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Abstract

We introduce a new and general set of identifiability conditions for factor models which
handles the ordering problem associated with current common practice. In addition, the
new class of parsimonious Bayesian factor analysis leads to a factor loading matrix repre-
sentation which is an intuitive and easy to implement factor selection scheme. We argue that
the structuring the factor loadings matrix is in concordance with recent trends in applied
factor analysis. Our MCMC scheme for posterior inference makes several improvements
over the existing alternatives while outlining various strategies for conditional posterior in-
ference in a factor selection scenario. Four applications, two based on synthetic data and
two based on well known real data, are introduced to illustrate the applicability and gener-
ality of the new class of parsimonious factor models, as well as to highlight features of the
proposed sampling schemes.
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1 Introduction

Selecting the number of common factors in factor analysis has been known since long to be
a very difficult issue. Lopes & West (2004) are amongst the first ones to formally tackle this
issue in standard normal linear factor analysis. They propose a reversible jump Markov chain
Monte Carlo scheme whose independent proposal densities are based on multivariate normal
and multivariate Student’s t approximations to within model posterior distributions based on
preliminary offline draws. Their main limitation is the high computational cost associated with
these preliminary runs, particularly when either or both the number of observations and number
of variables are large.

Our approach follows current trend in modern Bayesian factor analysis where more mod-
eling structure is incorporated through the columns of the factor loadings matrix, through the
common factors themselves or both. In Lopes, Salazar & Gamerman (2008), for example, a new
class of spatial dynamic factor models is introduced where the temporal dependence is modeled
by the latent dynamic factors while the spatial dependence is modeled by the columns of the
factor loadings matrix. Other recent papers on structure factor models are, to name but a few,
Lopes & Carvalho (2007) who model time-varying covariances via factor stochastic volatility
models with time-varying loadings and Carvalho, Chang, Lucas, Nevins, & West (2008) who
model high-dimensional gene expression data via sparse factor analysis.

We add to the discussion by showing how the true factor loading structure, including the
number of factors, may be recovered when the fitted model is overfitting the number of factors.
In this case, well-known identifiability problems arise, see Geweke & Singleton (1980) and
Geweke & Zhou (1996). In the present paper, we formulate a new and general set of identifi-
ability conditions that relax the usual lower triangular condition on the factor loading matrix.
First of all, these conditions are able to handle the ordering problem present in most of the lit-
erature. Second, we show that under these conditions the factor loading matrix of an overfitting
model takes a special form which allows easily to reconstruct the true number of factors and the
true factor loading matrix.

Since this identification procedure relies on identifying zeros and non-zeros elements in the
factor loading matrix, we perform parsimonious factor modeling and consider the selection of
the elements of the factor loading matrix as a variable selection problem, as Frühwirth-Schnatter
& Tüchler (2008) did for the related problem of parsimonious modelling of the Cholesky factors
of a covariance matrix in a random-effects model. To this aim, we introduce a binary indica-
tor matrix of the same dimension as the factor loading matrix and develop a computationally
efficient Markov chain Monte Carlo (MCMC) scheme for posterior inference. Our approach
not only leads to sparse factor loading structures as in the previous literature, but also allows to
select the number of common factors by identifying overfitting factor models from the structure
of the indicator matrix.

The paper is organized as follows. New identifiability and rank deficiency issues arise and
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are properly dealt with in Section 2, along with other basic properties of factor analysis. Prior
specification and posterior Bayesian inference are described in Section 3. Posterior inference is
performed via a customized MCMC scheme described in Section 4. The section also outlines
various strategies for conditional posterior inference in the factor selection scenario. Four ap-
plications, two based on synthetic data and two based on well known real data, are introduced
in Section 5. They illustrate the applicability and generality of the new class of parsimonious
factor models, as well as highlight features of the proposed sampling schemes. Section 6 con-
cludes.

2 Factor Model Specification

2.1 The Basic Factor Model

Data on m variables are assumed to arise from a multivariate normal distribution Nm (0,Ω)

with zero mean and unknown covariance matrix Ω. A single observation is denoted by yt =

(y1t, . . . , ymt)
′ and a random sample is denoted by y = {yt, t = 1, . . . , T}. A factor model

relates each observation yt to a latent r-variate random variable ft = (f1t · · · frt)
′ , the so-called

common factors, through:

yt = Λft + εt, (1)

where Λ is the unknown m× r factor loading matrix with elements Λij . The standard assump-
tion is that ft, fs, εt, and εs are pairwise independent for all t and s and that

ft ∼ Nr (0, Ir) , (2)

εt ∼ Nm (0,Σ0) , Σ0 = Diag
(
σ2

1, . . . , σ
2
m

)
. (3)

Assumption (3) implies that conditional on knowing ft the m elements of yt are independent
and all dependence among these variables is explained by the common factors. This leads to
the following constrained variance-covariance structure for Ω = V(yt|β,Σ0):

Ω = ΛΛ
′
+ Σ0. (4)

The idiosyncratic variances σ2
i = V(yit|ft,β,Σ0) may be compared to the marginal variance

V(yit|β,Σ0) to determine the proportion of the variance of yit that is explained by the common
factors, also known as communalities (Bartholomew, 1987):

R2
i = 1− σ2

i

V(yit|β,Σ0)
=

r∑
j=1

R2
ij, R2

ij =
Λ2
ij∑r

j=1 Λ2
ij + σ2

i

. (5)
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2.2 New set of identifiability conditions

A well-known identification problem arises for the basic factor model. A rather trivial non-
identifiability problem is sign-switching. Evidently, the signs of the elements of ft and Λ are
not identified: for each j = 1, . . . , r all elements fj1, . . . , fjT of the latent factors as well as
the jth column of Λ may be changed by the same sign switch. A more serious problem is
factor rotation. Without imposing further constraints on Λ the model is invariant under any
transformation of the form Λ? = ΛP

′ and f?t = Pft, where P is an arbitrary orthogonal matrix
of dimension k × k.

A common way of dealing with these problems is to constrain the upper triangular part of
Λ to be zero and to assume that main diagonal elements of Λ are strictly positive, i.e. Λjj > 0

for all j = 1, . . . , k, see e.g. Geweke & Zhou (1996). This constraint simultaneously prevents
factor rotation and identifies the sign of the elements of ft and Λ, however it is generally too
restrictive. It induces an order dependence among the responses and makes the appropriate
choice of the first r response variables an important modeling decision (Carvalho et al., 2008).
Well-known difficulties arise if one of the true factor loadings Λjj is equal to or close to 0, see
e.g. Lopes & West (2004).

In the present paper we suggest a new and more general set of identifiability conditions for
the basic factor model which handles the ordering problem in a more flexible way:

C1. Λ has full column-rank, i.e. r = rank(Λ).

C2. Λ is a generalized lower triangular matrix, i.e. l1 < . . . < lr, where lj denotes for
j = 1, . . . , r the row index of the top non-zero entry in the jth column of Λ, i.e. Λlj ,j 6=
0; Λij = 0,∀ i < lj .

C3. Λ does not contain any column j where Λlj ,j is the only non-zero element in column j.

Condition C2 means that Λ is a generalized lower triangular matrix in the sense that the top
non-zero entries in the r columns of Λ have increasing row indices l1, . . . , lr with lj ≥ j.
These indices are well-defined, because Λ does not contain any zero column due to condition
C1. Condition C2 covers the case where Λ is a lower triangular matrix with strictly non-zeros
entries on the main diagonal (lj = j for j = 1, . . . , r), but allows for more general forms of
triangular matrices, if the ordering of the response variables is in conflict with this assumption.
As we allow Λjj to be 0, response variables different from the first r ones are allowed to lead
the factors. Indeed, for each factor j, the response variable lj corresponding to the top non-zero
element is the leading variable. Condition C2 prevents factor rotation, but not sign switching.
Sign switching is prevented by requiring additionally that Λlj ,j is positive for each j = 1, . . . , r.

Finally, condition C3 is important to ensure that the true number of factors is identifiable
from rank(Λ) and will become clear in the light of our Theorem 1 below. The theorem proves
that a factor model whose factor loading matrix contains a column with only a single non-zero
element is observationally equivalent to a factor model with reduced rank.
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2.3 The regression-type representation of a factor model

Assume that data y = {y1, . . . ,yT}were generated by model (1) and that the number of factors
r, as well as Λ and Σ0, should be estimated. The usual procedure is to fit a model with k factors,

yt = βft + εt, εt ∼ Nm (0,Σ) , (6)

where β is a m× k coefficient matrix with elements βij and Σ is a diagonal matrix. We call (6)
the regression-type representation of the true factor model (1) with k potential factors.

Identifying Λ, Σ0, and r from (6) turns out to be surprisingly difficult, in particular, if
the regression-type representation is overfitting the number of factors, i.e. k > r. In this
case, the true model (1) is embedded in the regression-type representation (6) by adding k − r
zeros columns. The resulting coefficient matrix β0 is related to Λ through β0β

′

0 = ΛΛ
′
.

Hence rank(β0) = rank(Λ) = r and β0 is rank deficient, if r < k. This introduces a serious
identifiability problem as shown by Geweke & Singleton (1980). More precisely, there exists
a k × (k − r) matrix Q such that β0Q = Om×(k−r) and Q

′
Q = Ik−r. For any m × (k − r)

dimensional matrix M with mutually orthogonal rows another regression-type representation
of the true factor model may be defined with parameters β and Σ given by:

β = β0 + MQ
′
, Σ = Σ0 −MM

′
. (7)

The parameters (β,Σ) and (β0,Σ0) define the same likelihood and are observationally equiv-
alent since Ω = β0β

′

0 + Σ0 = ββ
′
+ Σ. Hence, β0 and Σ0 are not identifiable. It seems to

be impossible to identity r and Λ from the coefficient matrix β in an overfitting regression-type
representation, because the rank of β could be larger than r and it is not clear how the columns
of β are related to Λ in this case. We solve this problem in Theorem 1.

Theorem 1. Assume that the data were generated by a basic factor model (1) obeying conditions
C1 − C3 and that a regression-type representation (6) with k ≥ r potential factors is fitted.
Assume that the following condition holds for β:

B1 The row indices of the top non-zero entry in each non-zero column of β are different.

Then r, Λ and Σ0 are related in the following way to the coefficient matrix β and the matrix Σ

of the regression-type representation:

(a) r columns of β are, up to a column permutation, identical to the r columns of Λ.

(b) If rank(β) = r, then the remaining k − r columns of β are zero columns. Λ is obtained
by deleting the zero-column in β and permuting the remaining columns in such a way
that condition C2 is fullfilled. The number of factors r is equal to the number of non-zero
columns in β. Furthermore, Σ0 = Σ.
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(c) If rank(β) > r, then only k− rank(β) of the remaining k− r columns are zero columns,
while s = rank(β)− r columns with column indices j1, . . . , js differ from a zero column
for a single element lying in s different rows r1, . . . , rs. In this case Λ is obtained from
β by deleting all zero columns and all columns where a single element differs from 0
and permuting the remaining columns in such a way that condition C2 is fullfilled. The
number of factors is equal to r = rank(β) − s. Furthermore, Σ0 = Σ + D, where D is
a m × m diagonal matrix of rank s with non-zero diagonal elements Drl,rl = β2

rl,jl
for

l = 1, . . . , s.

