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Abstract

This article investigates the benefits of combining information available from daily and intra-

day data in financial return forecasting. The two data sources are combined via a density pooling

approach, wherein the individual densities are represented as a copula function, and the poten-

tially time-varying pooling weights depend on the forecasting performance of each model. The

dependence structure in the daily frequency case is extracted from a standard static and dynamic

conditional covariance modeling, and the high frequency counterpart is based on a realized covari-

ance measure. We find that incorporating both high and low frequency information via density

pooling provides significant gains in predictive model performance over any individual model and

any model combination within the same data frequency. A portfolio allocation exercise quanti-

fies the economic gains by producing investment portfolios with the smallest variance and highest

Sharpe ratio.
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1 Introduction

Since the advent of the availability of high frequency financial data, research on how to use, model and

forecast measures extracted from such data has surged (McAleer & Medeiros 2008). As a result, high

frequency data based models have proven to be powerful competitors in financial return forecasting to

the standard modeling approaches using daily data (Lyócsa et al. 2021). As an alternative to choosing

a single modeling approach, some authors have combined the best of both worlds by augmenting low

frequency models with high frequency information, see Engle (2002b), Ghysels et al. (2004, 2005),

Shephard & Sheppard (2010) for univariate modeling, and Noureldin et al. (2012), Bauwens & Xu

(2023) for a multivariate approach. Such combinations rely on suitable parametrization, in which

the high frequency measure enters the model as an exogenous covariate, thus creating a new class of

models.

In contrast to previous research, we combine low and high frequency information not through pa-

rameters but through the combination of densities. In particular, we model and forecast the dependence

structure of multiple financial returns as a weighted sum of two predictive densities, the first arising

from low frequency data and the second arising from high frequency data. Such combinations are also

known as opinion pools (the name was first proposed by Stone 1961).

The combination of predictive densities is a recent topic of increasing interest in financial and

macroeconomic forecasting. Many of the related literature focuses on proposing a sophisticated com-

bination scheme. For instance, Billio et al. (2013) consider dynamic weights based on the model

residuals instead of log scores; Bassetti et al. (2018) assume random combination weights; Opschoor

et al. (2017) use scoring rules that focus on a particular area of the density for the computation of

the component weights. Furthermore, a model pooling approach is an attractive alternative to model

selection when the true model is unknown (O’Doherty et al. 2012). The approach we propose in this

paper departs from the strands of literature dealing with forecast combinations based on a number

of alternative models that condition on the same information set, as it pools models that arise from

parallel theoretical perspectives of understanding volatility. Those are, the volatility as an unobserved

process estimated from daily data versus the volatility as an observable quantity extracted from the high

frequency data. Given the full availability of financial data at all frequency levels, a density forecast
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combination incorporating both perspectives is an obvious and feasible way to improve predictive per-

formance, which we demonstrate by means of two data sets, representing time periods with different

market conditions such as the Global Financial Crisis and the Covid 19 pandemic.

Even though models, based on both low- and high frequency data, are essentially aimed at captur-

ing the individual dynamics and the co-dependence structure between the financial returns, they exhibit

very different properties. The low frequency data-based models consider the entire series of historical

daily data, and the estimated co-volatility processes are usually smooth. In contrast, the high frequency

data based models can capture instantaneous changes in co-variation and produce the forecasts accord-

ingly. As noted in Kapetanios et al. (2015), Timmermann (2018), some models might be useful while

the markets are in decline, whereas other models might be more informative when the markets are

booming. Therefore, the time-varying pooling weights can also indicate whether the preference for

one model or another is correlated with the overall market conditions. Such correlation affects an in-

vestor’s decisions: if an investor anticipates a change in market conditions, they might reconsider the

modeling strategy accordingly.

Each of the individual densities in the pool, namely that modeled with low frequency and that mod-

eled with high frequency data, are constructed by a copula function. Using a copula instead of the com-

plete high-dimensional density is a convenient solution when the focus of the modeling is explicitly on

the dependence structure rather than on the individual series dynamics. Modeling the dependence via a

copula also has practical advantages. It allows to simplify the assessment of the marginal distributions

and avoids dealing with highly parametrized and possibly nonstandard multivariate density functions.

Models in which dynamic copula parameters are obtained from daily data are considered a standard ap-

proach in the financial times series literature (multivariate GARCH models in Dias & Embrechts 2004,

Patton 2006a, Ausı́n & Lopes 2010; score-driven models in Koopman et al. 2018, Nguyen & Javed

2021; and factor models in Oh & Patton 2017, Opschoor et al. 2021). In contrast, models in which the

copula dependence structure is obtained from high frequency data are rather sparse (Salvatierra & Pat-

ton 2015, Fengler & Okhrin 2016, Okhrin & Tetereva 2017). Salvatierra & Patton (2015) have modeled

the dynamics of the copula parameter as a function of past realized correlations via an autoregressive

score-type model, whereas Fengler & Okhrin (2016) and Okhrin & Tetereva (2017) have used multiple

univariate AR-type processes for the realized covariances. In this work, we use static and dynamic
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multivariate GARCH-type models for the copula parameter arising from daily data, and two models

for the copula parameter arising from intra-day data: the Additive Inverse Wishart (AIW) model of Jin

& Maheu (2013, 2016), and the Conditional Autoregressive Wishart (CAW) model of Golosnoy et al.

(2012).

In order to control for the effects of the particular weighting scheme, we consider four options

for density pooling, all based on the log predictive scores (LPS): equally weighted, static (Geweke &

Amisano 2011), naı̈ve dynamic (Jore et al. 2010) and dynamic (Del Negro et al. 2016). In the static

weighting scheme, the weights are re-balanced daily as a function of the expanding set of the past

LPS, converging to a stable equilibrium, hence the name static. In the naı̈ve dynamic scheme, the

set of the past LPS is smaller, and only the most recent observations are considered. Finally, in the

fully dynamic scheme, the weights are latent and are updated as a function of the past weights via an

AR-type process. For a general introduction and comprehensive reviews of aggregating probability

distributions, readers are referred to Clemen & Winkler (2007), among others. Timmermann (2018)

briefly reviews the forecast combinations in the financial econometrics context.

In this article, we rely on a Bayesian estimation approach in three stages. In the first stage, the

marginal distributions are estimated. In particular, the daily data are transformed to the unit interval

by standardization of the financial returns and application of the probability integral transform. In

the second stage, we fit a copula model to the resulting Uniformly distributed data to obtain the joint

predictive density for the returns. Finally, the density pooling weights assigned to a low- and to a high

frequency model are obtained in order to produce pooled forecasts for the daily log returns.

We illustrate the performance of the proposed method using daily and intraday return data of 14

exchange rates sampled from 2008 to 2023. Empirical results show that pooled models outperform

the best individual model in terms of the entire density forecast as well in the left tail. In addition, the

density pool shows improvement in predictive performance with respect to mixed frequency models,

in this case the DCC-HEAVY model of Bauwens & Xu (2023). An additional empirical application

containing ten assets from the DJIA index is available in Appendix E in the Online Supplementary

Material and confirms the main results. Finally, we perform a Global Minimum Variance and a Condi-

tional Value-at-Risk portfolio allocation exercise to quantify the economic gains in using the proposed

approach. The results illustrate the benefits of pooling by delivering investment portfolios with the
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smallest variance and the highest Sharpe ratio values. Overall, we demonstrate that combining infor-

mation from daily and intraday data sources not only produces superior joint density forecasts but also

leads to tangible economic benefits for the investor.

The article is organized as follows. Sections 2 and 3 present the pooled copula model, estimation

approach and model evaluation. Sections 4 contains the empirical application, and finally, Section 6

concludes.

