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Our contribution

» We propose a modification of the Bayesian Causal Forest
model (Hahn et al., 2020) — itself an extension of the BART
model of Chipman et al. (2010) — which uses a novel
regression tree prior that incorporates the unique structure of
regression discontinuity designs.

» We show that unmodified BART models estimate RDD
treatment effects poorly, while our modified model accurately
recovers treatment effects at the cutoff.

» At the same time, the model retains the inherent flexibility of
all BART-based models, allowing it to effectively explore
heterogeneous treatment effects.

» We illustrate the new method by analyzing data studied
originally by Lindo et al. (2010) to estimate the effect of
academic probation on university students’ GPA



Regression Discontinuity Designs

Let Z be a binary treatment variable and X be a variable defining
the treatment assignment, i.e. X is the the running variable:

0, if Xi <c
Z"_{l, if X; >c

for some cutoff value c.

The distribution of Y, the outcome, conditional on X is assumed to
be smooth.

The effect of the treatment is measured by the size of the
discontinuity at c.



We use BART models to “learn” the two curves

2nd Year GPA

1st Year GPA

Figure 1: Effect of 1st year GPA cutoff on 2nd year GPA.



RDD - potential outcomes

Let Y;i(z;) denote the potential outcome when Z; = z;. We observe
only
Y = Vi1)Z 1 Yi(0)(1 - Z). 1)

The running variable and covariates, (Xj, w;), are assumed to be
unaffected by the treatment.

The motivation behind the RDD is the assumption that individuals
who lie just above or just below the cutoff must be very similar
except for the treatment assignment.

In this case, the cutoff rule acts as a randomization device for these
units. Therefore, interest lies in treatment effects at the cutoff.



RDD - ATE

We consider some comparison between

E[Y:|Zi=0,X;=c] and E[Y;|Z;=1,X;=c].

We focus on the difference in expected potential outcomes:

TS = E[Y,‘Z, = l,X,' = C,W,‘] — ]E[Y,‘Z, = O,X,' = C,W,‘]. (2)

While the second term in expression (2) is never observed, under
the assumption that the distribution of Y; is smooth in X;, the
treatment effect may be estimated as a limit:

TS = |I£T1E[Y,‘X, = X,W,‘] - |I?’IE[Y,‘X, = X,W,’].



RDD

The treatment effect can be estimated by estimating conditional
expectation functions E[Y;|X;, w;|, both above and below the
cutoff and taking a difference at the point X = c.

The most common estimation strategy is to perform a local
polynomial regression of Y on X with a bandwidth choice that
asymptotically minimizes the mean-squared error (MSE) of the
predictions (Hahn et al., 2001; Imbens and Kalyanaraman, 2012).

Controlling for covariates can increase precision in the estimation
and make the assumption that individuals near the cutoff are similar
more credible (Calonico et al., 2019).



CATE

Estimation of conditional average treatment effects (CATE) from
RDD data is a bit more subtle, as interacting many covariates with
the running variable quickly leads to high-variance estimators.

Our contribution: In this respect, Bayesian regression trees, which
incorporate interactions in a data-driven but regularized way, are a
natural framework to pursue.



Brief BART review

Letting f(x) = E(Y | X = x) denote a smooth function of a
covariate vector X, the BART model is traditionally written

=f(x) +ei

k
3
Z x,, mj + € ()
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where ¢; ~ N(0,02) is a normally distributed additive error term

gj(x; Tj, m;): piecewise function of x defined by a set of splitting
rules T that partitions the domain of x into disjoint regions, and a
vector, m;, which records the values g(-) takes on each of those
regions



Basic BART

» Bayesian “sum-of-trees” model where each tree is constrained
by a regularization prior to be a weak learner, and fitting and
inference are accomplished via an iterative Bayesian backfitting
MCMC algorithm that generates samples from a posterior.

