1 Model and priors

In this example we use one unique model structure \[ x|\theta \sim N(\theta,\sigma^2) \] where \(\sigma=40\). The goal is to learn about \(\theta\) from a Bayesian view point where four alternative prior distributions are considered: \[\begin{eqnarray*} \mbox{Prior A} &:& \theta \sim N(\mu_A,\sigma_A^2)\\ \mbox{Prior B} &:& \theta \sim N(\mu_B,\sigma_B^2)\\ \mbox{Prior C} &:& \theta \sim t_\nu(\mu_C,\sigma_C^2)\\ \mbox{Prior D} &:& \theta \sim \frac{1}{3}N(\mu_A,\sigma_A^2)+ \frac{1}{3}N(\mu_A,\sigma_A^2)+ \frac{1}{3}t_\nu(\mu_C,\sigma_C^2), \end{eqnarray*}\] and prior hyperparameters: \[\begin{eqnarray*} \mu_A &=& 900,\sigma_A=20\\ \mu_B &=& 800,\sigma_B=80\\ \mu_C &=& 900,\sigma_C=\sqrt{240}, \nu=5. \end{eqnarray*}\]

den.t = function(theta,mu,sig,df){
  dt((theta-mu)/sig,df=df)/sig
}
prior.D = function(theta){
  (dnorm(theta,mu.A,sig.A)+
  dnorm(theta,mu.B,sig.B)+
  den.t(theta,mu.C,sig.C,nu))/3
}

sig = 40
x = 850

mu.A= 900
sig.A = 20

mu.B = 800
sig.B = 80

mu.C = 900
sig.C = sqrt(240)
nu     = 5

2 Prior densities

par(mfrow=c(1,1))
theta = seq(500,1100,length=1000)
plot(theta,dnorm(theta,x,sig),type="l",lwd=2,ylim=c(0,0.025),
        xlab=expression(theta),ylab="Priors & likelihood")
lines(theta,dnorm(theta,mu.A,sig.A),col=2,lwd=2)
lines(theta,dnorm(theta,mu.B,sig.B),col=3,lwd=2)
lines(theta,den.t(theta,mu.C,sig.C,nu),col=4,lwd=2)
lines(theta,prior.D(theta),col=5,lwd=2)
points(x,0,pch=16,cex=2)
legend("topleft",legend=c("Likelihood","Prior A","Prior B",
       "Prior C","Prior D"),col=1:5,lwd=2)

3 Logarithm of the prior densities

par(mfrow=c(1,1))
plot(theta,dnorm(theta,x,sig,log=TRUE),type="l",lwd=2,ylim=c(-20,0),
        xlab=expression(theta),ylab="Log priors & log likelihood")
lines(theta,dnorm(theta,mu.A,sig.A,log=TRUE),col=2,lwd=2)
lines(theta,dnorm(theta,mu.B,sig.B,log=TRUE),col=3,lwd=2)
lines(theta,log(den.t(theta,mu.C,sig.C,nu)),col=4,lwd=2)
lines(theta,log(prior.D(theta)),col=5,lwd=2)
legend("topleft",legend=c("Likelihood","Prior A","Prior B",
       "Prior C","Prior D"),col=1:5,lwd=2,bty="n")

4 Posterior densities via SIR

Posterior summary via sampling importance resampling (SIR)

set.seed(125532)
M      = 1000000
thetas = runif(M,600,1000)
w      = dnorm(thetas,x,sig)*dnorm(thetas,mu.A,sig.A)
ind.A  = sample(1:M,size=M,replace=TRUE,prob=w)
w      = dnorm(thetas,x,sig)*dnorm(thetas,mu.B,sig.B)
ind.B  = sample(1:M,size=M,replace=TRUE,prob=w)
w      = dnorm(thetas,x,sig)*den.t(thetas,mu.C,sig.C,nu)
ind.C  = sample(1:M,size=M,replace=TRUE,prob=w)
w      = dnorm(thetas,x,sig)*(dnorm(thetas,mu.A,sig.A)+
         dnorm(thetas,mu.B,sig.B)+den.t(thetas,mu.C,sig.C,nu))
ind.D  = sample(1:M,size=M,replace=TRUE,prob=w)