A proof of this theorem is given in Appendix A.

Theorem 1 shows that it is not necessary to impose the usual assumption β11 > 0, . . . , βkk >

0 when fitting a regression-type model to achieve identifiability. Our more general condition
B1 allows β to be rank deficient and we do not force uniqueness of the position of the columns.
Note that condition B1 is also less stringent than the identifiability conditions C1−C3 on the
underlying factor model.

Theorem 1 shows how easy it is to identify overfitting factor models under condition B1.
In particular, part (c) of Theorem 1 allows to identify coefficient matrices β in the regression-
type representation which are spuriously overfitting the true number of factors. Condition C3

guarantees that the underlying true factor loading matrix Λ it not of the overfitting type by
itself. Overfitting is present whenever at least one column of β contains only a single non-zero
element, i.e. whenever a certain factor is loading on exactly one of the variables. We found
several examples of such factor loading matrices in the literature, see e.g. Lopes & West (2004,
Figure 1). Because each of these columns increases the rank of the coefficient matrix by 1,
an estimator of the number of factors based on the rank of the coefficient matrix is spuriously
overfitting the true number of factors r. According to our theorem any such column may be
replaced by a zero column, while the corresponding idiosyncratic variance is increased. This
reduces the rank of the coefficient matrix by the number of such columns and the reduced rank
is identical to the number of factors r.

Once, all zero column and all columns containing at most one non-zero element have been
removed, the number of remaing columns defines r and Λ is obtained by reordering the re-
maining columns in such a way that condition C2 is fullfilled. Condition B1 guarantees that
this reordering is possible and unique.

Theorem 1 is also useful, if the regression-type representation is not overfitting the number
of factors, i.e. k = r. In this case, it follows that β and Λ coincide apart from a permutation of
the columns and sign switching. Hence, condition B1 allows the model to react flexibly, if the
leading r responses were chosen poorly.
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2.4 Parsimonious Bayesian Factor Analysis

Theorem 1 allows to select a possibly high number k of potential factors when fitting a regression-
type model. Condition B1 implies that β has at most mk − k(k − 1)/2 free elements. Adding
σ2

1 , . . . , σ2
m, gives a total number of parameters equal tom(k+1)−k(k−1)/2 which is bounded

by the number of free elements in Ω, m(m+ 1)/2. This implies the following upper bound for
k:

k ≤ m+
3

2
−
√

2m+
9

4
. (8)

Since the identification of r and Λ from β by Theorem 1 relies on identifying zero and non-
zero elements in β, we follow previous work on parsimonious factor modeling and consider
the selection of the elements of β as a variable selection problem. To this aim, we introduce
for each element βij a binary indicator δij and define βij to be 0, if δij = 0, and leave βij
unconstrained otherwise. In this way, we obtain an indicator matrix δ of the same dimension as
β.

We use a Bayesian approach under priors to be described in Section 3 using MCMC methods
to be described in Section 4. We search the space of all possible regression-type models obeying
condition B1 by sampling the indicator matrix δ simultaneously with the remaining parameters.
Note that condition B1 which is a condition on β is fulfilled iff the corresponding indicator
matrix δ obeys Condition B1. Hence, Theorem 1 could be applied immediately to δ to identify
overfitting factor models. Furthermore, δ is invariant to sign switching in the columns of β.

As in previous work, our approach allows the identification of a parsimonious structure in
the factor loading matrix in cases where this matrix is sparse. In addition to that, Theorem 1
allows the identification of the true number of factors r directly from the indicator matrix δ:

r =
k∑
j=1

I{
m∑
i=1

δij > 1}, (9)

where I{·} is the indicator function, by taking spurious factors into account. Note that (9)
is invariant to permuting the columns of δ which is helpful for MCMC based inference with
respect to r. Finally, our approach provides a principled way for inference on r, as opposed to
previous work which are based on rather heuristic procedures to infer this quantity (Carvalho
et al., 2008; Bhattacharya & Dunson, 2009).

3 Choosing Priors for Bayesian Inference

Since we perform Bayesian inference in the regression-type representation (6), we formulate a
joint prior for the model indicator matrix δ, the variances σ2

1, . . . , σ
2
m, and the coefficient matrix

β taking the form p(δ, σ2
1, . . . , σ

2
m,β) = p(δ)p(σ2

1, . . . , σ
2
m)p(β|δ, σ2

1, . . . , σ
2
m).
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3.1 The Prior of the Indicator Matrix

To define p(δ), we use a hierarchical prior which allows different occurrence probabilities τ =

(τ1, . . . , τk) of non-zero elements in the different columns of β and assume that all indicators
are independent a priori given τ :

Pr(δij = 1|τj) = τj, τj ∼ B (a0, b0) . (10)

It is interesting to derive the corresponding prior p(r|a0, b0,m, k) of the number factors r which
depends not only on a0 and b0, but also on m and k. Due to column invariance in (9) we obtain
that a priori r may be represented as r =

∑k
j=1 I{Xj > 1}, where X1, . . . , Xk are independent

random variables and Xj follows a Beta-binomial distribution with parameters Nj = m − j +

1 (i.e. the number of free elements in column j), a0, and b0. This result could be used to
simulate p(r|a0, b0,m, k), although it is possible, but tedious, to work out the prior probabilities
analytically. Uniform priors for τj , i.e. a0 = b0 = 1, are not necessarily a good choice, because
they lead to a more or less uniform prior of r over {1, . . . , k}, in particular, if m is large. We
recommend to tune for a given data set with known values m and k the hyperparameters a0 and
b0 in such a way that p(r|a0, b0,m, k) is in accordance with prior expectations concerning the
number of factors, see Table 2.

Carvalho et al. (2008) introduced a seemingly more flexible prior in the context of sparse
factor models where Pr(δij = 1|τij) = τij , τij|ρj ∼ (1 − ρj)I0 + ρjB (ajmj, aj(1−mj)),
ρj ∼ B (sρ0, s(1− ρ0)), and I0 is a Dirac measure at 0. However, it is easy to verify that
conditional on ρ1, . . . , ρk all indicators are independent a priori with Pr(δij = 1|ρj) = ρjmj .
Hence the only difference to prior (10) is that τj = ρjmj is constrained a priori to lie in [0,mj]

with mj being a known hyperparameter rather in [0, 1].

3.2 The Prior on the Idiosyncratic Variances

When estimating factor models using classical statistical methods, such as maximum likelihood
(ML) estimation, it frequently happens that the optimal solution lies outside the admissible
parameter space with one or more of the idiosyncratic variances σ2

i s being negative, see e.g.
Bartholomew (1987, Section 3.6). An empirical study in Jöreskog (1967) involving 11 data
sets revealed that such improper solutions are quite frequent. This difficulty became known as
Heywood problem and is likely to happen for samples with either T or m being small, for data
where the true σ2

i s are very unbalanced and for overfitting models where fitting more factors
than present leads to an inflation of the communalities R2

i defined in (5), forcing σ2
i toward 0.

The introduction of a prior for each of the idiosyncratic variances σ2
i s within a Bayesian

framework naturally avoids negative values for σ2
i , nevertheless there exists a Bayesian analogue

of the Heywood problem which takes the form of multi-modality of the posterior of σ2
i with one

mode lying at 0. Subsequently, the prior on the idiosyncratic variances σ2
1, . . . , σ

2
m is selected
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in such a way that Heywood problems are avoided. Heywood problems typically occur, if the
constraint

1

σ2
i

≥ (Ω−1)ii ⇔ σ2
i ≤

1

(Ω−1)ii
(11)

is violated, where the matrix Ω is the covariance matrix of yt defined in (4), see e.g. Bartholomew
(1987, p. 54).

It is clear from inequality (11) that 1/σ2
i has to be bounded away from 0. Therefore, im-

proper priors on the idiosyncratic variances such as p(σ2
i ) ∝ 1/σ2

i , which have been used by
several authors (Martin & McDonald, 1975; Akaike, 1987) are not able to prevent Heywood
problems. We assume instead a proper inverted Gamma prior σ2

i ∼ G−1 (c0, Ci0) for each of the
idiosyncratic variances σ2

i . First, we choose the number of degrees of freedom c0 large enough
to bound the prior away from 0, typically c0 = 2.5. A prior with c0 = 1.1 as in Lopes & West
(2004) allows values too close to 0. Second, we reduce the occurrence probability of a Hey-
wood problem which is equal to Pr(X ≤ Ci0(Ω−1)ii) where X ∼ G (c0, 1) through the choice
of Ci0. This probability decreases with Ci0, however, a downward bias may be introduced, if
Ci0 is too small, since E(σ2

i ) = Ci0/(c0 − 1). We suggest to choose Ci0 as the largest value for
which the upper bound in (11) is fulfilled by the prior expectation E(σ2

i ):

Ci0/(c0 − 1) ≤ 1

(Ω−1)ii
.

If (Ω−1)ii is estimated by the ith diagonal element of the inverse of the sample covariance
matrix Sy, this yields the following prior:

σ2
i ∼ G−1

(
c0, (c0 − 1)/(S−1

y )ii
)
. (12)

Because 1 − R2
i = σ2

i /Ωii, inequality (11) introduces an upper bound for 1 − R2
i which is

considerably smaller than 1 for small idiosyncratic variances σ2
i . Hence, our prior is particularly

sensible, if the communalities R2
i are rather unbalanced across variables and the variance of

some observations is very well-explained by the common factors, while this is not the case for
other variables.

If the idiosyncratic variances are not too unbalanced, we found it also useful to consider a
hierarchical prior, where Ci0 ≡ C0 and C0 is equipped with a G (g0, G0) prior with g0 being a
small integer, e.g. g0 = 5. This prior allows for more shrinkage than the previous one. Once
again we use the upper bound defined in (11) to choose G0. We assume that the expected mode
of the prior of σ2

i which is given by E(g0/C0) = g0/c0/G0 is smaller than the average of the
upper bounds defined in (11), thus

σ2
i ∼ G−1 (c0, C0) , C0 ∼ G (g0, G0) , G0 =

g0

c0

∑m
i=1 1/(S−1

y )ii
. (13)

Our case studies illustrate that these priors usually lead to unimodal posterior densities for the
idiosyncratic variances.
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3.3 The Prior on the Factor Loadings

We assume that the rows of the coefficient matrix β are independent a priori given the factors
f1, . . . , fT . Let βδ

i· be the vector of unconstrained elements in the ith row of β corresponding to
δ. For each i = 1, . . . ,m, we assume that

βδ
i·|σ2

i ∼ N
(
bδ
i0,B

δ
i0σ

2
i

)
. (14)

This choice allows the posterior of βij to be centered around 0, if the factor model is overfitting,
while some authors (Lopes & West, 2004) assumed truncated normal priors for the diagonal
elements of β. The variance of the prior (14) depends on σ2

i , because this allows joint drawing
of β and σ2

1, . . . , σ
2
m and, even more importantly, sampling the model indicators δ without

conditioning on the model parameters in the MCMC scheme to be discussed in Section 4.