» BART is a nonparametric Bayesian regression approach which
uses dimensionally adaptive random basis elements.
» Motivated by ensemble methods in general, and boosting

algorithms in particular, BART is defined by a statistical
model: a prior and a likelihood.

» By keeping track of predictor inclusion frequencies, BART can
also be used for model-free variable selection.



We want to “fit" the fundamental model:

yi = 8g(xi; 0) + €

BART is a Markov Monte Carlo Method that draws from

g(x;0)l(x,y)

We can then use the draws as our inference for g(x;6).



A regression tree model

Let T denote the
tree structure including
the decision rules.

Let M = {,ul,ug, .. .,Mb}
denote the set of

bottom node u's.

Let g(x; 60), 6 = (T, M)
be a regression tree function
that assigns a p value to x.

A single tree model:

</\

V\

u; =7

u =

u, =5

yi = g(xi; 0) + ;.




Easy to see that g(x; 0) is just a step function.



To get the draws, we will have to:

» Put a prior on g(x;6).

» Specify a Markov chain whose stationary distribution is

p(g(x:0)I(x,y))-



Ensemble methods

Various methods which combine a set of tree models, so called
ensemble methods, have attracted much attention, each of which
use different techniques to fit a linear combination of trees.

» Bagging (Breiman, 1996)

» Random forests (Breiman, 2001)

» Boosting (Friedman, 2001)

» Bayesian model averaging (Chipman, George and McCulloch,

1998)

Bagging and random forests use randomization to create a large
number of independent trees, and then reduce prediction variance
by averaging predictions across the trees. Boosting fits a sequence
of single trees, using each tree to fit data variation not explained by
earlier trees in the sequence.

Bayesian model averaging (BMA) applied to the posterior arising
from a Bayesian single-tree model.
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Y =g(T,My) + g(x;To,Mp) + ... + g(x T, M) + 0z, z~N(0,1)
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m = 200, 1000, ..., big, . . .

f(x|) is the sum of all the corresponding u's at each bottom node.

Such a model combines additive and interaction effects.



Complete the model with a regularization prior

The prior of the BART model can be written as

7(0) = w((T1, M1), (T2, M2), ..., (Tm, M), o).

7T wants:

» Each T small.
» Each y small.
» “nice” o (smaller than least squares estimate).
We refer to 7 as a regularization prior because it keeps the overall

fit small.

In addition, it keeps the contribution of each g(x; T;, M;) model
component small.



BART MCMC

The model/prior is described by

Y=g(xT{ M)+ ..+9(xT M) +0z
plus

First, it is a “simple” Gibbs sampler:

(Ti,Mi) | (Ti,My,..., Tici, Mi—1, Tiz1, Miyq,..., T, Mm, o)
g ‘ (Tl,Ml,...,...,Tm,Mm)

To draw (T;, M;)|- we subract the contributions of the other trees
from both sides to get a simple one-tree model.

We integrate out M to draw T and then draw M|T.



To draw T we use a Metropolis-Hastings with Gibbs step.
We use various moves, but the key is a “birth-death” step.
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Smooth spline

The goal is to find g(-) that minimizes

n

Z(Yi —g(x))* + /\/g”(t)2dt

i=1

for tuning parameter \ > 0.

The basis functions for a global cubic polynomial are B;(x) = x'~1

fori=1,2,3,4, so
4
g(x)=> BiBj(x)
j=1

Splines are piecewise cubic polynomials: Bi(x) =1, Bx(x) = x and
3 3 3 3
Boyi(x) = (e =xi)3 = (x = )3 - (x = xn-1)3 = (X = xn)3
Xn — Xi Xn — Xp—1




R code

install.packages ("BART")
library (MASS)
library (BART)
xt = mcycle$times[1:132]
yt = mcycle$accel[1:132]

xt = (xt-mean(xt))/sqrt(var(xt))
yt = (yt-mean(yt))/sqrt(var(yt))
d=12

xx = NULL

for (i in 1:d)
xx = as.matrix(cbind(xx,xt~i))
xx = (xx - matrix(apply(xx,2,mean),n,d,byrow=TRUE))%*%diag(sqrt(1/apply(xx,2,va