2 Methodology

In this section, we describe the main contribution of the article: combining information arising from

high and low frequency data in the copula modeling framework in order to model and forecast the

dependence structure of financial returns. The choice of modeling the joint distribution via copulas,

next to being a flexible way of constructing multivariate densities, is also convenient from computa-

tional and methodological perspectives. As noted in Opschoor et al. (2021), when the cross-section

dimension d is large, specifying and estimating the marginals separately might considerably ease the

computational burden. In addition, such an approach enables a focus on modeling the dependence

structure explicitly, independently from the marginals. In particular, we are interested in estimating a

copula density c(ut|MHF,MLF) for Uniformly distributed data. The approach consists of three major

tasks:

• Modeling the dynamics of the covariance matrices arising from low frequency data via a

model called MLF. In this step, we consider standard specifications for multivariate co-

volatilities, such as the Static model and the Dynamic Conditional Correlation (DCC)

model of Engle (2002a).

• Modeling the dynamics of the covariance matrices arising from high frequency data via

a model called MHF. We consider the AIW approach of Jin & Maheu (2013, 2016) and

the CAW model of Golosnoy et al. (2012).

• Modeling the dynamics of the combination weights ωt. Here, we consider four options,

covering a large part of the variety of linear combination strategies. The schemes are
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equally weighted, static (Geweke & Amisano 2011), naı̈ve dynamic (Jore et al. 2010)

and dynamic (Del Negro et al. 2016).

We start by defining ri,t as the log returns (in %) for day t and asset i, such that t = 1, . . . , T and

i = 1, . . . , d:

ri,t = 100 ×
(

log
PClose

i,t

POpen
i,t

)
,

where PClose
i,t and POpen

i,t are the opening and the closing prices, respectively.

Next, we present an approach to combine information arising from high and low frequency data for

dependence modeling between daily financial returns, by relying on a density combination approach.

The linear combination of individual densities is given by:

p(rt) =
N

∑
j=1

ωj p(rt|Mj), t = 1, . . . , T,

where rt = (r1,t, . . . , rd,t)
′ is the d-variate return vector, N is the number of alternative models Mj, ωj

is the combination weight, and p(rt|Mj) is the candidate density, originating from different models.

The dependence structure between low frequency returns rt can be modeled by combining a model esti-

mated from daily returns p(rt|MLF) with a model estimated from high frequency returns p(rt|MHF).

A convenient way to model the potentially high dimensional joint density p(rt|Mj) involves sep-

arating the dependence structure from the dynamics of the marginals by using copula functions. The

copula approach is a very popular modeling strategy in the financial econometrics context, as it not only

reduces the computational burden for large-dimensional datasets but also allows for the construction of

non-standard multivariate probability distributions, while including standard specifications as nested

cases (Patton 2009, Fan & Patton 2014, Oh & Patton 2017, Opschoor et al. 2021, Nguyen et al. 2024).

Furthermore, the treatment of the marginal densities can be substantially simplified by taking advantage

of the available ex post realized volatility measure defined by the realized variance RVi,t = ∑J
j=1 r̃2

i,t,j.

Here, r̃i,t,j is an l-minute log-return for day t, and J is the number of l-minute intervals in a trading day

(Barndorff-Nielsen & Shephard 2002, Andersen et al. 2003, Barndorff-Nielsen & Shephard 2004). For

a review of realized volatility, readers are referred to McAleer & Medeiros (2008). To account for the
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time-varying volatility, the log returns are first standardized by the realized volatility measure, then de-

meaned and standardized by some unconditional standard deviation1 zi,t =
(
ri,t/

√
RVi,t − µi

)
/σi.

As seen in Andersen et al. (2000, 2001), is it safe to assume that zi,t∼N(0, 1).2 Finally, we call

ui,t = Φ1(zi,t) the probability integral transform of the zi,t, where Φ1(·) is a cumulative distribution

function for the univariate standard Normal distribution, and the resulting variables are Uniformly dis-

tributed ui,t
iid∼ U (0, 1)∀i = 1, . . . , d (serially uncorrelated). This approach helps reduce the number

of parameters and the computational burden of the estimation procedure. Moreover, using the realized

volatility for the standardization step circumvents the inclusion of an additional potential source of

estimation error.

The dependence structure of the resulting probability integral transforms can be easily modeled

by using copulas. To define a copula, we consider a collection of random variables Y1, . . . , Yd with

corresponding distribution functions Fi(yi) = P[Yi ≤ yi] for i = 1 . . . , d and a joint distribution

function H(y1, . . . , yd) = P[Y1 ≤ y1, . . . , Yd ≤ yd]. Then, according to a theorem by Sklar (1959), a

copula C exists such that

H(y1, . . . , yd) = C(F1(y1), · · · , Fd(yd)),

and it is unique if the variables are continuous. Furthermore, based on the conditional copula definition

by Patton (2006b) Sklar’s theorem is extended to the time series case by defining Yt = (Y1,t, . . . , Yd,t)
′

and Ft−1 being an information set:

H(yt|Ft−1) = C(F1(y1,t|Ft−1), · · · , Fd(yd,t|Ft−1)|Ft−1),

where F(·|Ft−1) and H(·|Ft−1) are the corresponding conditional distribution functions and C is the

conditional copula of Yt given Ft−1. The joint density h(y1,t, . . . , yd,t|Ft−1) is then a product of indi-

vidual marginal densities fi(yi,t|Ft−1) and a copula density: h(y1,t, . . . , yd,t|Ft−1) = c(F1(y1,t|Ft−1),

· · · , Fd(yd,t|Ft−1)) · ∏d
i=1 fi(yi,t|Ft−1). In other words, the dependence structure can be separated

1σi is a scaling factor that allows the standard deviation of the returns to deviate from the RV measure; see Jin & Maheu
(2013, 2016).

2Andersen et al. (2000, 2001) have found that the distributions of the returns scaled by realized standard deviations are
approximately Gaussian.
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from the marginals. Copulas are defined in the unit hypercube [0, 1]d, where d is the dimension of the

data, and all univariate marginals are Uniformly distributed. For a detailed treatment of copulas and

areas of applications, readers are referred to McNeil et al. (2005), Nelsen (2006), Patton (2012), Joe

(2015). For the ease of notation in the following we omit the conditioning on the information set Ft−1.

In this article, we use Gaussian and t copulas, because they are available in high dimensions (d >

2), and their implementation is straightforward. Gaussian copulas, although widely used, do not allow

for fat-tailed co-dependence — an assumption that can be relaxed by using the t copula.

Call ut = (u1,t, . . . , ud,t)
′ the collection of Uniformly distributed data at time t. The d-variate

Gaussian copula has the following distribution and density functions (Joe 2015):

C(ut|R) = Φd(Φ
−1
1 (u1,t), . . . , Φ−1

1 (ud,t)|R),

c(ut|R) =
ϕd(Φ

−1
1 (u1,t), . . . , Φ−1

1 (ud,t)|R)

∏d
i=1 ϕ1(Φ

−1
1 (ui,t))

.

Here, Φd(·|R) and ϕd(·|R) are a d-variate standard Normal distribution and density functions with a

correlation matrix R. The d-variate t copula has the following distribution and density functions (Joe

2015):

C(ut|R, η) = Td,η(T−1
1,η (u1,t), . . . , T−1

1,η (ud,t)|R),

c(ut|R, η) =
td,η(T−1

1,η (u1,t), . . . , T−1
1,η (ud,t)|R)

∏d
i=1 t1,η(T−1

1,η (ui,t))
.

Here, T1,η , Td,η(·|R), t1,η and td,η(·|R) are the univariate and d-variate t distribution and density

functions with degrees of freedom parameter η > 0 and correlation matrix R. When η → ∞, the t

copula becomes a Gaussian copula.