The prior moments are either chosen as in Lopes & West (2004) and Ghosh & Dunson
(2009), who considered a “unit scale” prior where bδ

i0 = 0 and Bδ
i0 = I. Alternatively, we use

a fractional prior (O’Hagan, 1995) which was applied by several authors for variable selection
in latent variable models (Smith & Kohn, 2002; Frühwirth-Schnatter & Tüchler, 2008; Tüchler,
2008).

The fractional prior can be interpreted as the posterior of a non-informative prior and a
fraction b of the data. In the present context, we consider a conditionally fractional prior for the
“regression model”

ỹi = Xδ
iβ

δ
i· + ε̃i, (15)

where ỹi = (yi1 · · · yiT )
′ and ε̃i = (εi1 · · · εiT )

′ . Xδ
i is a regressor matrix for βδ

i· constructed
from the latent factor matrix F = (f1 · · · fT )

′ in the following way. If no element in row i of β

is restricted to 0, then Xδ
i = F. If some elements are restricted to 0, then Xδ

i is obtained from F

by deleting all columns j where δij = 0, i.e. Xδ
i = FΠδ

i , where Πδ
i is a k ×

∑k
j=1 δij selection

matrix, selecting those columns j of F where δij 6= 0.

Using p(βδ
i·|σ2

i ) ∝ p(ỹi|βδ
i·, σ

2
i )
b we obtain from regression model (15):

βδ
i·|σ2

i ∼ N
(
biT ,BiTσ

2
i /b
)
, (16)

where biT and BiT are the posterior moments under an non-informative prior:

BiT =
(

(Xδ
i )
′
Xδ
i

)−1

, biT = BiT (Xδ
i )
′
ỹi. (17)

It is not entirely clear how to choose the fraction b for a factor model. If the regressors f1, . . . , fT
were observed, then we would deal with m independent regression models for each of which T
observations are available and the choice b = 1/T would be appropriate. The factors, however,
are latent and are estimated together with the other parameters. This ties the m regression
models together. If we consider the multivariate regression model as a whole, then the total
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number N = mT of observations has to be taken into account which motivates choosing bN =

1/(Tm). In cases where the number of regressors d is of the same magnitude as the number
of observations, Ley & Steel (2009) recommend to choose instead the risk inflation criterion
bR = 1/d2 suggested by Foster & George (1994), because bN implies a fairly small penalty for
model size and may lead to overfitting models. In the present context this implies choosing bR =

1/d(k,m)2 where d(k,m) = (km−k(k−1)/2) is the number of free elements in the coefficient
matrix β. This second criterion leads to a stronger penalty than bN if T < d(k,m)2/m.

4 MCMC Estimation

4.1 The MCMC Scheme

MCMC estimation including model specification search is implemented in the following way.
We choose a lower triangular matrix with r non-zero columns as starting value for δ, and set
each element, except the diagonal elements, to 0 with probability 50%. If k ≤ 10, we sample the
initial value r uniformly from {1, . . . , k}, otherwise we sample r from min(max(P(r0), 1), k),
where P(r0) is a Poisson distribution with mean r0.

We choose starting values for the factors f = (f1, . . . , fT ) by sampling from the prior (2)
and repeat the following sampling steps:

(a) Sample the indicator matrix δ conditional on the factors f1, . . . , fT without conditioning
on the model parameters β and σ2

1, . . . , σ
2
m from p(δ|f1, . . . , fT , τ ,y):

(a-1) Try to turn all non-zero columns of δ into zero columns.

(a-2) Update the indicators jointly for each of the remaining non-zero columns j of δ:

(a-2-1) try to move the top non-zero element lj;

(a-2-2) update the indicators in the rows lj + 1, . . . ,m.

(a-3) Try to turn all (or at least some) zero columns of δ into a non-zero column.

(b) Sample the model parameters β and σ2
1, . . . , σ

2
m jointly conditional on the indicator matrix

δ and the factors f1, . . . , fT from p(β, σ2
1, . . . , σ

2
m|δ, f1, . . . , fT ,y).

(c) Sample the latent factors f1, . . . , fT conditional on the model parameters β and σ2
1, . . . , σ

2
m

from p(f1, . . . , fT |β, σ2
1, . . . , σ

2
m,y).

(d) Perform an acceleration step by moving temporarily to an expanded factor model.

(e) For each j = 1, . . . , k, perform a random sign switch: substitute the draws of {fjt}Tt=1 and
{βij}mi=j with probability 0.5 by {−fjt}Tt=1 and {−βij}mi=j , otherwise leave these draws
unchanged.

11



(f) Sample τj for j = 1, . . . , k from τj|δ ∼ B (a0 + dj, b0 + pj), where pj is the number of
free elements and dj =

∑m
i=1 δij is number of non-zero elements in column j.

To generate sensible values for the latent factors in the initial model specification, we found it
useful to run the first few steps without variable selection.

Updating of the model indicators in Step (a) is done in a very efficient manner, by sampling
all indicators in the same column simultaneously, see Subsection 4.1.1. Step (b) and (c) could
be implemented as in Lopes & West (2004), however, we make several improvements. Using
the full conditional posteriors developed in Appendix B.1, the parameters βi· and σ2

i could
be sampled in Step (b) row by row, which might be slow if m is large. Instead, we show in
Appendix B.2 that joint sampling of all idiosyncratic variances and all non-zero factor loadings
is feasible.

In Step (c) a simplification is possible, as usually some columns of the coefficient matrix β,
say l1, . . . , lk−r, are equal to zero. In this case, flj ,t is sampled fromN (0, 1) for j = 1, . . . , k−r
and t = 1, . . . , T , because the posterior of the latent factors fl1,t, . . . , flk−r,t is equal to the prior.
The posterior of the remaining components f1

t = (fj1,t, . . . , fjr,t) is given by:

f1
t |yt,β,Σ ∼ Nr

(
(Ir + β

′

1Σ
−1β1)−1β

′

1Σ
−1yt, (Ir + β

′

1Σ
−1β1)−1

)
, (18)

where β1 is the m × r matrix containing the non-zero columns of β. Step (d) is added to
improve mixing, see Subsection 4.1.2 for details.

As described in Subsection 2.2 we loose identifiability of the signs of the elements of ft and
β with our approach. For each j = 1, . . . , k all elements fj1, . . . , fjT of the latent factor as well
as the jth column of β may be changed by the same sign switch without changing the likelihood.
In combination with the prior introduced in Subsection 3.3 this leads to multimodality of the
posterior density. To make sure that our sampler explores all possible modes, a random sign
switch is performed in Step (e) for each column..

4.1.1 Updating the Model Indicators

To sample δij without conditioning on β and (σ2
1, . . . , σ

2
m) one has to compute the log posterior

odds Oij of δij = 1 versus δij = 0 while holding δi,−j and τj fixed:

Oij = log
Pr(δij = 1|δi,−j, τj, ỹi, f)

Pr(δij = 0|δi,−j, τj, ỹi, f)
= log

p(ỹi|δij = 1, δi,−j, f)

p(ỹi|δij = 0, δi,−j, f)
+ log

τj
1− τj

. (19)

The marginal likelihoods p(ỹi|δij, δi,−j, f) may be computed individually for each element (i, j)

for δij = 0 and δij = 1 as is done e.g. in Carvalho et al. (2008), however, this is very inefficient,
if km is large. We show in Appendix B.3 that it is possible to compute the log posterior odds
Oij for all indicators in column j jointly in a very efficient manner.
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A Metropolis-Hastings step could be used to sample δij: define δnew
ij = 1 − δold

ij and accept
δnew
ij with probability

min

{
1,

Pr(δnew
ij |δi,−j, τj, ỹi, f)

Pr(δold
ij |δi,−j, τj, ỹi, f)

}
.

Based on the posterior odd Oij and a uniform random number U this reads: if δold
ij = 0, then

accept δnew
ij = 1, iff logU ≤ Oij; if δold

ij = 1, then accept δnew
ij = 0, iff logU ≤ −Oij; otherwise

stay with δold
ij . Alternatively, a Gibbs step may be used, i.e. set δij = 1, iff log(U/(1−U)) ≤ Oij ,

otherwise δij = 0. Since the indicators in column j are independent given τj , joint sampling of
δ·,j is easily vectorized for both methods, given the corresponding vector of the log posterior
odds. We only have to guarantee that the resulting indicator matrix satisfies condition B1.

Step (a) in our MCMC scheme contains dimension preserving as well as dimension chang-
ing moves. Step (a-1) reduces the number of factors by reducing the number of non-zero
columns. We loop randomly over all non-zero column j and move to a zero column, if logU ≤
−
∑

iOij , where the summation is over all rows where δold
ij = 1. Step (a-2) is a dimension

preserving move and loops randomly over all remaining non-zero columns j. In a first step,
we try to move the top non-zero element lj to a randomly selected row in which, accord-
ing to B1, should not be occupied by the top non-zero elements of the remaining non-zero
columns. If in < lj , then δold

in,j = 0 and we accept δnew
in,j = 1 according to a Metropolis-

Hastings move, i.e. if logU ≤ Oin,j . If in > lj , then we define δnew
lj ,j

= 0, δnew
ij = 0 for all

rows I1 = {i : lj < i < in, δ
old
ij = 1} and, if δold

in,j = 0, δnew
in,j = 1, and accept this move, if

logU ≤ −Olj ,j −
∑

i∈I1 Oij +Oin,jI{δold
in,j = 0}. Given (a possibly new) leading element lj the

indicators δij in the rows {i : lj < i ≤ m} are updated simultaneously in a second step.

Finally, Step (a-3) increases the number of factors by turning a zero column into a non-zero
column. If k − r is not too large, say smaller than 10, then we loop over all zero columns,
otherwise we pick the leftmost 10 zero columns, because the particular choice does not matter
due to invariance to column permutations. Two moves are made to implement this step for a
particular column j. First we propose a non-zero leading element by picking randomly a row
lj which is not occupied by the top non-zero elements of all remaining non-zero column of δ

and accept this move, if logU ≤ Olj ,j . The column remains a zero column, if this move is
not accepted. Otherwise, we update the remaining indicators δij in the rows {i : lj < i ≤ m}
simultaneously in a second step.

For any move which involves the odds of more than one row, the vector of these odds is
computed simultaneously using the result of Appendix B.3.

4.1.2 Marginal Data Augmentation for Factor Models

Recently, Ghosh & Dunson (2009) introduced parameter expansion to speed up the convergence
of the sampler for a basic factor model which tends to be poorly mixing. They suggest to move
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to an expanded model where the factors have a more general prior distribution than in (2):

f̃t ∼ Nk (0,Ψ) , (20)

yt = β̃f̃t + εt, (21)

where Ψ = Diag(Ψ1, . . . ,Ψk). They perform MCMC estimation in the expanded model by
updating Ψ conditional on the remaining parameters at each sweep of the sampler. While
their method successfully improves the efficiency of the sampler, it changes the prior of the
parameters which is undesirable in a variable selection context where the prior strongly matters.