# OLS, smooth spline and BART fits

linear.fit = 1m(yt~xx-1)

fit = smooth.spline(xt,yt)

bart.fit = wbart(xt,yt)

bart.q = t(apply(bart.fit$yhat.train,2,quantile,c(0.05,0.5,0.95)))

plot(fit,xlab="Time in miliseconds after impact (standardized)",
ylab="Head accelaration (standardized)",type="1",lwd=2,col=2,
xlim=range (xt) ,ylim=range (yt))

points(xt,yt)

lines(xt,linear.fit$fit.col=3,1wd=2)
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Bayesian Causal Forest (BCF)

S-learners: BART with treatment as covariate (Hill, 2011).
T-learners: Two BART models (Kiinzel et al., 2019).
These approaches are not ideal in common causal inference settings:

T-learner: regularization of the treatment effect is necessarily
weaker than regularization of each individual model.

S-learner: degree of regularization depends on the joint distribution
of the control variables and the treatment variable.



BCF

Hahn et al. (2020) proposed the Bayesian Causal Forest (BCF)
model, which fits two BART models simultaneously to a
reparametrized response function:

Y = p(Xi, wi) + 7(X;, wi)by, + i, i ~ N(0,0?), (4)
where by ~ N(0,1/2) and b; ~ N(0,1/2).
u(+) is a prognostic function and 7(-) a treatment effect function.
When bg =0 and b; =1,
w(x)=E(Y? | X =x) and 7(x) =E(Y!| X =x)-E(Y°| X = x).
The ATE can be expressed as

E(Y' [ X=x)—E(Y? | X =x)= (b1 — bo)7(x).  (5)



XBART and XBCF

He and Hahn (2021) propose the accelerated Bayesian additive
regression trees (XBART) algorithm for BART-like models.
XBART grows new trees recursively, but stochastically, at each step
while using a similar set of cutpoints and splitting criteria as BART,
which allows for much faster exploration of the posterior space.

Krantsevich et al. (2023) propose the accelerated Bayesian causal
forest (XBCF) algorithm, an adaptation of XBART to the
reparametrized model of BCF.

Our method consists of an adaptation of the XBCF algorithm to
the RDD setting.



XBART and XBCF

The new model is almost the same as (4) except that XBCF allows
the error variance to change for each treatment status:

Yi = ap(x;) + by 7(xi) + €, €~ N(O,ai.)

a~N(0,1), bg, by ~N(0,1/2), (6)

where p(x) and 7(x) are two XBART forests and 7 = (b1 — bp)7.

The key innovation from He and Hahn (2021) is the so-called
“Grow-From-Root" stochastic tree-fitting algorithm, which is
particularly well-suited to the RDD context.



BART-RDD

Just as BCF was developed to address shortcomings of off-the-shelf
BART implementations for treatment effect estimation assuming
conditional unconfoundedness, here we propose to modify the BCF
model to cope with challenges that are unique to regression
discontinuity designs.

Our strategy is to ensure that the data used to make predictions at
X = c warrant a causal interpretation, i.e. u(x = ¢, w) and

7(x = ¢, w) must be composed of trees where any partition
containing the point (x = ¢, w) has a corresponding function
evaluation that has been estimated from causally valid contrasts.

Assuming continuous conditional expectations, this is possible if the
estimation is based on data close enough to the cutoff.

The BART-RDD model developed here satisfies this criterion by
explicitly imposing it during the tree growing process.