Another important reason exists to focus on Gaussian copula, at least for the high frequency model.

We make use of the fact that the variance-covariance (or correlation) matrix, estimated from the de-

meaned and standardized log returns zi,t (given that they are approximately Normally distributed), is

equivalent to the copula parameter R. This result is valid for only a Gaussian copula with standard

Normal marginals and is a result of Hoeffding’s lemma and Sklar’s theorem; details are described in

Fengler & Okhrin (2016). In other words, the Gaussian copula function enables one-to-one mapping
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c(ut|MHF,MLF) = ωtc(ut|MHF) + (1 − ωt)c(ut|MLF)

ωt

Equally weighted, Del Negro’s, Geweke’s, Jore’s

MHF

AIW, CAW

MLF

Static, DCC

Figure 1: Model components combining high (MHF) and low (MLF) frequency models via density
pooling with time varying weights ωt.

between the copula dependence parameter and the linear dependence measure. This result is relevant

to our work because it enables use of the realized correlation, obtained from high frequency data, as a

copula parameter R.

Finally, given our proposed framework, the resulting density to describe daily dependence structure

at time t can be written in terms of a copula density pool:

c(ut|MLF,MHF) = ωtc(ut|MHF) + (1 − ωt)c(ut|MLF), (1)

where MHF and MLF present the models estimated by using high and low frequency data. Note

that, when assuming the same marginal models in both joint densities, the density pool simplifies to a

product of individual marginal densities and the copula density pool in Eq. (1). Therefore, the following

sections focus on the high- and low frequency correlation matrix modeling, which correspond to MHF

and MLF. Figure 1 summarizes the main model components and the approach used at each phase.
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2.1 Low frequency covariance modeling

Next, we consider several standard approaches to model the dynamics of the correlation matrix that

arises from the low frequency (daily) data. Call Ω a variance-covariance matrix of the observed stan-

dard Normally distributed standardized returns zt = (z1,t, . . . , zd,t)
′. Then the corresponding correla-

tion matrix is R = (diagΩ)−1/2Ω(diagΩ)−1/2, with diag(X) denoting the diagonal matrix obtained

by setting to zero all the off-diagonal elements of the squared matrix X. We start with the most straight-

forward way to measure dependence, by using a sample correlation matrix. The dependence between

ut is modeled either by fitting a Gaussian or t copula with a static correlation matrix R, estimated given

the daily data up to time t. Such an approach is referred to as Static and is our benchmark specification.

Another possible model, which is dynamic, is the DCC model of Engle (2002a):

Ωt = Ω ⊙ (ιι′ − B1 − B2) + B1 ⊙ zt−1z′t−1 + B2 ⊙ Ωt−1, (2)

where ⊙ is the Hadamard product of two equally sized matrices (element-by-element multiplication);

ι is a vector of ones; parameter matrices B1, B2 are re-parametrized as rank-1 matrices B1 = b1b′1 and

B2 = b2b′2 with b1 and b2 being a d × 1 parameter vectors; and Ω is a sample variance covariance ma-

trix. This result corresponds to the time-varying correlation matrix Rt = (diagΩt)−1/2Ωt(diagΩt)−1/2.

Naturally, the model choice for daily variance-covariance matrix is not limited to the models outlined

above. For extensive reviews of existing multivariate volatility models, readers are referred to Asai

et al. (2006), Bauwens et al. (2006), Silvennoinen & Teräsvirta (2009), among others.

2.2 High frequency covariance modeling

As mentioned before, Fengler & Okhrin (2016) have shown that the Gaussian copula’s parameter

Rt can be estimated by using the correlation matrix of the original data (log returns in our case).

In the high frequency data setting, the correlation matrix of the returns can be estimated via Rcort,

a realized correlation measure, obtained from intraday data (Noureldin et al. 2012): Rt ≡ Rcort =

(diag Rcovt)−1/2Rcovt(diag Rcovt)−1/2, where Rcovt is a realized covariance measure. Modeling the

dynamics of the realized covariance matrices is a notoriously difficult task because of the high dimen-

sions and positive-definite restrictions on the matrices. An efficient method is to model the dynamics
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of the realized variance-covariance matrices directly by using Wishart distributions (Gourieroux et al.

2009, Jin & Maheu 2013, 2016). In Jin & Maheu (2013, 2016), the scale matrix in the Wishart distri-

bution follows either an additive or a multiplicative component structure, and the authors have found

that the additive structure performs better. Such additive models capture strong persistence in the co-

variances and fat-tailed distributions of the returns. They have compared their proposed model with

multiple other models, such as Cholesky-VARFIMA from Chiriac & Voev (2011), the Wishart auto-

regressive model from Gourieroux et al. (2009), vec-MGARCH from Ding & Engle (2001) and DCC

from Engle (2002a). The additive Wishart model has been found to produce superior density forecasts

for all forecast horizons.

Next, we present the additive component model, introduced in Jin & Maheu (2013, 2016). Consider

a sequence of realized covariance matrices Rcovt of dimension d × d, t = 1, . . . , T. The additive

component inverse Wishart AIW(L) model is given by:

Rcovt ∼ IW((ν − d − 1)Vt, ν),

Vt = B0 +
L

∑
j=1

Bj ⊙ Γt−1,lj , (3)

Bj = bjb′j, j = 1, . . . , L,

Γt−1,lj = 1/lj

lj

∑
i=1

Rcovt−i.

Here, IW(A, b) is the inverse-Wishart distribution with scale matrix A and degrees of freedom b. We

set l1 = 1, and further ljs indicates how many past observations are used to form a component Γt−1,lj

and L is the number of autoregressive components. B0 is a symmetric positive definite matrix and is

set to B0 = (ιι′ − B1 − . . . − BK)⊙ Rcov so that the long-term mean of the covariances is equal to

the sample mean, Rcov. Note that one could use either Wishart or inverse-Wishart models. However,

Jin & Maheu (2016) have found that in their empirical application the inverse-Wishart specification

outperformed the Wishart counterpart; also, inverse-Wishart coupled with Gaussian copula results into

closed form marginal predictive distributions for the standardized returns.
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Another closely related model is the CAW(p, q) model of Golosnoy et al. (2012):

Rcovt ∼ W(Vt/ν, ν),

Vt = B0 +
p

∑
i=1

B(i)
1 Rcovt−1B(i)′

1 +
q

∑
j=1

B(j)
2 Vt−1B(j)′

2 , (4)

where B0 = CC′ with C being a d × d lower triangular matrix and B(i)
1 , B(j)

2 are d × d parameter

matrices. To avoid curse-of-dimensionality, as noted in Golosnoy et al. (2012), a natural restriction is

to impose a diagonal structure of the dynamics of Vt by assuming B(i)
1 and B(j)

2 are diagonal. In this

manuscript, we assume the order-1 CAW model where p = q = 1 and employ covariance targeting

such that B0 = (ιι′ − B1 − B2)⊙ Rcov with B1 = b(1)1 b(1)
′

1 and B2 = b(1)2 b(1)
′

2 . We also replace the

Wishart distribution with the inverse-Wishart, same as in the model of Jin & Maheu (2013, 2016) in

Eq.(3) so that the marginal predictive density is of closed form.

2.3 Choosing the weights

In this article, we attempt to cover a large part of the types of linear pooling schemes by focusing on

four different approaches: equally weighted, static (Geweke & Amisano 2011), naı̈ve dynamic (Jore

et al. 2010) and dynamic (Del Negro et al. 2016).