For this reason, we extend marginal data augmentation as discussed by van Dyk & Meng
(2001) to the expanded factor model (20) and (21). To make sure that the prior remains un-
changed, we assume that the working parameters Ψ1, . . . ,Ψk are independent a priori from the
remaining parameters with prior Ψj ∼ G (pj, qj).

Due to independence, we sample Ψold
j ∼ G (pj, qj) to transform the standard basic factor

model to the expanded version. We update Ψnew
j in the expanded model by sampling from

Ψnew
j ∼ G

(
pj +

T

2
, qj +

1

2Ψold
j

T∑
t=1

f 2
tj

)
, (22)

and transform back to the original model. This leads to following acceleration in Step (d) which
affects β and ft for each j = 1, . . . , k in the following way:

βij = βij

√
Ψold
j

Ψnew
j

, i = 1, . . . ,m,

ftj = ftj

√
Ψnew
j

Ψold
j

, t = 1, . . . , T.

4.2 Bayesian Posterior Inference Using the MCMC Draws

The posterior draws of δ, σ2
1, . . . , σ

2
m, and β obtained by the MCMC scheme described in

Subsection 4.1 are draws for the regression-type representation (6) and have to be used in a
careful way for posterior inference, because the position of the columns of δ and β as well
as the sign of the columns of β are not identified. Furthermore, the model may be overfitting
in the sense of Theorem 1 which affects not only δ and β, but also some of the idiosyncratic
variances.

Hence, for any particular functional of the posterior draws, it has to be investigated if this
functional is affected by any of these identifiability problems. The number of factors r, for
instance, which has been defined in (9) as a function of δ is invariant to column permutations
and sign switching and takes care of overfitting by definition, hence posterior draws for r are
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obtained immediately from δ by applying (9). To estimate the number r of factors for a par-
ticular data set, we may use the posterior mode r̃ of p(r|y), where p(r|y) is estimated by the
frequency distribution obtained from the MCMC draws.

Also the model size d, defined as the number of non-zero elements in Λ, i.e.

d =
k∑
j=1

djI{dj > 1}, dj =
m∑
j=1

δij. (23)

is unaffected by any of these identifiability problems. Model size could be estimated by the
posterior mode d̃ or the posterior mean E(d|y) of p(d|y).

Posterior draws for the parameter Σ0 and Λ in the factor model (1) as well as for δΛ,
where δΛ

ij is an indicator matrix for Λ, are obtained from δ, σ2
1, . . . , σ

2
m, and β through var-

ious identifications steps. First, we use Theorem 1 to handle potential overfitting and define
Σ0 = Diag(σ2

1, . . . , σ
2
m). For each column j of δ with only a single non-zero element in row lj ,

add β2
lj ,j

to the idiosyncratic variance of feature lj , i.e. (Σ0)lj ,lj = (Σ0)lj ,lj + β2
ls,j

and set the
jth column of δ and β equal to a zero column. Λ and δΛ are then recovered from β and δ by
deleting all zero columns. Since the resulting matrices only obey condition B1, the position of
the columns of Λ and δΛ is not unique.

Nevertheless, certain functionals of δΛ are invariant to column switching such as the number
Nv of distinct models δΛ visited by the search procedure and a ranking of these models in terms
of their frequency. Model selection could be based on the highest probability model (HPM)
which is the model defined by the indicator matrix δΛ

H visited most often and its frequency pH
which may be regarded as an estimator of the posterior probability of this model. An alternative
estimator of the number of factors r is given by the number rH of non zero columns in the HPM
and an alternative estimator for model size is given by the number dH of non-zero elements in
the HPM.

For further inference, we have to handle the column switching problem. To this aim, we
sort the columns of Λ and δΛ in such a way that the resulting row indices l = (l1, . . . , lr) of
the top non-zero elements are increasing and satisfy condition C2. However, column switching
might still be present among the draws of Λ and δΛ. This happens, for instance, if the draws
of l switch between l1 = (1, 2, 3) and l2 = (1, 3, 4). In this case, it is certain that 3 factors
are present, however, only for two columns is the position of the top non-zero element certain,
namely row 1 and row 3, while for the third column it is not certain whether the element in
the second row is different from 0. Ordering the columns according to C2 leads to column
switching, because the third column for all draws where l2 holds corresponds to the second
column for all draws where l1 holds.

A final step is needed to identify the position of the columns of Λ and δΛ, if l switches
during MCMC estimation, which is typically the case, because the number of factors r changes
as well between MCMC draws. To this aim, we determine the identifiability constraint l? =

(l?1, . . . , l
?
rM

) visited most often. For all MCMC draws corresponding to l?, i.e. the subsequence
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Λ? and (δΛ)? where l(m) = l? the positions of the columns is unique. Note that the MCMC
draws Λ? and (δΛ)? are draws from the conditional posterior of a rM -factor model obeying
Condition C2 with the corresponding sequence l?. We may then estimate for each indicator
the marginal inclusion probability Pr(δΛ

ij = 1|y, l?) under l? as the average over the elements
of (δΛ)?. Note that Pr(δΛ

lj ,j
= 1|y, l?) = 1 for j = 1, . . . , rM . Following Scott & Berger

(2006), we determine the median probability model (MPM) by setting the indicators δΛ
ij in δΛ

M

to 1 iff Pr(δΛ
ij = 1|y, l?) ≥ 0.5. The number of non-zero top elements rM in the identifiability

constraint l? is a third estimator of the number of factors, while the number dM of non-zero
elements in the MPM is yet another estimator of model size.

A discrepancy between the various estimators of the number of factors r is often a sign of
a weakly informative likelihood and it might help to use a more informative prior for p(r) by
choosing the hyperparameters a0 and b0 accordingly. Also the structure of the indicator matrices
δΛ
H and δΛ

M corresponding, respectively, to the HPM and the MPM may differ, in particular if
the frequency pH is small and some of the inclusion probabilities Pr(δΛ

ij = 1|y, l?) are close to
0.5.

Finally, we have to address sign switching for Λ?, because the non-zero factor loadings
Λij are identified only up to sign switching. Quantities which are invariant to sign switching
are the communalities R2

ij defined in (5) and, of course, (δΛ)?. We handle sign switching in
the posterior draws of Λ? in the following way. To obtain identification of the sign of the jth
column, we impose the constraint Λlj ,j > 0 for all lj . We used the top non-zero element in each
column for identification, however any element Λrj ,j with a high probability of being non-zero
will do. The most efficient way to force these constraints is post-processing the posterior draws
of Λ?: for each draw, perform a sign switch similar to Step (e) in the MCMC scheme for any
column j, where Λlj ,j < 0, and leave the signs unchanged, otherwise.

It may be of interest to perform posterior inference conditional on an arbitrary estimator r̂
and an arbitrary constraint C2 defined by l = (l1, . . . , lr̂). To this aim, the MCMC scheme
presented in Subsection 4.1 is started with k = r̂ and an indicator matrix δ obeying C2. During
MCMC estimation, Step (a-1) and (a-3) are skipped to keep k fixed and Step (a-2-1) is skipped
to hold (l1, . . . , lk) fixed. However, Step (a-2-2) is still performed to identify a parsimonious
structure for the remaining elements of the factor loading matrix. The columns of the resulting
posterior draws of Λ and δΛ are identified up to sign switching. This minor identifiability
problem is solved as above through the constraint Λlj ,j > 0, j = 1, . . . , k. The posterior draws
of δΛ could be used to determine a k-factor HPM and a k-factor MPM obeying C2.

5 Illustrative Applications

We consider both simulated as well as real data to evaluate our procedure. We choose k equal
to the maximum number of possible factor given by inequality (8), see Table 1, and tuned the
hyperparameters a0 and b0 for each case study in order to match the prior p(r|a0, b0, k,m) to
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Table 1: Number of features m, number of observations T , maximum number of possible
factors k, burn-in M0, number of posterior draws M , and runtime in CPU minutes (averaged
over priors) for the various case studies.

Data m k T M0 M CPU
Simulated 9 6 50/150/500 10,000 10,000 2.3/3.5/3.9
Exchange rate 6 3 143 10,000 50,000 5.7
Maxwell’s – neurotic 10 6 148 10,000 60,000 9.2
Maxwell’s – normal 10 6 810 30,000 300,000 74.2
Applicants 15 10 48 20,000 150,000 33.9

Table 2: Hyperparameters a0 and b0 and the corresponding prior distribution p(r|a0, b0, k,m)

(not reported for r = 0) for the various case studies
r

Data a0 b0 1 2 3 4 5 6 7 - 10
Simulated 0.2 0.3 0.098 0.242 0.312 0.228 0.089 0.015 -
Exchange rate 1 1 0.228 0.448 0.286 - - - -
Applicants 0.3 1.2 0.045 0.132 0.226 0.250 0.192 0.101 0.046
Maxwell’s 0.3 0.7 0.137 0.280 0.304 0.185 0.060 0.008 -

prior expectations concerning the number of factors, see Table 2.

We study sensitivity of factor selection with respect to prior choices. We combine our new
prior on the idiosyncratic variances where c0 = 2.5 and C0i is selected to avoid a Heywood
problem with various fractional priors, namely b = bN , and, if T < d(k,m)2/m, b = bR
as well as b = 10−p where p is a small integer. In addition, we study the conventional unit
scale prior/inverted Gamma prior where bδ

i0 = 0, Bδ
i0 = I, and, respectively c0 = 1.1 and

Ci0 = 0.055 (Lopes & West, 2004, LW) and c0 = 1 and Ci0 = 0.2 (Ghosh & Dunson, 2009,
GD).

We run the MCMC scheme described in Section 4 for M iterations after a burn-in phase
of M0 draws using parameter expansion based on the Gamma prior pj = qj = 0.1. We use
the inefficiency factor τd of the model size d defined in (23) to evaluate mixing of our MCMC
scheme, see also Table 4, 7, and 11, and adjust M accordingly. The MCMC setting and the
run times, averaged over priors, are summarized in Table 1. All implementation are carried out
using MATLAB (Version 7.3.0) on a notebook with a 2.0 GHz processor. During the first 100
iterations no variable selection is performed.
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5.1 Applications to Simulated Data

We reconsider a simulation study in Lopes & West (2004, Subsection 6.2), which was also
reconsidered in Ghosh & Dunson (2009). The data are simulated from a three-factor model with
9 variables, where a considerable fraction of the factor loadings is zero and the idiosyncratic
variances are rather unbalanced:

Λ
′
=

 0.99 0 0 0.99 0.99 0 0 0 0
0 0.95 0 0 0 0.95 0.95 0 0
0 0 0.9 0 0 0 0 0.9 0.9

 ,

(σ2
1, . . . , σ

2
9) =

(
0.02 0.19 0.36 0.02 0.02 0.19 0.19 0.36 0.36

)
.

