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An helicopter view on VARs

• Vector autoregressive (VAR) models are the main workhorse in empirical
macroeconomics: forecasting, impulse response and policy analysis.

• For m-dimensional yt and p lags, the standard Gaussian VAR model is defined as

yt = µ +
p

∑
l=1

Φlyt−l + ϵt, ϵt iid N(0, Σt),

for t = 1, . . . , T.

• Intercept + mp regressors per equation.

• m(1 + mp) parameters in (µ, Φ1, . . . , Φp).
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Evolution of Bayesian VAR models
• Small/medium size VAR

▶ Doan, Litterman and Sims (1984/1986) - Litterman’s prior
▶ Kadiyala and Karlsson (1993/1997) - MC + MCMC
▶ Lopes, Moreira and Schmidt (1999) - VAR + TVP via SIR
▶ Primiceri (2005) - Structural VAR + TVP + SV

• Large/huge size VAR

▶ Bańbura et al. (2010) - Large VAR
▶ Koop and Korobilis (2013) - Large VAR + TVP
▶ Carriero et al. (2019) - Large VAR + SV
▶ Kastner and Huber (2020) - Huge VAR (sparsity)

• Nonparametric VAR

▶ Huber and Rossini (2022) - BART
▶ Clark et al. (2023) - BART
▶ Huber and Koop (2024) - Dirichlet process mixture (DPM)
▶ Hauzenberger et al. (2024) - Gaussian processes (GP)
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Our contribution: BAVART model

Two-fold extension of Huber and Rossini (2022) and Clark et al. (2023):

• Allowing for high-dimensional data and variable selection via the approach by
Linero (2018), and

• Introducing a Minnesota-type shrinkage specification into the BART node
splitting selection.
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The BAVART model

We replace the linear autoregressive structure by a nonlinear one:

yt = G(xt) + ϵt, ϵt ∼ iid N(0, Σt)

• yt = (yt1, . . . , ytm)′.

• xt = (y′t−1, . . . , y′t−p).

• G(xt) = (g1(xt), . . . , gm(xt))′ is a m-dimensional vector BART mean fucntions.
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Modeling Σt: a factor analysis approach

Stochastic volatility specifications are crucial for producing accurate density forecasts,
Chan (2023). Therefore, we model Σt as follows:

Σt = ΛΩtΛt + Ht

where Λ is an m × q factor loadings matrix (q ≪ m ), Ht = diag(ht1, . . . , htm) and
Ωt = diag(t1, . . . , ωtq).

The full (hierarchical) model is written as

yt = G(xt) + ϵt

ϵt = Λδt + ηt

δt ∼ N(0, Ωt)

ηt ∼ N(0, Ht),

The components of Ht and Ωt follow standard stochastic volatility (SV) models.
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A brief introduction to a tree model
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The vector of mean functions, G(xt)

Each component of G(xt) is modeled as a decision tree ensemble:

g(xt) =
N

∑
r=1

gr (xt; Tr,Mr) ,

where

• Tr denotes a decision tree shape,

• Mr denotes a collection of leaf node parameters, and

• gr(xt; Tr,Mr) is a regression tree function that returns the prediction associated
to xt for the pair (Tr,Mr).

Prior specification:
π(Tr,Mr) ∼ πT (Tr)πM(Mr | Tr)

7 / 34



BART prior

BART proceeds by placing a prior on the regression trees.

Prior independence, given the model hyperparameters θ:

π ((T1,M1), . . . , (TN ,MN) | θ) =
N

∏
r=1

πT (Tr | θ)πM(Mr | Tr).

The prior distribution for the trees πT consists of three steps:

1. A prior on the shape of the tree T ;

2. A prior for the splitting rules that first selects a predictor by sampling
kb ∼ Categorical(s) where s = (s1, . . . , sk)

⊤ is a probability vector.

3. A prior on the splitting rules [xkb ≤ Cb] for each branch node of the tree, given kb
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BART splitting rule

• Select a predictor by sampling kb ∼ Categorical(s), where

s = (1/k, . . . , 1/k).

• What if m = 100 and p = 5?
Linero (2018): break down in the presence of larger number of potentially
irrelevant features.

• Bias will increase as k increases (VAR: k = mp).