Geweke & Amisano (2011) have proposed to maximize the log predictive score function at each

point in time:

ωGew
T+k+1 = arg max

ω
f (ω), such that (5)

f (ω) =
T+k

∑
t=1

log[ωc(ut|MHF) + (1 − ω)c(ut|MLF)],

where c(ut|MHF) and c(ut|MLF) are predictive copula densities for ut, and k = 1, . . . , K is the

out of sample evaluation period. Even though the weights are recalculated at each time point, this

weighting scheme is considered static because, for a large K, the weights reach a stable equilibrium

(Del Negro et al. 2016). Another approach involves using the log-score rolling weights calculated at
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each time t by using m̃ lags, as defined in Jore et al. (2010):

ω Jore
T+k+1,m̃ =

exp[∑T+k
τ=T+k+1−m̃ log c(uτ|MHF)]

∑r={HF,LF} exp[∑T+k
τ=T+k+1−m̃ log c(uτ|Mr)]

. (6)

We call this a naı̈ve time-varying weighting approach. The main difference between the weights in

Eqs. (5) and (6) is that Geweke’s approach considers the predictive densities from the entire sample,

whereas Jore’s weighting scheme places importance only on the last m̃ observations. Finally, as in Del

Negro et al. (2016), we allow for persistence in weights by introducing a latent variable st, thus giving

rise to a dynamic weighting scheme:

st = βst−1 +
√

1 − β2ξt, ξt ∼ N (0, 1) (7)

ωDN
t = Φ(st).

The unconditional mean of st is 0, and the unconditional variance is 1. Parameter β controls the

persistence of the weight dynamics: when β = 1, the process reduces to a random walk; when β = 0,

at each time t, the weights ωDN
t will be Uniformly distributed a priori.

2.4 Competitor model

For comparison purposes, we also include a model that augments the low frequency DCC model with

the high frequency information via the high frequency-based volatility (HEAVY) approach (Noureldin

et al. 2012), thus resulting in a scalar DCC-HEAVY specification of Bauwens & Xu (2023). In this

model, the lagged outer product of standardized returns in Eq.(2) is replaced by the lagged realized cor-

relations. More specifically, we can model the correlation matrix directly, without using the variance-

covariance matrix, as Rt = R̄ + a(Rcort−1 − Rcor) + b(Rt−1 − R̄) corresponding to the model in

equations (11)-(12) in Bauwens & Xu (2023). Here, a, b ≥ 0, b = 0 if a = 0, b < 1; R̄ is the d × d

sample correlation matrix of zt; and Rcor is the sample mean of the realized correlation matrices. We

consider the DCC-HEAVY model with Gaussian and t copulas. For more details, readers are referred

to Bauwens & Xu (2023).
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3 Posterior Inference and Model Selection

3.1 Posterior inference

For posterior inference and forecasting, we rely on Bayesian computation, particularly Markov chain

Monte Carlo (MCMC) methods. To estimate the density pool in Eq. (1), we first sample from the

posterior of the individual models MHF and MLF. Conditional on those samples, the density pooling

weights in Eqs. (5)-(7) can be obtained. Next, we briefly describe the posterior sampling details for

each of the models presented in Sections 2.1 and 2.2.

Static model. Consider an inverse-Wishart prior on the unconditional variance covariance matrix

Ω ∼ IW(Id(ν0 − d − 1), ν0), ν0 ≥ d + 1, so that E[Ω] = Id and Id id the d-dimensional unit ma-

trix. Given the observed standardized approximately Normally distributed data zt = (z1,t, . . . , zd,t)
′,

where z1:T = (z′1, . . . , z′T)
′, the parameter Ω can be sampled directly from the posterior Ω|z1:T ∼

IW(z1:Tz′1:T + Id(ν0 − d − 1), ν0 + T); derivations are provided in Appendix A.1 in Online Supple-

mentary Material. The correlation matrix used as a copula parameter is obtained as R = (diagΩ)−1/2

Ω(diagΩ)−1/2.

DCC, DCC-t The parameters for the rank-1 DCC and DCC-t models (b′1, b′2, η) can be sampled via

Random Walk Metropolis-Hastings (RWMH) within Gibbs. Call b = (b′1, b′2), then the priors for the

model parameters are η ∼ Eη>4(ξη), b ∼ N2d(0, Vb · I2d). Here E(·) is an exponential distribution,

N2d(·) is a 2d-variate Normal distribution. We sample (b, η) iteratively from (multivariate) Normal

proposals given some starting values (b, η)(0). The first elements of the vectors b′1, b′2 are restricted

to be positive for identification purposes; the draws that result in non-positive semidefinite variance-

covariance matrices are rejected, as well as the draws for which B1 + B2 are larger than one in modulus.

For the DCC model with Gaussian copula, we have only parameter vectors (b′1, b′2).

DCC-HEAVY and DCC-HEAVY-t. The parameters for the DCC-HEAVY and DCC-HEAVY-t mod-

els (a, b, η) can be sampled via RWMH. The priors for the parameters (a, b) are assumed Beta so that

0 < a, b < 1, and the prior for the degrees of freedom of the Student t distribution, η, is exponential.

We sample (a, b) and η iteratively in two steps: (a, b) from a bivariate Normal proposal distribution
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given some starting values (a, b)(0) and η from a truncated Normal given some starting value η(0). For

the DCC-HEAVY model with Gaussian copula, we have only parameters (a, b).

AIW and CAW. For estimation of the AIW and CAW models, as in Jin & Maheu (2013, 2016),

we use RWMH within Gibbs. We assume L = 2 (for AIW) and p = q = 1 (for CAW) and call

b = (b′1, b′2). The priors for the model parameters are ν ∼ Eν>d+1(ξν), b ∼ N2d(0, Vb · I2d),

l2 ∼ UZ(al , bl). Here UZ(·) is a discrete Uniform distribution. Given some starting values (l2, ν, b)(0),

the algorithm iterates through the following for m = 1, . . . , M:

1. Sample ν via RWMH from the conditional posterior:

p(ν|l2, b, Rcov1:T) ∝ π(ν)∏t gIW(Rcovt|l2, ν, b), where gIW is the density function

of the inverse-Wishart distribution and π(·) denotes a prior density.

2. Sample b = (b′1, b′2) via RWMH jointly from the 2d-variate Normal proposal, where

the first elements of each vector are truncated to be positive, for identification purposes.

As in Jin & Maheu (2013, 2016) we reject such draws of b where B0 is not positive

definite, or the absolute value of any element of ∑2
i=1 Bi is not smaller than one.

3. Sample l2 via RWMH by using Poisson increments that can be either positive or negative

with equal probability. This step is relevant only for the AIW model.

Pooling weights. Estimation of the static and naı̈ve time-varying weights is straightforward and can

be performed by applying the formulas in Eqs. (5) and (6) on the log predictive scores at each MCMC

iteration after the estimation is performed for all models individually. For the time-varying persistent

weights ωDN
t , we use a variant of particle MCMC called particle marginal Metropolis-Hastings sam-

pler (Andrieu et al. 2010). In particular, we use a bootstrap filter of Gordon et al. (1993) for the latent

state st filtering and a standard MH step with Normal prior truncated at (-1,1) β ∼ T N (−1,1)(mβ, Vβ)

with a random walk proposal for the persistence parameter β.

3.2 Model selection

For illustration purposes, in this article we focus one-step-ahead density forecasts. One-step-ahead

horizon has also been considered by Billio et al. (2013), Jin & Maheu (2013), for example. The fore-
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casting procedure includes combining the one-step-ahead forecasts for the marginal models (see Ap-

pendix C.2 in the Online Supplementary Material for details regarding the specification and estimation

of the HAR model of Corsi 2009) and the one-step-ahead predictive copula density. The one-step-

ahead joint density for the returns is then given by h(rt+1|r1:t) = c(Fi(r1,t+1), . . . , Fd(rd,t+1)|r1:t) ·

∏d
i=1 fi(ri,t+1|r1:t), where Fi(·) and fi(·) are the marginal distribution and density functions of ri,t,

and the copula density can be compactly re-written as c(ut+1|z1:t).