We consider samples of size T = 50, T = 150, and T = 500, and simulate 50 data sets for each
T . Table 3 reports for each sample size T and for each prior the fraction of data set among the
50 simulated data set, for which the various estimators of the number of factors, namely r̃, rH ,
and rM were equal to the true value r = 3, and for which l?, the highest posterior identifiability
constraint, was equal to the true constraint C2 with l1 = 1, l2 = 2, and l3 = 3. In addition, the
table summarizes the averages of the various estimators of model size, namely d̃, dH and dM in
order to evaluate, if the true model size which is equal to d = 9 is over- or under estimated.

In most of the cases, the correct number of factors and the true identifiability constraint is
identified for all simulated data set, however the prior is very influential on model size. The
fixed scale priors used by Lopes & West (2004) and Ghosh & Dunson (2009) are overfitting
the model size, even if T is large. For fractional priors, the fraction b strongly controls parsi-
mony. Decreasing b, i.e. making the prior more vague, decreases model size and leads to more
parsimonious solutions. However, if b is too small, like b = 10−5, then the resulting model is
underfitting, even if T is large, while choosing b too large, like b = 10−2, leads to overfitting
models. For large T , b = bN gives the highest hit rate for δ. For small T , bR performs better
than bN , however, both for T = 50 and T = 150, a slightly smaller value than min(bN , bR),
namely b = 10−4, gives the best result.

To sum up, we find from this simulation study that our method not only selects the true
number of factors, but is also able to identify the true constraint identifiability constraint and
to reconstruct the finer structure of the factor loading matrix under factional priors. However,
the fraction b has to be selected carefully. If b is too small, then the model will be underfitting,
on the other hand, choosing b too large overfits model size. We identified b = bN and, if
T < d(k,m)2/m, b = bR, as well as the adjacent value b = 10−p, where p is the largest integer
smaller than − log10 min(bN , bR) as sensible values. The unit scale prior seems to be inferior to
the fractional prior in connection with model selection in factor models and leads to overfitting
models.
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Table 3: Simulation Study (m = 9, true number of factors r equal to 3) – evaluating model
and variable selection under different priors for 50 data sets simulated under different sample
sizes T ; hit rate (i.e. fraction of simulated time series where some estimator is equal to the
true value) for r based on the posterior mode r̃, the non-zero columns rH in the HPM and the
non-zero columns rM corresponding to the highest posterior identifiability constraint l?; hit rate
for the true constraint ltrue = (1, 2, 3) based on l?; hit rate for the entire 0/1 pattern in δΛ based
on δΛ

H corresponding to the HPM and δΛ
M corresponding to the MPM; finally, average estimated

model size d (the true model size being equal to 9) based on the posterior mode d̃, the HPM
(dH) and the MPM (dM ) and the average posterior frequency pH for the HPM.

T Prior r̃ rH rM l? δΛ
H δΛ

M d̃ dH pH dM
50 b = 10−2 1 1 1 1 0.56 0.48 11.5 10.2 0.083 10

bN = 2.2 · 10−3 1 1 1 1 0.86 0.86 9.76 9.16 0.297 9.16
b = 10−3 1 1 1 1 0.88 0.86 9.38 9.14 0.436 9.16
bR = 6.6 · 10−4 1 1 1 1 0.88 0.9 9.24 9.12 0.479 9.1
b = 10−4 1 1 1 1 0.98 0.98 9.04 9.02 0.75 9.02
b = 10−5 0.96 0.96 0.96 0.98 0.96 0.96 8.88 8.88 0.885 8.88
GD 1 1 1 1 0.66 0.54 12.2 10.7 0.059 10.3
LW 1 1 1 1 0.52 0.4 12.7 11.4 0.053 10.9

150 b = 10−2 1 1 1 1 0.74 0.6 11.4 10.1 0.093 9.94
b = 10−3 1 1 1 1 0.92 0.92 9.26 9.12 0.472 9.12
bN = 7.4 · 10−4 1 1 1 1 0.9 0.92 9.26 9.1 0.489 9.08
bR = 6.6 · 10−4 1 1 1 1 0.86 0.86 9.24 9.14 0.504 9.14
b = 10−4 1 1 1 1 0.94 0.96 9.08 9.06 0.742 9.04
b = 10−5 0.94 0.94 0.94 1 0.92 0.92 8.84 8.84 0.889 8.84
GD 1 1 1 1 0.84 0.78 10.4 9.26 0.18 9.3
LW 1 1 1 1 0.82 0.7 10.5 9.4 0.164 9.48

500 b = 10−2 1 1 1 1 0.66 0.48 11.4 10 0.088 10
b = 10−3 1 1 1 1 0.9 0.9 9.18 9.1 0.475 9.1
bR = 6.6 · 10−4 1 1 1 1 0.96 0.96 9.18 9.04 0.507 9.04
bN = 2.2 · 10−4 1 1 1 1 0.96 0.96 9.06 9.04 0.683 9.04
b = 10−4 1 0.98 1 1 0.9 0.94 9.06 9.02 0.73 9.06
b = 10−5 0.86 0.86 0.86 0.9 0.84 0.84 8.6 8.6 0.902 8.6
GD 1 1 1 1 0.88 0.88 9.52 9.12 0.361 9.12
LW 1 1 1 1 0.86 0.86 9.46 9.14 0.374 9.14
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Table 4: Exchange rate data; posterior distribution p(r|y) of the number r of factors (bold
number corresponding to the posterior mode r̃) and number of visited models Nv for various
priors; frequency pH , number of factors rH , and model size dH of the HPM; posterior proba-
bility p(l|y) of various identifiability constraints l (bold number corresponding to l?); number
of factors rM and model size dM of the MPM corresponding to l?; inefficiency factor τd of the
posterior draws of the model size d .

p(r|y) p(l|y)

Prior 1 2 3 Nv pH rH dH (1,3) (1,2) rM dM τd
b = 10−2 0 0.799 0.201 37 0.50 2 10 0.496 0.229 2 10 29.9
bN = 2.2 · 10−3 0 0.984 0.016 24 0.85 2 10 0.849 0.122 2 10 11.9
b = 10−3 0 0.974 0.026 15 0.89 2 10 0.813 0.139 2 10 23.0
GD 0 0.966 0.034 36 0.71 2 10 0.706 0.235 2 10 23.2
LW 0 0.944 0.056 37 0.69 2 10 0.687 0.227 2 10 17.8

5.2 Exchange Rate Data

We reanalyze the international exchange rate data studied in West & Harrison (1997, pp. 610-
618) and Lopes & West (2004). The data are the changes in monthly exchange rates during the
period 1/1975 to 12/1986, i.e. T = 143, for 6 currencies, namely US Dollar, Canadian Dollar,
Japanese Yen, French Franc, Italian Lira, and Deutsche Mark. The data are standardized with
respect to their mean and standard deviation. Selecting the number of factors for these data
was carried out in Lopes & West (2004), using reversible jump MCMC (RJMCMC) and several
approaches of computing the marginal likelihood, however, posterior inference turned out to be
not very conclusive. For instance, Chib’s estimator (Chib, 1995) selected a 3-factor model with
probability one, while RJMCMC gave posterior probabilities of 0.88 and 0.12 for a two and a
three-factor model, respectively.

Table 4 reports the posterior distribution p(r|y) of the number r of factor derived for various
priors using our new approach toward parsimonious factor modeling. Regardless of the prior,
all estimators of r (r̃, rH , rM ) choose a two-factor model. Depending on the prior, between
15 and 37 models were visited and the frequency pH of the HPM varies between 50% and
89%. All priors select the constraint C2 given by l? = (1, 3), however with differing posterior
probabilities. The indicator matrix δΛ

H corresponding to the HPM and the marginal inclusion
probabilities Pr(δΛ

ij = 1|y, l?) are reported for the fractional prior b = bN in Table 5.

Figure 1 shows that the posterior distributions of all idiosyncratic variances are unimodal
due to the specific prior developed in Subsection 3.2. On the other hand, multimodality occurs
under the improper prior c0 = 0 and Ci0 = 0.

To sum up, Table 4 leads to the conclusion to choose a 2-factor model and to force identifia-
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Table 5: Exchange rate data; marginal inclusion posterior probabilities Pr(δΛ
ij = 1|y, l?) for a

fractional prior with b = bN (bold elements correspond to the HPM).
δΛ
·1 δΛ

·1
US 1. 0
Can 1. 0
Yen 1. 1.
FF 1. 1.

Lira 1. 1.
DM 1. 1.

Table 6: Exchange rate data; posterior means of the factor loading matrix, the idiosyncratic
variances and the communalities for a two-factor model under the constraint C2 with l1 = 1

and l2 = 3; bold numbers correspond to non-zero elements in the factor loading matrix of the
2-factor HPM.

Currency E(Λi1|y, l?) E(Λi2|y, l?) E(σ2
i |y, l?) E(Ri1|y, l?) E(Ri2|y, l?)

US 0.96 0 0.081 91.8 0
Can 0.951 0 0.098 90.1 0
Yen 0.449 0.418 0.615 20.5 17.8
FF 0.395 0.889 0.053 16 78.7

Lira 0.415 0.764 0.241 17.5 58.3
DM 0.408 0.765 0.245 17 58.4

bility through the constraint l? = (1, 3). The constraint l? as well as the structure of δΛ
H and δΛ

M

reported in Table 5 reveal that the ordering of various exchange rates is “poor” in the sense that
the Canadian Dollar which is the second variable is not a suitable variable to lead the second fac-
tor, while any of the remaining exchange rates can take this place. Lopes & West (2004) came
to a similar conclusion and interchanged the Canadian Dollar and the Japanese Yen in order
to work with the conventional identifiability constraint on the main diagonal. Using our more
general identifiability constraint C2 reveals this information immediately and allows inference
without the need to reorder the variable.

We estimate a two-factor model using conditional MCMC for the fractional prior b = bN .
Based on l?, the sign of Λ is identified through the constraints Λ11 > 0 and Λ32 > 0. Table 6
shows the posterior means of the factor loading matrix, the idiosyncratic variances and the
communalities. The bold cells in E(Λ|y, l?) indicate factor loadings that are non-zero according
to the 2-factor HPM. As in Lopes & West (2004), we find that the first factor is a North American
factor while the second factor is a European factor.
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Figure 1: Exchange rate data; posterior densities p(σ2
i |y) of the idiosyncratic variances σ2

i for
the fractional prior b = bN .