BART-RDD: Splitting Constraints

We define an ‘identification strip’ around the cutoff,
([c = h,c + h]), such that:

» Any node which does not contain that region remains entirely
unrestricted

» Any node that does contain it has to have both:

1. A minimum number of observations within the region on either
side of the cutoff; and

2. Not too many observations, proportionally, outside of the
identification strip



Splitting Constraints

More formally, these constraints can be expressed as follows:

» Define a bandwidth parameter h > 0

» Assume that the potential outcome mean function does not
vary abruptly inside the interval [c — h, ¢ + h]

» Let B C X be a hypercube corresponding to a node in a
regression tree and let N}, denote the number of observations
falling within B

» Let n; denote the number of observations in BN [c — h,c) and
n, denote the number of observations in BN [c, c + h]



Splitting Constraints

For user-specified variables Nopyi, € INT and a € (0, 1), the leaf
node region B is valid if it satisfies the following condition:

AU(CNDNE)
where
A = (Vw|(x=c,w)¢B)
C 3w | (x=c,w) € B)
D = (min(n;n;) > Nomin)
E = ((n+n)/Np>a)

The initial clause says that any node which does not make
predictions at the cutoff remains entirely unrestricted;

The second clause says that any node that does make predictions
at x = ¢ has to have both i) a minimum number of observations
within the cutoff region on either side of the cutoff, as well as ii)
not too many observations, proportionally, outside of the
identification strip.



[[lustration

» Suppose there is only one additional covariate W besides the
running variable X, and X, W i U(-1,1)

» Figure 2 presents different possible partitions of a dataset with
100 observations under this DGP

» For this example, we considered h = 0.25 — denoted by the
dashed lines in the plots — and set ¢ = 0 — denoted by the
dotted line

» The treated units (x > c) are denoted by triangle dots and the
control units are denoted in round dots
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Figure 2: Tree examples



Figure 3: Tree examples



[[lustration

» Panel 2a presents an initial split at w =0

» This partition is not valid because the condition (ii) is violated:
both nodes contain the identification strip, but are highly
populated by points outside of it

» However, condition (i) is not violated because both nodes
feature at least one point inside the identification strip from
both sides of the cutoff

» Therefore, our algorithm forces the tree to keep splitting
instead of outright rejecting the split



[[lustration

» Panel 2b presents a second split in W

» This split leads to a partition where one of the nodes features
data inside the left side of the identification strip region but
not from the right side (such points are highlighted), violating
condition (i) for any Nomin

» In this instance, the algorithm rejects that split by attributing
a likelihood of 0 to it



[[lustration

» Panel 3a starts with the same split at W = 0 as before and
then considers an additional split at X = —0.4 for both regions
W < 0and W > 0, leading to a tree with four nodes

» First, note that the nodes to the left of X = —0.4 are
unrestricted since they do not include the identification strip

» For the other two nodes, condition (i) is not violated, but
condition (ii) is violated for the node W >0U X > —0.4

» In this instance, the algorithm would accept the splits and force
the tree to continue splitting until condition (i) is also met



[[lustration

» Finally, panel 3b presents the same partition as 3a with an
additional split at X = 0.4 for both W > 0and W >0

» This partition does not violate any of the conditions, meaning
these splits would not be rejected and the tree would not be
forced to split (although it could keep splitting if the no-split
condition is not chosen and there are still valid splits).



lllustration - Summary

» We consider only trees that do not cut through the
identification strip, are well populated with points in that
region from both sides of the cutoff and are tight around that
region

» This way, we incorporate the RDD assumption that units
sufficiently near the cutoff are similar enough to be compared
and use this to create an ‘overlap region’ around the cutoff

» The shape of the trees is also largely dependent on the data
structure. If there are many points with x ~ ¢ we can make
the identification strip narrower without being too restrictive
on the tree growth especially if the points are well dispersed in
regards to the other covariates



lllustration - Summary

» On the contrary, if most points have x far from the cutoff we
might need to define a wider identification strip to reasonably
explore the tree space