For the Static model, the marginal predictive is available analytically:

cstatic(ut+1|z1:t) = x−1td,ν0+t−d+1

(
zt+1

∣∣∣∣ Id(ν0 − d − 1) + z′1:tz1:t

ν0 + t − d + 1

)
,

where zt+1 = (Φ−1(u1,t+1), . . . , Φ−1(ud,t+1))
′ and x = ∏d

i=1 ϕ1(zi,t+1). Of note, the marginal pre-

dictive for the Static model is the Student t density, which is a result of the Normal-inverse Wishart

conjugacy. For the DCC and DCC-HEAVY models, with Gaussian and t copulas, the posterior predic-

tive distributions are given by

cDCC(ut+1|z1:t, θDCC) = x−1ϕd(zt+1|Rt+1(θDCC)),

cDCCt(ut+1|z1:t, θDCCt) =

(
d

∏
i=1

t1,η(T−1
1,η (ui,t+1))

)−1

td,η(ut+1|Rt+1(θDCCt)).

Here, θDCC and θDCCt are the estimated parameters for the DCC/DCC-HEAVY and DCC/DCC-

HEAVY-t models. Finally, the posterior predictive density for the AIW and CAW models is:

cAIW/CAW(ut+1|z1:t, θAIW/CAW) =x−1td,v−d+1

(
zt+1

∣∣∣∣v − d − 1
v − d + 1

Vt+1

)
,

where θAIW/CAW is a vector of the parameters in either AIW or CAW model. The marginal predic-

tive densities p(ut+1|z1:t) that account for parameter uncertainty for the DCC, DCC-t, DCC-HEAVY,

DCC-HEAVY-t, and AIW models can be obtained by using the MCMC output:

c(ut+1|z1:t) =
∫

c(ut+1|z1:t, θ)p(θ|z1:t)dθ ≈ 1
M

M

∑
m=1

c(ut+1|z1:t, θ(m)),

where (θ(1), . . . , θ(M)) are the M posterior samples obtained from the MCMC.
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The model comparison is carried out via predictive Bayes factors (BF) given K out of sample

observations, where T is the sample size used for estimation. The BF between model 0 (M0) and

model 1 (M1) is defined as (West 1986, Kass & Raftery 1995):

BFT:T+K =
c(uT:T+K|z1:T,M0)

c(uT:T+K|z1:T,M1)
,

where c(uT:T+K|z1:T,Mr) = ∏K
k=1 c(uT+k|z1:T+k−1,Mr). The exact calculation of c(uT:T+K|z1:T,Mr)

is time-consuming because of an expanding time horizon, i.e., the model must be re-estimated K times.

For notational convenience, we omit conditioning on the model Mr; and instead of conditioning on

z1:T we condition on u1:T, because ui,t = Φ(zi,t). Then we can write:

c(uT:T+K|u1:T) =
K

∏
k=1

c(uT+k|u1:T+k−1)

=
K

∏
k=1

∫
c(uT+k|θ)p(θ|u1:T+k−1)dθ

T large
≈

K

∏
k=1

∫
c(uT+k|θ) p̂(θ)dθ, where θ(1), . . . , θ(M) ∼ p̂(θ),

≈
K

∏
k=1

1
M

M

∑
m=1

c(uT+k|θ(m)).

The marginal predictive distribution of uT:T+K can be approximated by using a posterior sample of

estimated model parameters until time T (instead of re-estimating the model K times) with density

p̂(θ).

Another necessary measure used for calculating the pooling weights is the log predictive score

(LPS):

LPS =
T+K−1

∑
t=T

log c(ut+1|z1:t). (8)

Finally, we also compare the predictive model performance for the lower q∗ percentile. Similar

metrics have also been considered by Delatola & Griffin (2011) and Opschoor et al. (2021), among

others. We define the log predictive tail score (LPTS) measure as follows:
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LPTSq∗ =
T+K−1

∑
t=T

I[ut+1 < q]× log c(ut+1|z1:t),

where q is a d × 1 vector, and I[ut+1 < q] = ∏d
i=1 I[ui,t+1 < qi] with qi ∈ [0, 1]. Here I[a]

denotes the indicator function, which equals 1 if condition a is fulfilled and 0 otherwise. We select

q = [q1, . . . , qd] such that K−1 ∑T+K−1
t=T I[ut+1 < q] = q∗, for q∗ = 0.05, 0.10, 0.25 (Opschoor et al.

2021). That is, we examine the LPS from Eq.(8) only when the d-variate data are jointly in the lower

region [0, q1]× . . . × [0, qd].

4 Empirical Application

4.1 Data description

The intraday exchange rate data are from the histdata.com website. The data are from 2008/01/03

to 2023/01/31, and, after treatment, contain 3881 daily data points in total. Similar to Noureldin et al.

(2012) we remove the first and last 15 minutes trading to avoid potential overnight effects, which should

be minimal given continuous trading information. Overall, the overnight effect does not pose a problem

as the forex market trading takes place 24 hours on weekdays and our high-frequency data is recorded

without any breaks 3. High frequency returns and the realized covariance measures are extracted by

using the highfrequency package in R (Boudt et al. 2022) and employing the 10-minute sam-

pling with 2-minute subsampling estimator of Zhang et al. (2005), similar to Noureldin et al. (2012).

For detailed high frequency data treatment, refer to Appendix B.1 in the Online Supplementary Mate-

rial. The dataset contains 14 exchange rates: EUR/USD, EUR/GBP, EUR/JPY, EUR/AUD, USD/CAD,

USD/JPY, GBP/JPY, GBP/USD, AUD/USD, EUR/CAD, AUD/CAD, CAD/JPY, GBP/AUD, GBP/CAD.

Table 1 presents the descriptive statistics for the crude returns (open-to-close). All of the assets present

excess kurtosis, indicating fat-tailed unconditional distribution. The Kolmogorov-Smirnov and Jarque-

Bera tests for Normality reject the Normally distributed returns for all assets and all confidence levels.

3However, when dealing for instance with stock market data, one should consider that stock markets are open only for a
certain number of hours per day. In this case, the overnight effect might become an important factor in the forecasting ability
of the model, and should be carefully accounted for, see for example Ahoniemi & Lanne (2013).
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Ljung-Box Q-test for autocorrelation rejects the absence of autocorrelation in the mean for more than

half of the exchange rates and the ARCH test rejects the absence of heteroscedasticity for all exchange

rates.