• Credible intervals will widen as well.
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Exercise: BART in a high dimensional setting

Consider the following nonlinear regression

yi = g(xi) + ϵt,
g(xi) = 10sin(πxi1xi2) + 20(xi3 − 0.5)2 + 10xi4 + 5xi5,

where

• ϵt ∼ N (0, 1),
• T = 100 observations,

• 5 relevant predictors,

• k − 5 irrelevant predictors,

• k = {10, 100, 1000}.
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Predictions degrade as k increases, Linero (2018)
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Solution: DART prior

If many predictor are potentially irrelevant, why should sk constant over k?

Linero (2018) propose a solution when k is close or much larger than T:

s ∼ Dirichlet(α/k, . . . , α/k)

Full Bayesian variable selection:

α

α + k
∼ Beta(0.5, 1).
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Minnesota DART
Rule 1: The past values of a specific variable play a more significant role in predicting
its current value compared to the past values of other variables.

Rule 2: The most recent past is considered more influential in predicting current
values than events further in the past.

Therefore, we model s for any node in equation m as follows:

s1, . . . , sk | ϕ ∼ Dirichlet(ϕ1, . . . , ϕk)

with

ϕk ∝
λ1

l2 ,

when k represents lag l of ym, for l = 1, . . . , p, and

ϕk ∝
λ2

l2

when k represents lag l of yj, for j ̸= m.
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Bayesian inference

• Prior features (in a nutshell)
▶ Choice of prior and hyperparameters from BART literature.
▶ Horseshoe prior used for any linear conditional mean coefficients

• MCMC features (in a nutshell)
▶ Standard MCMC steps from BVAR and BART.
▶ Novel updating step for the split probabilities:

s1, . . . , sk|ϕ, data ∼ Dirichlet(ϕ1 + n1, . . . , ϕk + nk)

where nk are the number of splits on predictor k over the ensemble.
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Another simulation exercise

• In order to illustrate the properties of the proposed priors we conduct a simulation
study where we aim to assess the efficacy of DART-VAR and Minnesota DART in
recovering the sparsity pattern.

• We will be reporting the posterior inclusion probability as metric for variable
selection.

PIPk = Pr(predictor k appears in the ensemble | data).

• We will report the results of the first equation of the estimated dynamic system.
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Experiment A

The data is generated from a linear m dimensional VAR(1) model:

Φ = 0.5Im

and with m = 10, 20, 50, 100.

True sparsity: behavior of each variable only depends on its own past.

m = 100: Each equation has 99 redundant variables.
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Linero’s DART prior
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Experiment B

The data is generated from a VAR(5) model:

Φ1 = 0.65Im (1)

and
Φj = (−1)j−1(0.4225)Im, j = 2, . . . , 5, (2)

for m = 10 or m = 20.

The coefficients decrease for distant lags, reflecting the conventional wisdom that
recent lags hold greater importance than those further in the past.
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Minnesota DART prior
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Real data exercise

• Data: 15 series from FRED-QD, Jurado et al. (2015).

• Time span: 1965Q1 - 2001Q4.

• Expanding window: 2002Q1 to 2010Q4.

• Horizons: h = 1, 2, 3, 4.

• Evaluation metric: Root mean squared predictive error (RMSPE)

• Baseline models:

▶ BART
▶ BVAR-SV with Minnesota prior
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Relative to RMSPE(BART) - CPI
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Relative to RMSPE(BVAR-SV) - CPI
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Inclusion probabilities
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Relative to RMSPE(BART) - GDP
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Relative to RMSPE(BVAR-SV) - GDP
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Inclusion probabilities
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Final remarks

• Methodological contribution:

▶ Extension of Huber and Rossini (2022) and Clark et al. (2023), by allowing for
high-dimensional data and variable selection using Linero (2018).

▶ Node splitting prior that resembles the well-known Minnesota-type shrinkage priors.

• Empirical results :

▶ Better forecasting performance when compared to the baseline BART.
▶ Better forecasting performance (for some horizons) when compared to a BVAR-SV.

• Current questions:

▶ What is the best way to set a prior for λ?

▶ Do the sparsity-inducing variable selection aligns with economic theory?

▶ The sparsity/density debate: Giannone et al. (2021), Fava and Lopes (2021)

27 / 34



Epic slide 1: É tempo de Botafogo!
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Epic slide 2: Glória Eterna
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Epic slide 3: Gamerman, Lopes and Gonalves (2026)
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Thanks!

Any thoughts?
plima@utexas.edu

hedibertfl@insper.edu.br
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