» For setting the prior hyperparameters for a given sample
(Y, X, W), we suggest the following prior ellicitation
procedure: take (X, W), generate s samples of a known DGP
Ys(X, W), fit the model to each generated sample using
different combinations of the parameters and choose the one
that leads to the lowest prediction error for this synthetic data

» Finally, it is worth noting that this strategy can be used more
generally for any problem where one must fit tree ensembles
and enforce smoothness over a specific variable and around a
specific point



Simulations

Let X denote the running variable, W an additional set of features,
Z the treatment indicator and Y a continuous outcome. We

investigate 500 samples of size 1000 of variations of the following
DGP:

u(X, W) = (m " 7 ={0.2,0.5}
(W) 5, = {0.5,1.25}
T(X, W) =7+ o(ro(X, W))(ST 0 ={0.1,0.3}

Y = u(X, W) +7(X,W)Z +¢ e~ N(0,1),



uo(X,W)——3X5—25 4 -
.5x 1.5x3 + 2x° = 54 W,
+3x+2+ - (w E
2p / P [ P])

(X, W) = —0.1x + %i(wp — Elwy))
p=1 ’

(7)



Estimators

BART-based models:
» BART-RDD
» S-learner (S-BART)
» T-Learner (T-BART)
Non-BART models:
» Calonico et al. (2019) (LLR) - local polynomial regression
» Chib et al. (2014) (CGS) - cubic splines on the running variable

Estimators are compared in terms of RMSE, coverage and interval
length



Summary of Results

ATE estimation:
» Regarding the RMSE, BART-RDD generally outperforms and
never lags far behind the other estimators
» Among the non-BART models, LLR stands out as the best,
while CGS is much more sensitive to noise
» While LLR, CGS and S-BART usually present coverage above
90%, BART-RDD present coverage that is never below 70%
with much tighter intervals
CATE estimation:
» BART-RDD clearly outperforms the others in CATE
estimation, producing more precise estimates and intervals
with comparable size but better coverage



ATE Results

Table 1: RMSE - ATE

T 0, 6 BART-RDD S-BART T-BART CGS LLR

02 05 01 0.114 0.214 0.253 0.370 0.233
02 05 03 0.114 0.228 0.264 0.388 0.243
02 125 0.1 0.226 0.298 0.424 0.411 0.234
0.2 125 0.3 0.250 0.321 0.440 0.445 0.255
05 05 01 0.158 0.257 0.249 0.387 0.247
05 05 03 0.147 0.250 0.258 0.372 0.239
05 125 0.1 0.251 0.397 0.432 0.437 0.251

05 125 03 0.247 0.402 0.429 0.443 0.245




ATE Results

Table 2: Coverage rate for the ATE

T Ou 0 BART-RDD S-BART T-BART CGS LLR

02 05 01 0.924 0.954 0.798 0.962 0.940
02 05 03 0.954 0.950 0.724 0.950 0.932
02 125 0.1 0.782 0.940 0.538 0.970 0.930
02 125 0.3 0.718 0.950 0.520 0.964 0.938
05 05 01 0.900 0.866 0.828 0.958 0.946
05 05 03 0.920 0.890 0.772 0.962 0.942
05 125 0.1 0.722 0.870 0.558 0.966 0.918

05 125 0.3 0.702 0.894 0.572 0.962 0.934




ATE Results

Table 3: Interval sizes for the ATE

T Op 0 BART-RDD S-BART T-BART CGS LLR
02 05 01 0.424 0.713 0.719 1.598 0.855
02 05 03 0.442 0.757 0.677 1.604 0.877
02 125 0.1 0.546 0.970 0.797 1.792 0.863
0.2 125 0.3 0.539 1.068 0.794 1.814 0.880
05 05 01 0.536 0.859 0.743 1.604 0.870
05 05 03 0.519 0.913 0.704 1.607 0.870
05 125 0.1 0.579 1.239 0.810 1.788 0.870
05 125 03 0.567 1.313 0.818 1.798 0.872