Table 1: Descriptive statistics for the log return data and p-values for Kolmogorov-Smirnov (KS),
and Jarque-Bera (JB) tests for Normality, Ljung-Box Q-test for autocorrelation and ARCH test for
heteroscedasticity for lag 10.

mean median sd skew. kurt. KS JB LB(10) ARCH(10)
EURUSD -0.01 -0.00 0.58 0.14 5.36 0.0000 0.0000 0.5850 0.0000
EURGBP 0.01 0.01 0.53 0.11 5.45 0.0000 0.0000 0.2874 0.0000
EURJPY 0.01 0.01 0.73 -0.05 11.93 0.0000 0.0000 0.1004 0.0000

EURAUD 0.00 -0.02 0.68 0.79 12.14 0.0000 0.0000 0.1673 0.0000
USDCAD 0.01 0.01 0.56 0.09 6.14 0.0000 0.0000 0.0010 0.0000
USDJPY 0.01 0.01 0.62 -0.03 8.59 0.0000 0.0000 0.3006 0.0000
GBPJPY 0.01 0.02 0.79 -0.31 11.06 0.0000 0.0000 0.0157 0.0000

GBPUSD -0.00 -0.00 0.60 -0.21 6.17 0.0000 0.0000 0.0070 0.0000
AUDUSD 0.01 0.03 0.81 -0.58 12.74 0.0000 0.0000 0.0016 0.0000
EURCAD 0.01 0.01 0.57 0.13 5.44 0.0000 0.0000 0.8227 0.0000
AUDCAD 0.02 0.04 0.58 -0.24 13.03 0.0000 0.0000 0.0008 0.0000
CADJPY 0.01 0.02 0.85 -0.39 9.55 0.0000 0.0000 0.0147 0.0000
GBPAUD 0.00 0.00 0.69 0.47 10.47 0.0000 0.0000 0.0040 0.0000
GBPCAD 0.02 0.02 0.58 -0.09 5.38 0.0000 0.0000 0.0000 0.0000

To preserve space, the first set of descriptive plots is for EUR/USD and EUR/GBP returns. Figure

2 draws the log returns together with the realized standard deviations, QQ-plots and histograms for the

standardized returns (z1,t, z2,t) against the Normal distribution, and the probability integral transforms

against the Uniform distribution. As described in Section 2, standardized returns zi,t are obtained

by dividing the log returns ri,t by the corresponding realized volatilities and then de-meaning and

scaling by σi. For all exchange rates, the scaling factor σi is less than one, meaning that the estimated

realized volatilities have to be scaled down. As seen from the plots, the time series data includes

calm and volatile episodes. The QQ-plots indicate that the data, standardized by the RV measure, are

approximately Normally distributed, as shown by Andersen et al. (2000, 2001). This is also confirmed

by the probability integral transforms of the standardized returns ui,t = Φ(zi,t), which are Uniformly

distributed. The corresponding plots for all 14 exchange rates, as well as the main descriptive statistics

for the standardized log returns, can be found in Online Supplementary Material Appendix B.2.

Finally, even though the in-sample returns are modeled non-parametrically, in order to perform

individual marginal density forecasts we specify a log-HAR(1,5,22) model of Corsi (2009) for the RV

dynamics. According to the six criteria outlined in Hansen & Lunde (2006), as well Mincer Zarnowitz
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Figure 2: First column: log returns (open-to-close, in gray) and the square root of realized volatility (in
black). Second column: QQ-plots of the standardized returns against the Normal distribution with 95%
confidence intervals (dashed line). Third column: histograms of the standardized returns against the
standard Normal distribution. Last column: histograms of the probability integral transforms against
the Uniform density for EUR/USD (top row) and EUR/GBP (bottom row) exchange rates.

regressions, the log-HAR(1,5,22) produces the most precise one-step-ahead point forecasts. Therefore,

we use this model in the portfolio allocation exercise for forecasting the realized volatility of each

individual return series. All details are in Online Supplementary Material Appendix C.2.

4.2 Prior specification and estimation

The prior hyperparameters for the variance-covariance matrix in the static model are set to Ω ∼

IW(Id, 10); for the DCC-HEAVY-t, the priors are a ∼ B(3, 10), b ∼ B(10, 3), η ∼ E(0.01),

where B(a, b) is the Beta distribution with shape parameters a and b. The priors for the rank-1 DCC,

DCC-t, AIW and CAIW models are η ∼ Eη>4(0.01), ν ∼ Eν>d+1(0.01), b ∼ N2d(0, 10 · I2d) and

l2 ∼ UZ(2, 100). In general, all priors are somewhat uninformative but proper. The size of the MCMC

chain is M = 100k for all models; the first half is retained as burn-in, and thinning is performed every

50th observation from the second half, thus resulting in posterior samples of 1000 observations. For

the RWMH steps, the proposal variances are adjusted such that the acceptance rate is approximately

0.5 for univariate parameter vectors and 0.10 to 0.30 for multivariate parameter vectors. For sampling

l2 Poisson increments have a rate parameter equal to either 1.5 or 2, depending on the acceptance

probability. All MCMC chains have converged after 100k iterations. Online Supplementary Material
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Appendix C.1 contains parameter estimation results.

4.3 Full model forecasting results

For estimation, we use 12 years of data, plus three more years for the out-of-sample performance

evaluation. In particular, the data used for estimation are from 2008/01/03 to 2019/12/31 (3084 data

points), and the out-of-sample evaluation period is from 2020/01/02 to 2023/01/31 (797 data points).

Table 2 presents the average LPS for the K = 797 out of sample observations for three low frequency

data-based models, two high frequency models, and the natural competitor DCC-HEAVY model with

t copula (results for the Gaussian copula are not reported, because of the considerably poorer perfor-

mance). According to the LPS, the DCC-t model performs best among the low frequency data-based

models, and CAW performs best among the high frequency data-based models, and a competitor DCC-

HEAVY-t performs best overall. Figure 3 draws expanding-window predictive log BFs for each of the

models, wherein the Static model is the benchmark. Positive BFs indicate that the model outperforms

the Static specification. Not surprisingly, all time-varying models provide superior out-of-sample den-

sity forecasts.

Table 2: 1-step-ahead LPS for all individual models: Static, DCC, DCC-t, AIW, CAW, and DCC-
HEAVY model with t copula for 2020/01/02 - 2023/01/31 out-of-sample period (K = 797 observa-
tions).

Static DCC DCC-t AIW CAW DCC-HEAVY-t
-5163.32 -3500.67 -3155.91 -2841.37 -2774.60 -2702.95

Next, we perform the density forecast density combination exercise, as described in Section 2.3.

As seen in Figure 3, model preference is non-constant, therefore, instead of choosing a single model for

density forecasting, we combine predictive densities by using several alternative weighting schemes.

We combine the DCC-t and CAW models, which are the best models in the LF and HF model classes.

In fact, the results reported in Online Supplementary Material Appendix D.1 show that combining

any other LF model with the HF CAW model still yields superior forecasts as compared to the best

individual model, the CAW. This is not the case for model pools within the same frequency, which

perform systematically worse. According to those results, we conclude that the predictive gains are

primarily originating from the incorporation of low- and high frequency information and not from the
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Figure 3: Expanding-window predictive log Bayes factors with a Static model as a benchmark for all
individual models: DCC, DCC-t, AIW, CAW, and DCC-HEAVY model with t copula for 2020/01/02
to 2023/01/31 out-of-sample period (K = 797 observations). Average standardized realized volatility
(in gray) in the background.

model pooling itself.

Top plot of Figure 4 shows the posterior average of the weights for the HF component (CAW

model) for the four weighting schemes: Geweke’s as in Eq. (5), Jore’s with m̃ = {1, 10} as in Eq. (6)

and Del Negro (DN) as in Eq. (7). Jore’s weights are more volatile because they take into considera-

tion only the last m̃ observations, whereas Geweke’s weight takes into consideration the entire out of

sample period until the time when the weights are calculated, and reaches a seemingly stable level of

approximately 0.7. Drawing the 95% credible intervals around Geweke’s weight indicates that the HF

component weight is different from 0.5. The weight dynamics in Del Negro’s pool follow an AR(1)

representation, which, in a sense, gives them a longer memory compared to Jore1’s weights, making

them smoother; however, both follow similar patterns.