Table 7: Maxwell’s Children Data - neurotic children; posterior distribution p(r|y) of the num-
ber r of factors (bold number corresponding to the posterior mode r̃) and highest posterior
identifiability constraint l? with corresponding posterior probability p(l?|y) for various priors;
number of visited models Nv; frequency pH , number of factors rH , and model size dH of the
HPM; number of factors rM and model size dM of the MPM corresponding to l?; inefficiency
factor τd of the posterior draws of the model size d.

p(r|y)

Prior 2 3 4 5 - 6 l? p(l?|y)

b = 10−3 0.755 0.231 0.014 0 (1,6) 0.532
bN = 6.8 · 10−4 0.828 0.160 0.006 0 (1,6) 0.623
bR = 4.9 · 10−4 0.871 0.127 0.001 0 (1,6) 0.589
b = 10−4 0.897 0.098 0.005 0 (1,6) 0.802
GD 0.269 0.482 0.246 0.003 (1,2,3) 0.174
LW 0.027 0.199 0.752 0.023 (1,2,3,6) 0.249

Prior Nv pH rH dH rM dM τd
b = 10−3 1472 0.20 2 12 2 12 30.9
bN = 6.8 · 10−4 976 0.27 2 12 2 12 27.5
bR = 4.9 · 10−4 768 0.34 2 12 2 12 22.6
b = 10−4 421 0.45 2 12 2 12 18.1
GD 4694 0.06 2 15 3 19 40.6
LW 7253 0.01 4 24 4 24 32.5
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Table 8: Maxwell’s Children Data - normal children; posterior distribution p(r|y) of the number
r of factors (bold number corresponding to the posterior mode r̃) and highest posterior identifi-
ability constraint l? with corresponding posterior probability p(l?|y) for various priors; number
of visited models Nv; frequency pH , number of factors rH , and model size dH of the HPM;
number of factors rM and model size dM of the MPM corresponding to l?; inefficiency factor
τd of the posterior draws of the model size d.

p(r|y)

Prior 3 4 5 6 l? p(l?|y)

b = 10−3 0 0.391 0.604 0.005 (1,2,4,5,6) 0.254
bN = 1.2 · 10−4 0 0.884 0.116 0 (1,2,4,5) 0.366
b = 10−4 0 0.891 0.104 0.005 (1,2,4,5) 0.484
GD 0 0.396 0.594 0 (1,2,4,5,6) 0.229
LW 0 0.262 0.727 0.011 (1,2,4,5,6) 0.259

Prior Nv pH rH dH rM dM τd
b = 10−3 4045 1.79 5 26 5 27 30.1
bN = 1.2 · 10−4 1272 11.41 4 23 4 23 28.5
b = 10−4 1296 12.17 4 23 4 23 29.1
GD 4568 1.46 5 29 5 28 32.7
LW 5387 1.56 5 28 5 28 30.7

5.3 Maxwell’s Children Data

In our next example we reanalyze two data sets considered in Maxwell (1961) which are scores
on 10 tests for a sample of T = 148 children attending a psychiatric clinic as well as a sample
of T = 810 normal children. The first five tests are cognitive tests – (1) verbal ability, (2)
spatial ability, (3) reasoning, (4) numerical ability and (5) verbal fluency. The resulting tests
are inventories for assessing orectic tendencies, namely (6) neurotic questionaire, (7) ways to
be different, (8) worries and anxieties, (9) interests and (10) annoyances. While psychological
theory suggests that a 2-factor model is sufficient to account for the variation between the test
scores, the significance test considered in Maxwell (1961) suggested to fit a 3-factor model to
the first and a 4-factor model to the second data set. For the second data set, a Heywood problem
is present for k = 4 and ML estimation leads to an improper solution with the idiosyncratic
variance σ2

8 being virtually 0. After eliminating variable y8·, Maxwell (1961) and Jöreskog
(1967) fitted a three factor model to the remaining data. A reanalysis of these data in Ihara &
Kano (1995) suggests that a three factor model should also be appropriate for the entire data
set.

We compare these results with parsimonious factor modeling. The paper by Maxwell (1961)
provides only the m×m correlation matrix for both groups of children, which is sufficient for
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Table 9: Maxwell’s Children Data; marginal inclusion posterior probabilities Pr(δΛ
ij = 1|y, l?)

(bold elements correspond to the HPM); left hand side: neurotic children based on C2 given by
l1 = 1, l2 = 6 and the fractional prior b = bR; right hand size: normal children, based on C2
given by l1 = 1, l2 = 2, l3 = 4, and l4 = 5 and the fractional prior b = bN .

j

Test i 1 2
1 1 0
2 1 0
3 1 0
4 1 0
5 1 0
6 0.313 1
7 0.964 1
8 0.178 1
9 0.915 0.996

10 0.157 0.999

j
Test i 1 2 3 4

1 1 0 0 0
2 1 1 0 0
3 1 0.999 0 0
4 1 0.935 1 0
5 1 0.186 0.018 1
6 1 0.661 0.016 1
7 1 0.308 1 1
8 1 0.044 0.207 1
9 1 0.197 0.036 1

10 1 0.072 1 1

Table 10: Maxwell’s Children Data – neurotic children; posterior means of the factor loading
matrix, the idiosyncratic variances and the communalities for a 2-factor model based on C2
given by l1 = 1, l2 = 6 and the fractional prior b = bR.

Test i E(Λi1|y) E(Λi2|y) E(σ2
i |y) E(Ri1|y) E(Ri2|y)

1 0.836 0 0.282 71.2 0
2 0.605 0 0.482 43.2 0
3 0.713 0 0.491 50.8 0
4 0.626 0 0.541 42 0
5 0.679 0 0.447 50.7 0
6 -0.117 0.615 0.526 2.7 40.9
7 -0.337 0.634 0.562 11.1 37.3
8 -0.064 0.671 0.428 1.3 50.6
9 -0.32 0.421 0.838 9.81 16.4
10 -0.057 0.411 0.789 1.1 18
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Figure 2: Maxwell’s Children Data – normal children; posterior densities p(σ2
i |y, l?) of the

idiosyncratic variances σ2
i for a 4-factor model based on C2 given by l1 = 1, l2 = 2, l3 = 4,

and l4 = 5 and the fractional prior b = bN .

carrying out ML estimation. However, since we need a complete data set for our Bayesian
analysis, we simulated two data sets of size T = 148 and T = 810, respectively, from a multi-
variate normal distribution having exactly the same correlation matrices as the ones published
by Maxwell (1961) in Table 1 for neurotic and in Table 4 for normal children.

Table 7 and Table 8 report for both data sets the posterior distribution p(r|y) for different
priors. For the neurotic children, all estimators select a two factor model under the various
fractional priors and the HPM and the MPM coincide, see Table 9 for b = bR. The highest
posterior identifiability constraint l? is given by l1 = 1 and l2 = 6. In comparison to that,
the fixed scale priors are overfitting the number of factors and strongly overfit the number of
non-zero factor loadings.

For the normal children we find that the prior is very influential on model size. The number
of factors is equal to 4 for those priors that performed best for the simulated data considered in
Subsection 5.1, namely b = bN and b = 10−4, while the other priors choose a 5-factor model.
None of the priors supports a three-factor model. Whenever a 4-factor model is selected, the
highest posterior identifiability constraint l? is given by l1 = 1, l2 = 2, l3 = 4, and l4 = 5.

The structure of δΛ reported in Table 9 reveals that for both data sets the ordering of the test
scores would have been a poor choice under the conventional identifiability constraint on the
main diagonal. Our procedure is robust in this respect and indicates that the scores are grouped
and others than the first cognitive scores are leading the factors. To sum up, we decided to
choose a 2-factor model with C2 given by l1 = 1 and l2 = 6 for the neurotic children and a
4-factor model with C2 given by l1 = 1, l2 = 2, l3 = 4, and l4 = 5 for the normal children.
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Table 11: Kendall’s Applicants Data; posterior distribution p(r|y) of the number r of factors
(bold number corresponding to the posterior mode r̃) and highest posterior identifiability con-
straint l? with corresponding posterior probability p(l?|y) for various priors; number of visited
models Nv; frequency pH (in percent), number of factors rH , and model size dH of the HPM;
number of factors rM and model size dM of the MPM corresponding to l?; inefficiency factor
τd of the posterior draws of the model size d.

p(r|y)

Prior 2 3 4 5 6 7 -8 l? p(l?|y)

b = 10−2 0 0 0.004 0.647 0.291 0.058 (1,2,3,4,6) 0.605
bN = 1.4 · 10−3 0 0.007 0.052 0.876 0.064 0.001 (1,2,3,4,6) 0.826
b = 10−3 0 0 0.062 0.901 0.037 0 (1,2,3,4,6) 0.82
b = 10−4 0 0.176 0.524 0.296 0.004 0 (1,2,4,6) 0.378
bR = 9.1 · 10−5 0 0.155 0.494 0.346 0.006 0 (1,2,4,6) 0.329
b = 10−5 0.084 0.835 0.081 0 0 0 (1,2,4) 0.721
GD 0 0.145 0.832 0.022 0 0 (1,2,3,4) 0.813
LW 0 0.01 0.831 0.157 0.002 0 (1,2,3,4) 0.781

Prior Nv 100pH rH dH rM dM τδ
b = 10−2 14855 0.0467 5 36 5 33 19.8
bN = 1.4 · 10−3 11569 0.46 5 28 5 27 18.3
b = 10−3 10647 0.55 5 25 5 27 16.8
b = 10−4 3935 1.96 4 21 4 22 38.2
bR = 9.1 · 10−5 5411 1.72 3 18 4 22 38.2
b = 10−5 1632 10.87 3 17 3 17 28.
GD 14667 0.09 4 34 4 35 22.1
LW 14733 0.09 4 35 4 36 15.5

Table 10 shows the posterior means of the factor loading matrix Λ, the idiosyncratic vari-
ances and the communalities for the neurotic children. The bold cells in the factor loading
matrices indicate factor loadings that are non-zero according to the 2-factor HPM. The column
signs are identified through the constraint Λ11 > 0 and Λ62 > 0. As in Maxwell (1961), we
find that the first factor corresponds to cognitive abilities, while the second factor corresponds
to orectic tendencies.

Finally, Figure 2 shows for the normal children that in contrast to Maxwell (1961) the pos-
terior distributions of all idiosyncratic variances are unimodal and that also the posterior of σ2

8

is bounded away from 0. This again demonstrates the usefulness of the specific prior developed
in Subsection 3.2.

26



Table 12: Kendall’s Applicants Data; inclusion probabilities for the indicator matrix δΛ (frac-
tional prior with b = bR).

(i, j) 1 2 3 4
1 application letter 1 0 0 0
2 appearance 0.01 1 0 0
3 academic ability 0.015 0.024 0 0
4 likeability 0.083 0.263 1 0
5 self confidence 0.974 1 0.007 0
6 lucidity 0.516 1 0.011 1
7 honesty 0.292 0.092 0.998 0.002
8 salesmanship 0.017 1 0.005 0.003
9 experience 1 0.047 0.005 0.002

10 drive 0.217 1 0.004 0.007
11 ambition 0.047 1 0.004 0.007
12 grasp 0.26 1 0.008 0.999
13 potential 0.057 1 0.529 0.57
14 keenness to join 0.019 0.902 0.986 0.008
15 suitability 1 0.956 0.008 0.005

5.4 Kendall’s Applicants Data

Our final example are data considered in Press & Shigemasu (1989, Table 1) and Rowe (2003,
Table 9.2) which are scores on a ten-point scale on 15 characteristics of T = 48 applicants. Press
& Shigemasu (1989) postulated that a 4 factor model is appropriate for these data and we want
to compare this finding with parsimonious factor modeling. As in Press & Shigemasu (1989),
the data are standardized. Table 11 reports the posterior distribution p(r|y) of the number r
of factors for different priors. The prior is very influential on model size for this data set and
the number of estimated factors ranges from 3 to 5. Fractional priors based on b = bR and
b = 10−4 as well as the unit scale priors chooses a 4 factor model. The unit scale priors support
the standard triangular identifiability constraints, however, these priors lead to larger models
than the two fractional priors which support the identifiability constraint l1 = 1, l2 = 2, l3 = 4,
and l4 = 6.

