minnesota prior

Relative to RMSPE(BART) - CPI

Table: CPI Forecasting Results

	t+1	t+2	t+3	t+4
DART	0.665	0.821	0.618	0.521
Minn	0.912	0.683	0.685	0.734
BART-FSV	0.645	0.617	0.414	0.553
DART-FSV	0.598	0.918	0.865	0.816
$\operatorname{Minn-FSV}$	0.547	0.750	0.670	0.521

Relative to RMSPE(BVAR-SV) - CPI

Table: CPI Forecasting Results

	t+1	t+2	t+3	t+4
BART	1.615	1.250	1.249	1.078
DART	1.074	1.027	0.772	0.561
Minn	1.473	0.854	0.856	0.791
BART-FSV	1.042	0.772	0.517	0.596
DART-FSV	0.966	1.147	1.080	0.880
Minn-FSV	0.883	0.938	0.837	0.803

Inclusion probabilities

variables

variables

Relative to RMSPE(BART) - GDP

Table: GDP Forecasting

	t+1	t+2	t+3	t+4
DART	0.923	1.127	1.335	1.454
Minn	0.681	1.001	1.124	1.188
BART-FSV	0.944	0.832	0.875	0.886
DART-FSV	0.608	1.197	1.429	1.621
Minn-FSV	0.832	0.775	0.948	1.081

Relative to RMSPE(BVAR-SV) - GDP

Table: GDP Forecasting

	t+1	t+2	t+3	t+4
BART	1.547	5.418	5.302	5.557
DART	1.428	6.105	7.078	8.080
Minn	1.054	5.424	5.962	6.603
$\operatorname{BART-FSV}$	1.460	4.507	4.641	4.922
DART-FSV	0.940	6.487	7.577	9.010
$\operatorname{Minn-FSV}$	1.287	4.197	5.027	6.006

Inclusion probabilities

variables

variables

Final remarks

- Methodological contribution:
 - ▶ Extension of Huber and Rossini (2022) and Clark et al. (2023), by allowing for high-dimensional data and variable selection using Linero (2018).
 - ▶ Node splitting prior that resembles the well-known Minnesota-type shrinkage priors.
- Empirical results :
 - ▶ Better forecasting performance when compared to the baseline BART.
 - ▶ Better forecasting performance (for some horizons) when compared to a BVAR-SV.
- Current questions:
 - What is the best way to set a prior for λ ?
 - ▶ Do the sparsity-inducing variable selection aligns with economic theory?
 - ▶ The sparsity/density debate: Giannone et al. (2021), Fava and Lopes (2021)

Epic slide 1: É tempo de Botafogo!

Epic slide 2: Glória Eterna

FOLHA DE S.PAULO 29 / 34

Epic slide 3: Gamerman, Lopes and Gonalves (2026)

Thanks!

Any thoughts? plima@utexas.edu hedibertfl@insper.edu.br

Bibliography I

- Bańbura, M., D. Giannone, and L. Reichlin (2010). Large bayesian vector auto regressions. *Journal of applied Econometrics* 25(1), 71–92.
- Carriero, A., T. E. Clark, and M. Marcellino (2019). Large bayesian vector autoregressions with stochastic volatility and non-conjugate priors. *Journal of Econometrics* 212(1), 137–154.
- Chan, J. C. (2023). Comparing stochastic volatility specifications for large bayesian vars. *Journal of Econometrics 235*(2), 1419–1446.
- Clark, T. E., F. Huber, G. Koop, M. Marcellino, and M. Pfarrhofer (2023). Tail forecasting with multivariate bayesian additive regression trees. *International Economic Review* 64(3), 979–1022.
- Fava, B. and H. F. Lopes (2021). The illusion of the illusion of sparsity: An exercise in prior sensitivity. *Brazilian Journal of Probability and Statistics* 35(4), 699–720.

Bibliography II

- Giannone, D., M. Lenza, and G. E. Primiceri (2021). Economic predictions with big data: The illusion of sparsity. *Econometrica 89*(5), 2409–2437.
- Hauzenberger, N., F. Huber, M. Marcellino, and N. Petz (2024). Gaussian process vector autoregressions and macroeconomic uncertainty. *Journal of Business & Economic Statistics*, 1–17.
- Huber, F. and G. Koop (2024). Fast and order-invariant inference in bayesian vars with nonparametric shocks. *Journal of Applied Econometrics*.
- Huber, F. and L. Rossini (2022). Inference in bayesian additive vector autoregressive tree models. *The Annals of Applied Statistics* 16(1), 104–123.
- Jurado, K., S. C. Ludvigson, and S. Ng (2015). Measuring uncertainty. *American Economic Review 105*(3), 1177–1216.
- Linero, A. R. (2018). Bayesian regression trees for high-dimensional prediction and variable selection. *Journal of the American Statistical Association 113*(522), 626–636.

Bibliography III

- Doan, Litterman and Sims (1984) Forecasting and conditional projection using realistic prior distributions, *Econometric Reviews*, 3, 1-100.
- Litterman (1986) Forecasting with BVARs: Five Years of Experience, *Journal of Business and Economic Statistics*, 4(1), 25-38.
- Kadiyala and Karlsson (1993) Forecasting with generalized BVARs. *Journal of Forecasting*, 12, 365-78.
- Kadiyala and Karlsson (1997) Numerical methods for estimation and inference in BVAR models, *Journal of Applied Econometrics*, 12, 99-132.
- Lopes, Moreira and Schmidt (1999) Hyperparameter estimation in forecasting models, *Computational Statistics and Data Analysis*, 29, 387-410.
- Primiceri (2005) Time varying structural VARs and monetary policy. *The Review of Economic Studies*, 72(3), 821-852.
- Koop and Korobilis (2013) Large time-varying parameter VARs, *Journal of Econometrics*, 177, 185-198.
- Kastner and Huber (2020) Sparse Bayesian vector autoregressions in huge dimensions, *Journal of Forecasting*, 39(7), 1142-1165.

You can access the slides using this QR code