The bottom plot of Figure 4 draws expanding-window predictive log BFs for density combina-

tions and individual models, with the CAW model as the benchmark. Geweke’s and equal weights

show the poorest performance, mainly because the weights are not re-balanced to adjust to a rapidly

changing environment. Del Negro’s scheme performs better than Geweke’s and equal weights, but not

as well as Jore1. Even though DN and Jore1 move in very similar patterns, the more extreme move-

ments of Jore1’s weights appear to be the source of the superior forecasting performance. However,

independently on the weighting scheme, all pooled models produce significant improvements in one-
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step-ahead density forecasts over individual LF and HF models, and over the natural mixed-frequency

competitor - DCC-HEAVY-t model.
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Figure 4: Results for pooling the high frequency CAW-Gaussian and low frequency DCC-t copulas.
Top plot: posterior means of the high frequency component weight for different weighting schemes.
Bottom plot: expanding-window predictive log Bayes factor for density combinations and individual
models, with CAW model as the benchmark, for 2020/01/02 to 2023/01/31 out-of-sample period (K =
797 observations). Average standardized realized volatility (in gray) in the background.

Next, Figure 5 draws the posterior densities for the average per observation out-of-sample LPS

and LPTSq∗ for lower 25%, 10% and 5% quantiles, only for some individual and some pooled models

(for ease of readability of the graph). The posterior densities also indicate whether the differences in

these average LPS and LPTS are statistically significant. The top left plot indicates that the difference

in average overall LPS is statistically significant, pooled models provide the best predictive out-of-

sample performance, and the DCC-t model has the poorest performance. The results change somewhat

within the 25% lower quantile (top right plot). Here, the model ordering changes, but Jore1’s scheme

still continues to perform best. Finally, in the 10% and 5% lower quantiles (bottom row), Jore1’s

pooling scheme continues to perform the best, but with overlapping intervals from the competitor

DCC-HEAVY-t model. These results show that different models perform differently depending on

the metric used (whole distribution vs the tail of the distribution) and confirms the general consensus
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that finding a universally best model is conceptually impossible. In this article, the preferred model

is characterized as that providing the best forecast as measured by the log predictive score, because

we are interested in the entire predictive distribution of the returns. Nonetheless, if one is interested

exclusively in the tails, for example, the log predictive tail score would be a more appropriate metric

for calculating the pooling weights. For example, Kapetanios et al. (2015) have proposed to model

weights dependent on some variable of interest, which could be some measure related to the lower

region of a predictive density.
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Figure 5: Posterior densities for the average per observation one-step-ahead LPS and LPTS for the
lower 25%, 10% and 5% quantiles for 2020/01/02 to 2023/01/31 out-of-sample period (K = 797
observations). CAW and DCC-t are the high- and low frequency models, and the pooled models are
according to Geweke’s, Jore’s and equally weighted schemes.

Finally, we sought to determine whether the preference for the high frequency model might corre-

late with overall market conditions, proxied by the market volatility. The preference for the high fre-

quency model is measured as the pooling weight of the high frequency component in various pooling

schemes. We also consider the difference between the predictive log likelihoods between the two best

models: CAW and DCC-t. Positive values would indicate that the CAW model is preferred, whereas
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negative values would indicate that the CAW model is outperformed by the DCC-t. As a proxy for

the market volatility, we take the average standardized realized volatility over the 14 exchange rates.

As alternative proxies, we also consider the equally weighted market portfolio realized volatility, and

daily VIX index4 for the corresponding period. The top part of Table 3 shows that all three volatility

proxies are highly correlated, as expected. The bottom part of Table 3 reports the posterior medians

of the sample correlation coefficients between the preference for the high frequency weight and the

market volatility proxies. Except for Geweke’s weights5, the rest are positively correlated, meaning

that the preference for the HF model is positively correlated with the market volatility. The correla-

tions are of varying magnitudes, reaching as high as 0.37 in VIX-Del Negro pair, and all of them are

statistically significant in the sense that the 95% posterior credible intervals exclude zeros (posterior

percentile tables are available in the Appendix C.3 in the Online Supplementary Material). We argue

that, as the market volatility increases, the high frequency data based models are more agile in re-

sponding to the fast-changing market conditions. On the other hand, when the markets are calm the

low frequency data-based models provide more stable estimates of the co-dependence structure. Such

results have important implications from the investor’s perspective: investors anticipating bull (or bear)

market conditions, might choose to rely on low frequency (or high frequency) models to produce their

density forecasts.

Table 3: Posterior medians of sample correlations between three proxies for the market volatility and
the preference for high-frequency model for 2020/01/02 to 2023/01/31 out-of-sample period (K = 797
observations). The proxies for the market volatility are: average standardized realized volatility (avrg
RV), equally weighted market portfolio realized volatility (Mkt:eql) and VIX index. The preference
for the high-frequency model is measured as a high-frequency component weight in various pooling
schemes as well as the difference between the daily log likelihood (logLik diff) between the CAW and
DCC-t models.

avrg RV Mkt:eql VIX Geweke Jore1 DelNegro logLik diff
avrg RV 1.000
Mkt:eql 0.914 1.000

VIX 0.646 0.538 1.000
Geweke -0.094 -0.161 0.165 1.000

Jore1 0.094 0.098 0.219 0.159 1.000
DelNegro 0.149 0.159 0.365 0.317 0.702 1.000

logLik diff 0.090 0.117 0.179 0.126 0.903 0.635 1.000

4VIX is the Chicago Board Options Exchange’s volatility index, based on S&P500 index options.
5Geweke’s weights are bound to converge almost surely to some stable equilibrium (Geweke & Amisano 2011), therefore,

the correlation between those weights and time-varying market volatility should be interpreted with caution.
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4.4 Portfolio allocation exercise

Next, we are interested in quantifying how the pooling of LF and HF models translates to a better

performing portfolios in terms of economic gains. To this end, we consider two portfolios: the Global

Minimum Variance (GMV) and the minimum Conditional Value-at-Risk (CVaR) portfolios, both with

short-sale constraints. GMV portfolio takes into account only the second moment of the return distri-

bution as it minimizes the overall variance of the portfolio. On the other hand, the CVaR portfolio is

tail-oriented, as it aims to minimize the expected losses in the lower tail of the return distribution, usu-

ally targeting losses in the lower 1%, 5%, or 10th percentile (Rockafellar & Uryasev 2002). We note

that, even though we have the explicit form of the K one-step-ahead forecast densities for the 14-variate

exchange rate series at each MCMC iteration, given the complex objective function (in the CVaR case)

and short-sale restrictions, we need to rely on numerical methods for portfolio optimization. Therefore,

we use a similar approach to those in Ausı́n & Lopes (2010) and Opschoor et al. (2021), wherein at

each MCMC iteration, and for each out-of-sample point, we draw N replications from the 14-variate

predictive distribution, where N is a large number.6 Given this simulated data, we then can calculate

the one-step-ahead GMV and CVaR portfolio weights. The procedure can be summarized as follows.

For each m = 1, . . . , M and for each k = 1, . . . , K:

1. Simulate N replications of u(m)
T+k from c(uT+k|z1:T+k−1, θ(m)), where θ(m) is the collec-

tion of model parameters. Then transform the Uniformly distributed data to predictive

returns r∗(m)
T+k via the corresponding quantile function. Because in the copula setting, the

modeling of the marginals is performed separately from the dependence structure, all

predictive returns have the same marginals (across models, not across assets). The real-

ized volatility forecasts are obtained using the log-HAR(1,5,22) model of Corsi (2009),

as described in the Online Supplementary Material Appendix C.2.

2. Given N simulated scenarios of predictive returns r∗(m)
T+k perform the portfolio optimiza-

tion numerically to obtain the portfolio weights w(m)
GMV,T+k and w(m)

CVaR,T+k. For the

CVaR portfolio we consider two levels of risk: lower 5% and 10% quantiles. Optimiza-

tion was performed using R package NMOF (Gilli et al. 2019, Schumann 2023).