par(mfrow=c(1,1))
plot(density(thetas[ind.A]),type="l",xlab=expression(theta),
        ylab="Density",ylim=c(0,0.025),xlim=c(650,950),lwd=2,main="")
lines(density(thetas[ind.B]),col=2,lwd=2)
lines(density(thetas[ind.C]),col=4,lwd=2)
lines(density(thetas[ind.D]),col=3,lwd=2)
points(x,0,pch=16,cex=2,col=6)
legend("topleft",legend=c("Posterior A","Posterior B","Posterior C","Posterior D"),col=c(1,2,4,3),lwd=2)
title(paste("Data point x = ",x,sep=""))

5 Posterior summaries

Below we us Monte Carlo approximations to approximate \[\begin{eqnarray*} E(\theta|x)\\ Median(\theta|x)\\ Pr(\theta < x|x)\\ Pr(\theta<q_{0.05})=0.05. \end{eqnarray*}\]

tab = rbind(

c(mean(thetas[ind.A]),mean(thetas[ind.B]),
mean(thetas[ind.C]),mean(thetas[ind.D])),

c(median(thetas[ind.A]),median(thetas[ind.B]),
median(thetas[ind.C]),median(thetas[ind.D])),

c(mean(thetas[ind.A]<x),mean(thetas[ind.B]<x),
mean(thetas[ind.C]<x),mean(thetas[ind.D]<x)),

c(quantile(thetas[ind.A],0.05),quantile(thetas[ind.B],0.05),
quantile(thetas[ind.C],0.05),quantile(thetas[ind.D],0.05)))

rownames(tab) = c("E(theta)","Median(theta)",
                  "Pr(theta<x)","Quantile(0.05)")