For all priors but the fractional prior with b = 10−5 the frequency of the HPM is extremely
small (often smaller than one percent) and the HPM is different from the MPM. The inclusion
probabilities for various indicators in the factor loading matrix are close to 0.5, see Table 12
for the fractional prior bR. A more detailed investigation (results not reported) revealed that the
various priors exercise a strong influence on these probabilities some of which are bigger than
0.5 for some priors and smaller than 0.5 for others. Hence the decision which factor loadings
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Table 13: Kendall’s Applicants Data; posterior means of the factor loading matrix, the idiosyn-
cratic variances and the communalities (in percent) for a 4-factor model with b = bR under the
constraint C2 given by l1 = 1, l2 = 2, l3 = 4, and l4 = 6.

Parameter Communality
i Item Λi1 Λi2 Λi3 Λi4 σ2

i E(Ri1) E(Ri2) E(Ri3) E(Ri4)
1 application letter 0.643 0 0 0 0.556 42.7 0 0 0
2 appearance 0.008 0.361 0 0 0.819 0.26 15.2 0 0
3 academic ability 0.009 -0.001 0 0 0.947 0.29 0.03 0 0
4 likeability 0.008 0.895 0.102 0 0.102 0.25 85.4 3.6 0
5 self confidence -0.339 -0.001 0.976 0 0.12 10.3 0.01 79.4 0
6 lucidity -0.126 0.004 0.867 0.082 0.105 2.75 0.07 71.4 15.5
7 honesty -0.165 0.687 0.03 0.000 0.465 5.6 47.7 0.97 0.02
8 salesmanship -0.000 -0.001 0.933 -0.000 0.126 0.1 0.01 87 0.01
9 experience 0.774 -0.001 0.012 0.000 0.379 60.7 0.02 0.4 0.02
10 drive 0.094 0.000 0.836 0.002 0.223 2.9 0.01 73.2 0.07
11 ambition -0.011 -0.000 0.915 0.001 0.16 0.2 0.01 83.4 0.03
12 grasp 0.068 0.002 0.783 0.163 0.054 1.9 0.07 65 27.2
13 potential 0.026 0.205 0.737 0.191 0.178 0.82 8.1 62.9 7.3
14 keenness to join 0.004 0.525 0.397 -0.001 0.386 0.13 34.2 21.3 0.06
15 suitability 0.738 0.001 0.355 0.001 0.168 63.6 0.03 16.5 0.02

are zero or not is not easy for this data set and explains the extreme variability of the model
sizes dH and dM in Table 11 across the various priors.

We decided to investigate a model with 4 factors under the constraint C2 given by l1 =

1, l2 = 2, l3 = 4, and l4 = 6 in more detail and reran MCMC as described at the end of
Subsection 4.2 for a fractional prior with b = bR. Table 13 shows the factor loading matrix, the
idiosyncratic variances and the communalities. Based on l?, identifiability is achieved through
the constraint Λ11 > 0, Λ22 > 0, Λ43 > 0, and Λ64 > 0. When analyzing which factors
have high communalities for the different items we find a similar interpretation of the factors as
Rowe (2003, Table 9.6), namely that factor 1 is a measure of position match (application letter,
experience, suitability), factor 2 could be described as charisma (likeability, honesty, keenness
to join), and factor 3 is measure of personality (self confidence, lucidity, salesmanship, drive,
ambition, grasp, potential).

6 Conclusion

We introduced a new approach to Bayesian inference and Bayesian model search for the impor-
tant class of Gaussian factor models. Our main contributions are two-fold. First, we lay down
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a new and general set of identifiability conditions that handles the ordering problem present in
most of the current literature. This leads directly to our second main contribution, i.e. a new
strategy for searching the space of parsimonious/sparse factor loading matrices. To that end,
we designed a highly computationally efficient MCMC scheme for posterior inference which
makes several improvements over the existing alternatives while outlining various strategies for
conditional posterior inference in a factor selection scenario. In additional, the prior specifi-
cation for all model parameters is carefully studied with particular emphasis to a) analyzing
the prior influence on our factor selection scheme, b) avoiding the Heywood problem (negative
idiosyncratic variances), and c) studying alternative prior specifications for the components of
the factor loading matrix that tackle underfitting and overfitting situations. Our applications
offer strong empirical evidence that our method is able to select the true number of factors. It is
also able to pinpoint the true identifiability constraint and reconstruct the structure of the factor
loading matrix.

A Appendix A: Proof of Theorem 1

It is possible to embed the true model (1) in a regression-type representation with k potential
factors by permuting the columns of Λ arbitrarily and adding k − r zeros columns in between
these columns at arbitrary positions. Denote the resulting coefficient matrix by β0. Subse-
quently we refer to zero columns of β0 as the “unidentified” columns, while the remaining
columns of β0 are called “identified”.

From Geweke & Singleton (1980) we known that, since β0 has rank r < k, there exists a
k × (k − r) matrix Q such that

β0Q = Om×(k−r), (24)

Q
′
Q = Ik−r, and, for any m× (k − r) dimensional matrix M with mutually orthogonal rows,

β = β0 + MQ
′
. (25)

Split the columns of β in the following way: let β1 denote the m × r submatrix containing
the identified columns and let β2 denote the m × (k − r) submatrix containing the remaining
columns. Note that the corresponding submatrices of β0 are Λρ, where Λρ is obtained from Λ

by permuting the columns, and a zero matrix by construction. Split the rows of Q in a similar
way. Let Q1 and Q2 denote those submatrices of size r × (k − r) and (k − r)× (k − r) which
contain, respectively, the rows corresponding to the identified and the non-identified columns.
Then we obtain from (25):

β1 = Λρ + MQ
′

1, (26)

β2 = MQ
′

2. (27)
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Because β0Q = ΛρQ1, we obtain from (24) that ΛρQ1 = Om×(k−r) and therefore (Λρ)
′
ΛρQ1 =

Or×(k−r). Since rank
(
(Λρ)

′
Λ
)

= rank(Λρ) = rank(Λ) = r it follows that (Λρ)
′
Λρ is invertible

and therefore Q1 = Or×(k−r). Consequently, the matrix MQ
′
1 appearing in (26) is equal to a

zero matrix,

MQ
′

1 = Om×r, (28)

which proves the part (a) of our theorem, because β1 = Λρ + MQ
′
1 = Λρ. Furthermore,

because Q
′
Q = Q

′
1Q1 + Q

′
2Q2 = Ik−r and Q

′
1Q1 = O(k−r)×(k−r) we obtain

Q
′

2Q2 = Ik−r. (29)

To prove part (b) and (c), we recall that β obeys condition B1. Hence, rank(β) = rank(Λ) + s,
where s is equal to the number of non-zero columns among the non-identified columns of β.

If rank(β) = rank(Λ), then s = 0 which means that all non-identified columns of β are
zero columns and consequently β2 = Om×(k−r). From (27) we obtain that MQ

′
2 = Om×(k−r).

Together with (28) we obtain: MM
′

= MQ
′
QM

′
= Om×m. This proves part (b) of our

theorem.

If s = rank(β) − rank(Λ) > 0, then exactly k − r − s among the k − r columns of β2

are zero columns, while the remaining s columns are non-zero columns. Let j1, . . . , js denote
the index of these columns in β. Let A denote the m × s matrix containing these columns
and let r1, . . . , rs denote the row indices of the top non-zero element in each column of A, i.e.
Arl,l = βrl,jl 6= 0 for l = 1, . . . , s. Using (27) and (29) we obtain:

AA
′
= β2β

′

2 = MQ
′

2Q2M
′
= MM

′
= D, (30)

where D is a m×m diagonal matrix with rank(D) = rank(β3) = s.

Now let L denote the s×smatrix formed from the rows r1, . . . , rs of A and let B denote the
(m− s)× s matrix formed from the remaining rows. Evidently, L is a lower triangular matrix
with diagonal elements Lll = βrl,jl 6= 0 for l = 1, . . . , s and therefore of full rank. We obtain
from (30):

LL
′
= D̃, (31)

LB
′
= O(k−s)×(m−s), (32)

where D̃ is a s × s diagonal matrix with rank
(
D̃
)

= rank(L) = s formed from the elements
Dj1,j1 , . . . , Drs,rs of D. It follows from (31) that L is the Cholesky decomposition of a diagonal
matrix of rank s and therefore a diagonal matrix of full rank. Multiplying (32) by L−1 yields
B = O(m−s)×s. Therefore, the elements Arl,l = βrl,jl , l = 1, . . . , s are the only non-zero
elements of A. Since the lth column ofA is identical with the jlth column of β, we obtain that
the jlth column of β is equal to 0 apart from element βrl,jl . Finally, combining (7) and (30), we
obtain Σ = Σ0 −D. This proves part (c) of our theorem.
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B Appendix B: Details of MCMC Estimation

B.1 Full Conditional Posteriors

The parameters (βδ
i·, σ

2
i ) are independent a posteriori across rows given f . The posterior dis-

tribution p(βδ
i·, σ

2
i |y, f , δ) is derived from the “regression model” (15). The precise form of

the posterior moments depends on the number of non-zero elements in the ith row of β, i.e.
qi =

∑k
j=1 δij .