CATE Results

Table 4: RMSE - CATE

T 0, 6 BART-RDD S-BART T-BART

02 05 01 0.164 0.204 0.280
02 05 03 0.216 0.287 0.298
0.2 125 0.1 0.262 0.255 0.445
0.2 125 0.3 0.302 0.345 0.463
05 05 01 0.228 0.247 0.281
05 05 0.3 0.249 0.297 0.295
05 125 0.1 0.315 0.363 0.451

05 125 0.3 0.321 0.411 0.452




(a) BART-RDD (b) S-BART (c) T-BART

Figure 4: Fit for 7(X = ¢, W) for each method when ¢, = 0.5, 6, = 0.3
and 7 = 0.5 versus the true function



Application: effect of academic probation on education

» We investigate the effect of academic probation in educational
outcomes in a large Canadian university (Lindo et al., 2010)

» Students who, by the end of each term, present GPA lower
than a certain threshold (which differs between each campus)
are placed on academic probation and must improve their GPA
in the next term

» Punishment if they fail to achieve this goal can range from
1-year to permanent suspension from the university

» We focus on GPA in the term after a student is placed on
probation



Application

» Running variable is the negative distance between a student’s
GPA and the probation threshold, meaning students below the
limit have a positive score and the cutoff is 0

» Additional student features: gender, age, a dummy for being
born in North America, attempted credits in the first year,
dummies for which campus each student belongs to, and the
student’s position in the distribution of high school grades of
students entering the university in the same year as a measure
of high school performance.
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Table 5: BART-RDD posterior summary for the ATE

Mean SD 2.5% 97.5% Median Min Max
0.140 0.036 0.080 0.217 0.140 0.068 0.253




Application: fit-the-fit

» As in Hahn et al. (2020), we explore the individual effect
estimates — the posterior mean of the individual effects — by
fitting a CART tree to these estimates based on the covariate
set (‘fit-the-fit")

» With this strategy, we allow the data to determine relevant
treatment effective modifiers and potential interactions
between them
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Application: fit-the-fit

The figure indicates that high school grades are important effect
moderators for campus 1 and 2 but not 3, and that the moderators
change per campus (for example, credits in year 1 only for campus
1, gender only for campus 2 and age at entry only for campus 3).

Overall, the effects of the probation policy are decreasing on high
school grades, meaning students who performed worst in high
school are likely to benefit the most from the policy.

Campus 1 is the central campus and more closely resembles a large
university while the other two are composed mainly of part-time
and commuter students: it would make sense then that the
composition of each campus should affect the effectiveness of the
probation policy.
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Conclusion

» Main contributions: incorporating RDD assumptions into the
BART framework and producing reliable CATE estimates

» Results: BART-RDD presents lower errors, competitive
coverage and smaller intervals than other commonly used
estimators based on parametric specifications

» Limitations: Sensitivity to prior hyperparameters

» Extensions: extrapolating the estimates beyond the cutoff
(Wang et al., 2023), modelling non-Gaussian outcomes — e.g.
discrete or t-distributed — and extending our strategy for
settings with multiple cutoffs
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Application - Posterior Comparisons

QIR Differences in subgroup treatment effects: the first panel
shows the posterior difference between students below and above
the 43-rd percentile of high-school grades respectively in campus 1,
which has a 92% posterior mass above 0; the second panel
performs the same analysis for the 31-st percentile of high-school
grades for students in campus 2, which has a 95% posterior mass
above 0; the third panel presents the posterior difference between
students that got into college younger versus older than 19 in
campus 3, which has a posterior mass of 84% above 0; the last
panel presents the posterior differences in the ATE between each
campus: there is a 66% posterior probability of a larger effect for
campus 3 compared to campus 1, a 59% probability for a larger
effect on campus 2 compared to campus 1 and a 54% probability of
a larger effect on campus 3 compared to campus 2
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