colnames(tab) = c("Post A","Post B","Post C","Post D")
round(tab,2)
##                Post A Post B Post C Post D
## E(theta)       890.06 840.02 891.16 876.15
## Median(theta)  890.10 840.09 892.45 884.35
## Pr(theta<x)      0.01   0.61   0.02   0.19
## Quantile(0.05) 860.52 781.18 860.30 806.53
LS0tCnRpdGxlOiAiVHVybmluZyB0aGUgQmF5ZXNpYW4gY3JhbmsiCnN1YnRpdGxlOiAiTm9ybWFsIGRhdGEgYW5kIGZvdXIgcHJpb3JzIgphdXRob3I6ICJIZWRpYmVydCBGcmVpdGFzIExvcGVzIgpkYXRlOiAiNS83LzIwMjMiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZGVwdGg6IDIKICAgIGNvZGVfZG93bmxvYWQ6IHllcwogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCi0tLQogIApgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQpgYGAKCiMgTW9kZWwgYW5kIHByaW9ycwpJbiB0aGlzIGV4YW1wbGUgd2UgdXNlIG9uZSB1bmlxdWUgbW9kZWwgc3RydWN0dXJlCiQkCnh8XHRoZXRhIFxzaW0gTihcdGhldGEsXHNpZ21hXjIpCiQkCndoZXJlICRcc2lnbWE9NDAkLiAgVGhlIGdvYWwgaXMgdG8gbGVhcm4gYWJvdXQgJFx0aGV0YSQgZnJvbSBhIEJheWVzaWFuIHZpZXcgcG9pbnQgd2hlcmUgZm91ciBhbHRlcm5hdGl2ZSBwcmlvciBkaXN0cmlidXRpb25zIGFyZSBjb25zaWRlcmVkOgpcYmVnaW57ZXFuYXJyYXkqfQpcbWJveHtQcmlvciBBfSAmOiYgXHRoZXRhIFxzaW0gTihcbXVfQSxcc2lnbWFfQV4yKVxcClxtYm94e1ByaW9yIEJ9ICY6JiBcdGhldGEgXHNpbSBOKFxtdV9CLFxzaWdtYV9CXjIpXFwKXG1ib3h7UHJpb3IgQ30gJjomIFx0aGV0YSBcc2ltIHRfXG51KFxtdV9DLFxzaWdtYV9DXjIpXFwKXG1ib3h7UHJpb3IgRH0gJjomIFx0aGV0YSBcc2ltIApcZnJhY3sxfXszfU4oXG11X0EsXHNpZ21hX0FeMikrClxmcmFjezF9ezN9TihcbXVfQSxcc2lnbWFfQV4yKSsKXGZyYWN7MX17M310X1xudShcbXVfQyxcc2lnbWFfQ14yKSwKXGVuZHtlcW5hcnJheSp9CmFuZCBwcmlvciBoeXBlcnBhcmFtZXRlcnM6ClxiZWdpbntlcW5hcnJheSp9ClxtdV9BICY9JiA5MDAsXHNpZ21hX0E9MjBcXApcbXVfQiAmPSYgODAwLFxzaWdtYV9CPTgwXFwKXG11X0MgJj0mIDkwMCxcc2lnbWFfQz1cc3FydHsyNDB9LCBcbnU9NS4KXGVuZHtlcW5hcnJheSp9CgpgYGB7cn0KZGVuLnQgPSBmdW5jdGlvbih0aGV0YSxtdSxzaWcsZGYpewogIGR0KCh0aGV0YS1tdSkvc2lnLGRmPWRmKS9zaWcKfQpwcmlvci5EID0gZnVuY3Rpb24odGhldGEpewogIChkbm9ybSh0aGV0YSxtdS5BLHNpZy5BKSsKICBkbm9ybSh0aGV0YSxtdS5CLHNpZy5CKSsKICBkZW4udCh0aGV0YSxtdS5DLHNpZy5DLG51KSkvMwp9CgpzaWcgPSA0MAp4ID0gODUwCgptdS5BPSA5MDAKc2lnLkEgPSAyMAoKbXUuQiA9IDgwMApzaWcuQiA9IDgwCgptdS5DID0gOTAwCnNpZy5DID0gc3FydCgyNDApCm51ICAgICA9IDUKYGBgCgojIFByaW9yIGRlbnNpdGllcwpgYGB7ciBmaWcud2lkdGg9MTAsIGZpZy5oZWlnaHQ9NiwgZmlnLmFsaWduID0gJ2NlbnRlcid9CnBhcihtZnJvdz1jKDEsMSkpCnRoZXRhID0gc2VxKDUwMCwxMTAwLGxlbmd0aD0xMDAwKQpwbG90KHRoZXRhLGRub3JtKHRoZXRhLHgsc2lnKSx0eXBlPSJsIixsd2Q9Mix5bGltPWMoMCwwLjAyNSksCiAgICAgICAgeGxhYj1leHByZXNzaW9uKHRoZXRhKSx5bGFiPSJQcmlvcnMgJiBsaWtlbGlob29kIikKbGluZXModGhldGEsZG5vcm0odGhldGEsbXUuQSxzaWcuQSksY29sPTIsbHdkPTIpCmxpbmVzKHRoZXRhLGRub3JtKHRoZXRhLG11LkIsc2lnLkIpLGNvbD0zLGx3ZD0yKQpsaW5lcyh0aGV0YSxkZW4udCh0aGV0YSxtdS5DLHNpZy5DLG51KSxjb2w9NCxsd2Q9MikKbGluZXModGhldGEscHJpb3IuRCh0aGV0YSksY29sPTUsbHdkPTIpCnBvaW50cyh4LDAscGNoPTE2LGNleD0yKQpsZWdlbmQoInRvcGxlZnQiLGxlZ2VuZD1jKCJMaWtlbGlob29kIiwiUHJpb3IgQSIsIlByaW9yIEIiLAogICAgICAgIlByaW9yIEMiLCJQcmlvciBEIiksY29sPTE6NSxsd2Q9MikKYGBgCgojIExvZ2FyaXRobSBvZiB0aGUgcHJpb3IgZGVuc2l0aWVzCgpgYGB7ciBmaWcud2lkdGg9MTAsIGZpZy5oZWlnaHQ9NiwgZmlnLmFsaWduID0gJ2NlbnRlcid9CnBhcihtZnJvdz1jKDEsMSkpCnBsb3QodGhldGEsZG5vcm0odGhldGEseCxzaWcsbG9nPVRSVUUpLHR5cGU9ImwiLGx3ZD0yLHlsaW09YygtMjAsMCksCiAgICAgICAgeGxhYj1leHByZXNzaW9uKHRoZXRhKSx5bGFiPSJMb2cgcHJpb3JzICYgbG9nIGxpa2VsaWhvb2QiKQpsaW5lcyh0aGV0YSxkbm9ybSh0aGV0YSxtdS5BLHNpZy5BLGxvZz1UUlVFKSxjb2w9Mixsd2Q9MikKbGluZXModGhldGEsZG5vcm0odGhldGEsbXUuQixzaWcuQixsb2c9VFJVRSksY29sPTMsbHdkPTIpCmxpbmVzKHRoZXRhLGxvZyhkZW4udCh0aGV0YSxtdS5DLHNpZy5DLG51KSksY29sPTQsbHdkPTIpCmxpbmVzKHRoZXRhLGxvZyhwcmlvci5EKHRoZXRhKSksY29sPTUsbHdkPTIpCmxlZ2VuZCgidG9wbGVmdCIsbGVnZW5kPWMoIkxpa2VsaWhvb2QiLCJQcmlvciBBIiwiUHJpb3IgQiIsCiAgICAgICAiUHJpb3IgQyIsIlByaW9yIEQiKSxjb2w9MTo1LGx3ZD0yLGJ0eT0ibiIpCmBgYAoKIyBQb3N0ZXJpb3IgZGVuc2l0aWVzIHZpYSBTSVIKClBvc3RlcmlvciBzdW1tYXJ5IHZpYSBzYW1wbGluZyBpbXBvcnRhbmNlIHJlc2FtcGxpbmcgKFNJUikKCmBgYHtyIGZpZy53aWR0aD0xMCwgZmlnLmhlaWdodD02LCBmaWcuYWxpZ24gPSAnY2VudGVyJ30Kc2V0LnNlZWQoMTI1NTMyKQpNICAgICAgPSAxMDAwMDAwCnRoZXRhcyA9IHJ1bmlmKE0sNjAwLDEwMDApCncgICAgICA9IGRub3JtKHRoZXRhcyx4LHNpZykqZG5vcm0odGhldGFzLG11LkEsc2lnLkEpCmluZC5BICA9IHNhbXBsZSgxOk0sc2l6ZT1NLHJlcGxhY2U9VFJVRSxwcm9iPXcpCncgICAgICA9IGRub3JtKHRoZXRhcyx4LHNpZykqZG5vcm0odGhldGFzLG11LkIsc2lnLkIpCmluZC5CICA9IHNhbXBsZSgxOk0sc2l6ZT1NLHJlcGxhY2U9VFJVRSxwcm9iPXcpCncgICAgICA9IGRub3JtKHRoZXRhcyx4LHNpZykqZGVuLnQodGhldGFzLG11LkMsc2lnLkMsbnUpCmluZC5DICA9IHNhbXBsZSgxOk0sc2l6ZT1NLHJlcGxhY2U9VFJVRSxwcm9iPXcpCncgICAgICA9IGRub3JtKHRoZXRhcyx4LHNpZykqKGRub3JtKHRoZXRhcyxtdS5BLHNpZy5BKSsKICAgICAgICAgZG5vcm0odGhldGFzLG11LkIsc2lnLkIpK2Rlbi50KHRoZXRhcyxtdS5DLHNpZy5DLG51KSkKaW5kLkQgID0gc2FtcGxlKDE6TSxzaXplPU0scmVwbGFjZT1UUlVFLHByb2I9dykKCnBhcihtZnJvdz1jKDEsMSkpCnBsb3QoZGVuc2l0eSh0aGV0YXNbaW5kLkFdKSx0eXBlPSJsIix4bGFiPWV4cHJlc3Npb24odGhldGEpLAogICAgICAgIHlsYWI9IkRlbnNpdHkiLHlsaW09YygwLDAuMDI1KSx4bGltPWMoNjUwLDk1MCksbHdkPTIsbWFpbj0iIikKbGluZXMoZGVuc2l0eSh0aGV0YXNbaW5kLkJdKSxjb2w9Mixsd2Q9MikKbGluZXMoZGVuc2l0eSh0aGV0YXNbaW5kLkNdKSxjb2w9NCxsd2Q9MikKbGluZXMoZGVuc2l0eSh0aGV0YXNbaW5kLkRdKSxjb2w9Myxsd2Q9MikKcG9pbnRzKHgsMCxwY2g9MTYsY2V4PTIsY29sPTYpCmxlZ2VuZCgidG9wbGVmdCIsbGVnZW5kPWMoIlBvc3RlcmlvciBBIiwiUG9zdGVyaW9yIEIiLCJQb3N0ZXJpb3IgQyIsIlBvc3RlcmlvciBEIiksY29sPWMoMSwyLDQsMyksbHdkPTIpCnRpdGxlKHBhc3RlKCJEYXRhIHBvaW50IHggPSAiLHgsc2VwPSIiKSkKYGBgCgojIFBvc3RlcmlvciBzdW1tYXJpZXMKCkJlbG93IHdlIHVzIE1vbnRlIENhcmxvIGFwcHJveGltYXRpb25zIHRvIGFwcHJveGltYXRlClxiZWdpbntlcW5hcnJheSp9CkUoXHRoZXRhfHgpXFwKTWVkaWFuKFx0aGV0YXx4KVxcClByKFx0aGV0YSA8IHh8eClcXApQcihcdGhldGE8cV97MC4wNX0pPTAuMDUuClxlbmR7ZXFuYXJyYXkqfQoKYGBge3J9CnRhYiA9IHJiaW5kKAoKYyhtZWFuKHRoZXRhc1tpbmQuQV0pLG1lYW4odGhldGFzW2luZC5CXSksCm1lYW4odGhldGFzW2luZC5DXSksbWVhbih0aGV0YXNbaW5kLkRdKSksCgpjKG1lZGlhbih0aGV0YXNbaW5kLkFdKSxtZWRpYW4odGhldGFzW2luZC5CXSksCm1lZGlhbih0aGV0YXNbaW5kLkNdKSxtZWRpYW4odGhldGFzW2luZC5EXSkpLAoKYyhtZWFuKHRoZXRhc1tpbmQuQV08eCksbWVhbih0aGV0YXNbaW5kLkJdPHgpLAptZWFuKHRoZXRhc1tpbmQuQ108eCksbWVhbih0aGV0YXNbaW5kLkRdPHgpKSwKCmMocXVhbnRpbGUodGhldGFzW2luZC5BXSwwLjA1KSxxdWFudGlsZSh0aGV0YXNbaW5kLkJdLDAuMDUpLApxdWFudGlsZSh0aGV0YXNbaW5kLkNdLDAuMDUpLHF1YW50aWxlKHRoZXRhc1tpbmQuRF0sMC4wNSkpKQoKcm93bmFtZXModGFiKSA9IGMoIkUodGhldGEpIiwiTWVkaWFuKHRoZXRhKSIsCiAgICAgICAgICAgICAgICAgICJQcih0aGV0YTx4KSIsIlF1YW50aWxlKDAuMDUpIikKCmNvbG5hbWVzKHRhYikgPSBjKCJQb3N0IEEiLCJQb3N0IEIiLCJQb3N0IEMiLCJQb3N0IEQiKQpyb3VuZCh0YWIsMikKCmBgYAoK