6N = 10, 000 in our case.
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3. Given the estimated predictive optimal portfolio weights w(m)
GMV,T+k, w(m)

CVaR,T+k and

the actual ex post observed returns rT+k, calculate ex post portfolio returns and related

metrics.

Ideally, for each MCMC iteration, one would calculate the K = 797 sequence of the realized

portfolio returns. However, due to extreme computational cost associated with return simulation and

numerical optimization, we have performed the above procedure at the posterior medians of the es-

timated parameter values (θ(1), . . . , θ(M)). Finally, given the ex post observed returns rT+k, we can

obtain the average portfolio return, overall portfolio standard deviation, adjusted7 Sharpe ratio (the

ratio between the expected return and the standard deviation), the average return in the empirical 5%

and 10% quantiles (rCVaR05 and rCVaR10), average turnover (TO) and average concentration (CO),

see Opschoor et al. (2021) for details.

Table 4 reports the portfolio metrics at the posterior medians of the estimated parameters. The best-

performing portfolio is in gray and the second best - underlined. For the GMV portfolio (first eight

rows) Jore1’s pooling scheme provides the lowest annualized portfolio standard deviation as well as the

highest Sharpe ratio. The annualized portfolio standard deviations are rather low, however, exchange

rate data usually exhibits low volatility in absolute terms as compared to the conventional assets, see

for example Patton (2006b), Gong et al. (2022) among many others. For the CVAR05 and CVaR10

portfolios we are more concerned with the behavior in the lower tail, i.e., the ex post realized CVaRs.

In both portfolios, Jore1’s pool is always the best.

Following Opschoor et al. (2021) we asses the differences of the standard deviation values by

means of the Model Confidence Set (MCS) procedure of Hansen et al. (2011) and provide the p-values

in Table 4. Here the best performance corresponds to the lowest standard deviation. The hypothesis

of equal performance is rejected for all confidence levels for the Jore1 weighting scheme under all

portfolio objectives: GMV, CVaR05 and CVaR10. However, other models such as DCC-HEAVY-t,

CAW and Geweke perform reasonably well and are often among the superior ones at 20% level. This

result is not surprising. As pointed out by Opschoor et al. (2021) “To reconcile the findings in terms

of economic performance with those of the density forecast evaluation (...), it is important to note that

7For calculating the Adjusted Sharpe ratio we use the 10-year U.S. Treasury yield as a proxy for the risk-free interest rate,
data from Federal Reserve Bank of St. Louis (FRED).
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Table 4: Portfolio allocation results based on 1-step-ahead predictions for 2020/01/02 to 2023/01/31
out-of-sample period (K = 797 observations). The three portfolios are: Global Minimum Vari-
ance (GMV), and minimum Conditional Value at Risk for lower 5 and 10 percentiles (CVaR05 and
CVaR10), all with short-sale constraints. The table reports average portfolio return (avrg), overall stan-
dard deviation in % (sd), the p-value corresponding to the model confidence set of Hansen et al. (2011)
using a significance level of 5%, adjusted Sharpe ratio (SR), realized Conditional Value at Risk for
lower 5 and 10 percentiles (rCVaR05 and rCVaR10), turnover (TO), and concentration (CO), all quan-
tities annualized, for the pooled models (Geweke’s, Jore’s and equally weighted), two best individual
models (CAW and DCC-t) and a competitor model (DCC-HEAVY-t). In gray is highlighted the best
performing portfolio and the second best is underlined.

Jore1 Geweke Equal CAW DCC-t DCC-HEAVY-t
GMV avrg 6.766 6.734 6.790 6.770 6.752 6.687

sd 1.334 1.356 1.357 1.345 1.368 1.345
(p-value) (1.000) (0.265) (0.111) (0.560) (0.178) (0.905)
SR 3.708 3.627 3.665 3.682 3.606 3.621
rCVaR05 -40.488 -40.758 -40.508 -40.760 -41.947 -41.194
rCVaR10 -31.260 -31.422 -31.240 -31.504 -31.763 -31.527
CO 0.466 0.465 0.466 0.463 0.470 0.469
TO 0.419 0.417 0.420 0.409 0.416 0.411

CVaR05 avrg 6.856 6.782 6.867 6.835 6.781 6.718
sd 1.337 1.361 1.364 1.351 1.373 1.351
(p-value) (1.000) (0.199) (0.043) (0.381) (0.133) (0.660)
SR 3.768 3.648 3.701 3.713 3.615 3.628
rCVaR05 -40.430 -40.878 -40.644 -40.882 -42.110 -41.494
rCVaR10 -31.061 -31.385 -31.314 -31.458 -31.812 -31.667
CO 0.467 0.465 0.467 0.463 0.471 0.470
TO 0.419 0.418 0.420 0.410 0.417 0.412

CVaR10 avrg 6.839 6.787 6.850 6.827 6.773 6.730
sd 1.340 1.359 1.365 1.349 1.374 1.353
(p-value) (1.000) (0.322) (0.040) (0.552) (0.154) (0.654)
SR 3.746 3.657 3.686 3.712 3.607 3.631
rCVaR05 -40.641 -40.985 -40.847 -40.953 -42.219 -41.567
rCVaR10 -31.230 -31.412 -31.421 -31.541 -31.879 -31.675
CO 0.467 0.465 0.467 0.463 0.471 0.470
TO 0.419 0.417 0.420 0.410 0.417 0.412

the GMVP evaluation takes a very specific perspective. The GMVP focuses on an area of the forecast

distribution where differences are more concentrated by design: all models focus on a portfolio with

ex-ante minimum variance. If the different models are any good, differences in this concentrated

performance measure are harder to obtain.”

The table also reports the annualized average return, average turnover and average concentration.

In all portfolios the equal weighting scheme produces the highest average portfolio return. In terms

of turnover and concentration the high frequency data based model is always the best. However, it is

important to note, that these measures are not directly targeted by the investor, and performing model

ranking based on these metrics should be done with caution. Notably, the low frequency DCC-t model
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not only has the lowest log predictive score and tail score, but it is always the worst for all portfolios

and all metrics.

To sum up, the portfolio allocation results show how superior model performance in terms of log

predictive score translates into superior portfolios; also, it confirms favorable economic outcomes for

density pooling, as compared with the individual models.

5 Discussion and Conclusion

In this article, we propose a mixed frequency copula-based approach for forecasting the co-dependence

between financial returns by using information arising from data sampled at different frequencies. In

particular, we pool two copula densities, wherein the parameters are obtained from low- and high

frequency data. For the high frequency copula parameter, we use a realized correlation measure. We

model the dynamics of the realized variance-covariance matrices via two alternative high frequency

data based specifications - AIW and CAW - with a Gaussian copula; meanwhile, for the low frequency

dependence structure, we consider three standard models: Static, DCC with Gaussian copula, and DCC

with t copula.

In the empirical application using more than 15 years of exchange rate data we show that even

though the overall log predictive scores favor the CAW model, incorporating information arising from

the low frequency data improves the forecasting outcomes. In addition, the density pool shows an

improvement in predictive performance over those of other mixed frequency models, such as the natural

competitor the DCC-HEAVY model. We also show that the gains arise not from density pooling itself,

but from pooling different frequencies. Finally, the portfolio allocation exercise illustrates how the use

of pooled models directly translates into favorable economic outcomes.

For future research, focusing on a more flexible pooling scheme, such as Bayesian predictive syn-

thesis (McAlinn 2021) or infinite pools (Jin et al. 2022), is worth examining further. Ideally, one would

also consider pooling marginal volatilities from high and low frequency data based models, however,

this goes beyond the scope of the paper.
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