For any zero row, i.e. if qi = 0, we are dealing in (15) with a “null” model without regressors.
Hence the posterior of σ2

i is given by

σ2
i |ỹi, f ∼ G−1 (cnT , C

n
iT ) , (33)

cnT = c0 +
T

2
, Cn

iT = Ci0 +
1

2

T∑
t=1

y2
it. (34)

For all remaining rows, i.e. if qi > 0, the joint posterior of (βδ
i·, σ

2
i ) is given by:

σ2
i |ỹi, f ∼ G−1

(
cT , C

δ
iT

)
, (35)

βδ
i·|σ2

i , ỹi, f ∼ N
(
Bδ
iTmδ

iT ,B
δ
iTσ

2
i

)
, (36)

where the moments depend on the prior chosen for βδ
i·. Under the fractional prior

(Bδ
iT )−1 = (Xδ

i )
′
Xδ
i , mδ

iT = (Xδ
i )
′
ỹi, cT = c0 +

(1− b)T
2

, (37)

Cδ
iT = Ci0 +

(1− b)
2

(
ỹ
′

iỹi − (mδ
iT )
′
Bδ
iTmδ

iT

)
, (38)

otherwise:

(Bδ
iT )−1 = (Bδ

i0)−1 + (Xδ
i )
′
Xδ
i , mδ

iT = (Bδ
i0)−1bδ

i0 + (Xδ
i )
′
ỹi, (39)

cT = c0 +
T

2
, (40)

Cδ
iT = Ci0 +

1

2

(
ỹ
′

iỹi + (bδ
i0)
′
(Bδ

i0)−1bδ
i0 − (mδ

iT )
′
Bδ
iTmδ

iT

)
. (41)

The marginal likelihood p(ỹi|δi,·, f) of each regression model (15) is relevant for sampling the
indicators δi,· in row i. If all elements of δi,· in row i are 0, i.e qi = 0, then the marginal
likelihood simplifies to

p(ỹi|δi,·, f) =
Γ(cnT )(Ci0)c0

(2π)T/2Γ(c0)(Cn
iT )c

n
T
, (42)

where cnT and Cn
iT are the posterior moments of σ2

i under a “null” model, given by (33). If
at least one element of δi,· is different from 0, then the marginal likelihood reads under the
fractional prior:

p(ỹi|δi,·, f) =
bqi/2Γ(cT )(Ci0)c0

(2π)T (1−b)/2Γ(c0)(Cδ
iT )cT

, (43)
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while for any other prior the marginal likelihood is given by:

p(ỹi|δi,·, f) =
1

(2π)T/2
|Bδ

iT |1/2

|Bδ
i0|1/2

Γ(cT )(Ci0)c0

Γ(c0)(Cδ
iT )cT

, (44)

where Bδ
iT , cT and Cδ

iT are the posterior moments of p(βδ
i·, σ

2
i |δi·, ỹi, f) given by (35) and (36).

B.2 Joint Sampling of idiosyncratic variances and factor loadings

Joint sampling all idiosyncratic variances and all factor loadings for a multi-factor model is
quite challenging, but feasible. As in Appendix B.1, we distinguish between zero rows (qi = 0)
and non-zero rows (qi > 0) in β. Joint sampling of the idiosyncratic variances for all zero rows
is easily vectorized using (33).

Let i1, . . . , in be the indices of the non-zeros rows of β, i.e. qij > 0 for j = 1, . . . , n with
n being the total number of non-zero rows. Let βδ = (βδ

i1·, . . . ,β
δ
in·) be a vector obtained by

stacking row by row all non-zero elements in each row. Let dδ =
∑

i qi be the total number of
non-zero elements in βδ.

To sample the idiosyncratic variances σ2
i1
, . . . , σ2

in and the non-zero factor loadings βδ

jointly, we proceed in the following way:

1. Construct the information matrix P and the covector m of the joint posterior

βδ|σ2
i1
, . . . , σ2

in , f ,y ∼ Ndδ

(
P−1m,P−1D

)
.

D = Diag
(
σ2
i1

11×qi1 · · ·σ
2
in11×qin

)
, with 11×l being a 1×l row vector of ones, is a dδ×dδ

diagonal matrix containing the idiosyncratic variances, while the dδ × dδ matrix P and
the dδ × 1 vector m are given by:

P =


(Bδ

i1,T
)−1 O · · · O

O (Bδ
i2,T

)−1 . . . ...
... . . . . . . O

O · · · O (Bδ
in,T

)−1

 , m =

 mδ
i1,T
...

mδ
in,T

 ,

where (Bδ
ij ,T

)−1 and mδ
ij ,T

are the information matrix and the covector appearing in the
posterior (36) of the non-zero elements in row ij . P is a sparse band matrix with maximal
band width equal to max qij .

2. Compute the Cholesky decomposition P = LL
′ , where L is lower triangular, using a

special algorithm developed for band matrices. Next, solve Lx = m for x using an
algorithm specially designed for triangular matrices. Evidently, x is a dδ × 1 vector.
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3. Sample σ2
i1
, . . . , σ2

in jointly from (35) where for each j = 1, . . . , n the posterior scale
parameter Cδ

ij ,T
is obtained from x through:

(mδ
i,T )

′
Bδ
iTmδ

i,T = x
′

ij
xij , (45)

with xij being the qij dimensional sub vector of x corresponding to βδ
ij ,·.

4. Finally, define the diagonal matrix D from σ2
i1
, . . . , σ2

in as described above and draw z ∼
Ndδ

(0,D). Solving the system

L
′
βδ = x + z (46)

for βδ leads to a draw from the joint posterior βδ|σ2
i1
, . . . , σ2

in ,y, f .

Proof. Let Lij be the qij × qij sub matrix of L corresponding to βδ
ij ,·. Evidently, Lij is equal to

the Cholesky decomposition of the individual information matrix (Bδ
ij ,T

)−1. Furthermore, the
qij dimensional sub vector xij corresponding to βδ

ij ,· satisfies Lijxij = mδ
ij ,T

. Therefore:

x
′

ij
xij = (mδ

ij ,T
)
′
(L
′

ij
)−1L−1

ij
mδ

ij ,T
= (mδ

ij ,T
)
′
(LijL

′

ij
)−1mδ

ij ,T
= (mδ

ij ,T
)
′
Bδ
ij ,T

mδ
ij ,T

.

This proves (45). Next, we prove that the solution βδ of (46) is a posterior draw. Note that
LL

′
βδ = Lx + Lz = m + Lz. Therefore

βδ = (LL
′
)−1m + (LL

′
)−1Lz = P−1m + (L

′
)−1z.

It follows immediately that βδ ∼ Ndδ
(P−1m,P−1D), because E(βδ) = P−1m and V(βδ) =

(L
′
)−1DL−1 = (L

′
)−1L−1D = P−1D, because DL−1 = L−1D.

B.3 Joint Sampling of All Indicators in a Column

To derive Oij , the marginal likelihoods p(ỹi|δi,·, f) may be computed both for δij = 0 and
δij = 1 individually for each row i = 1, . . . ,m as in Appendix B.1, however, this is very
inefficient, if m is large. Subsequently, we show that it is possible to compute the log posterior
odd for all indicators in column j jointly in a very efficient manner.

In (19), the ratio of the marginal likelihoods where δij switched between 1 and 0 is required.
The precise form of this ratio depends on the remaining indicators δi,−j in row i. It is easy to
vectorize the computation of Oij for all rows i , where

∑
l 6=j δil = 0, i.e. if all elements of

δi,−j are zero. Because we are dealing with a “null”model under δij = 0 and a one-dimensional
factor model under δij = 1 computation of the log odds Oij is easy using (42) – (44):

log
p(ỹi|δij = 1, δi,−j, f)

p(ỹi|δij = 0, δi,−j, f)
= log

Γ(cT )(Cn
iT )c

n
T

Γ(cnT (CiT )cT
+Bi, (47)
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where Bi = 0.5 log(b(2π)bT ) for a fractional prior and Bi = 0.5 log(BiT/Bi0,jj), where Bi0,jj

is jth diagonal element of Bi0, for any other prior. cnT and Cn
iT are the posterior moments of the

null model, see (33), while CiT and BiT are the posterior moments for δij = 1 and simplify for
a fractional prior to

CiT = Ci0 +
(1− b)

2

T∑
t=1

(yit − fjtbiT )2, biT =

(
T∑
t=1

fjtyit

)
/

(
T∑
t=1

f 2
jt

)
,

and for any other prior to:

BiT = Bi0,jj/(Bi0,jj +
T∑
t=1

f 2
jt), biT = BiT (bi0,j/Bi0,jj +

T∑
t=1

fjtyit)

CiT = Ci0 +
1

2

T∑
t=1

(yit − fjtbiT )2 +
1

2Bi0,jj

(biT − bi0,j)2.

It is also possible to vectorize the computation of the ratio of the marginal likelihoods for the
remaining rows i ∈ {i1, . . . , in}, where at least one element of δi,−j is different from zero.
Using (43) and (44), the ratio reads:

log
p(ỹi|δij = 1, δi,−j, f)

p(ỹi|δij = 0, δi,−j, f)
= cT log

C0
iT

CiT
+Bi,

whereBi = 0.5 log b for a fractional prior andBi = 0.5 log(|BiT |/|B0
iT |)−0.5 log(|Bi0|/|B0

i0|)
for any other prior. Here CiT , BiT and Bi0 refer to a model where δij = 1, while C0

iT , B0
iT and

B0
i0 refer to a model where δij = 0. To compute all relevant posterior moments simultaneously,

we proceed in the following way:

1. Set in each row i1, . . . , in the indicator δil,j = 1. Reorder the columns of the factor
loading matrix in such a way, that the jth column appears last. This is simply done
by permuting the column of F appropriately before defining Xδ

il
. While the fractional

prior is not affected by this, it might be necessary to reorder the prior mean and the prior
covariance matrix for alternative priors.

2. Set up the information matrix P and the covector m of the corresponding joint posterior of
all non-zero factor loadings in the rows i1, . . . , in as described in Appendix B.2. Compute
the Cholesky decomposition L of P and the corresponding vector x solving Lx = m.

3. Knowing L and x, a vectorized computation of the log ratio (47) for all rows i ∈ {i1, . . . , in}
is possible. The posterior moments Cil,T are directly available from the appropriate sub
vectors xil of x, see (45). When we switch to a model where δil,j = 0, then for the
fractional prior

C0
il,T

= Cil,T +
1− b

2
(x?il)

2, (48)
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while for any other prior:

C0
il,T

= Cil,T +
1

2
(x?il)

2, (49)

where x?il = (xil)qil is the last element of xil . Furthermore,

0.5 log(|Bil,T |/|B0
il,T
|) = − logL?il , (50)

where L?il = (Li)qil ,qil is the last diagonal element of the submatrix Lil .

Proof of 3. When we switch to a model where the indicators are 0, then the information matrix
P0 and the covector m0 of the joint posterior of the remaining non-zero factor loadings is ob-
tained from P and m simply by deleting all rows (and columns) corresponding to δi1,j, . . . , δin,j ,
and the Cholesky decomposition L0 of P0 is obtained from L in the same way. Also the vec-
tor x0 solving L0x0 = m0 is obtained from x simply by deleting the rows corresponding to
δi1,j, . . . , δin,j . This last result is easily seen by considering the subsystem Lilxil = mδ

il,T
cor-

responding to the ilth row. Because

Lil =

(
L0
il

O

lil (Li)qil ,qil

)
, (51)

we obtain L0
il
x0
il

= m0
il

, where x0
il

is obtained from xil by deleting the last element x?il = (xil)qil .
Hence, x0

il
defines the desired subvector of x0 to compute C0

il,T
as in (45). Since (x0

il
)
′
x0
il

=

x
′
il
xil − (xil)

2
qil

we obtain from (35) that (48) and (49) hold. Note, however, that this simple
relationship would not hold without reordering the columns as described above.

Finally, to compute the marginal likelihood for a standard prior, the ratio of the determinants
|Bil,T |/|B0

il,T
| is required. Since the lower triangular matrices Lil and L0

il
are, respectively, the

Cholesky decomposition of B−1
il,T

and (B0
il,T

)−1, we obtain:

1/|Bil,T |1/2 = |(Bil,T )−1|1/2 = |Lil |, (52)

where |Lil | is the product of the diagonal elements of Lil . Computing |B0
il,T
| in the same ways

and using (51) proves (50).
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