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Contribution

▶ We propose a modification of the Bayesian Causal Forest
model (Hahn et al., 2020) — itself an extension of the BART
model of Chipman et al. (2010) — which uses a novel
regression tree prior that incorporates the unique structure of
regression discontinuity designs

▶ We show that unmodified BART and BCF models estimate
RDD treatment effects poorly, while our modified model
accurately recovers treatment effects at the cutoff

▶ At the same time, the model retains the inherent flexibility of
all BART-based models, allowing it to effectively explore
heterogeneous treatment effects

▶ We also show that heterogeneity poses a threat to the
performance of the local polynomial estimator



Regression Discontinuity Designs - Motivation

Thistlethwaite and Campbell (1960): motivational effects of public
recognition in a national scholarship competition in academic
outcomes

Treatment: the Certificate of Merit, an award which is widely
publicized among colleges, universities and other agencies

Assignment: score in a national exam

Confounding: latent student characteristics could make it more
likely for the student to score higher and hence, more likely to
receive the award, but also would lead to a higher likelihood of a
student observing more positive academic gains



Regression Discontinuity Designs - Motivation

Solution: Because of the deterministic assignment rule, scores
completely deconfound the data

Problem: Complete lack of overlap; impossible to construct causal
contrasts without further assumptions

Fundamental RDD assumption: Introducing smoothness
assumptions about the potential outcomes distribution near the
cutoff



Regression Discontinuity Designs

Let Z be a binary treatment variable and X be a variable defining
the treatment assignment, i.e. X is the the running variable:

Zi =

{
0, if Xi < c
1, if Xi ≥ c

for some cutoff value c .



RDD - potential outcomes

Let Yi (zi ) denote the potential outcome when Zi = zi . We observe
only

Yi = Yi (1)Zi + Yi (0)(1 − Zi ). (1)

We focus on the difference in expected potential outcomes:

τS := E[Yi (Zi = 1) | Xi = c ,wi ]− E[Yi (Zi = 0) | Xi = c ,wi ] (2)

Under the assumption that the distribution of Yi is smooth in Xi ,
at least at X = c , the treatment effect may be estimated as a limit:

τS = lim
x↓c

E[Yi |Xi = x ,wi ]− lim
x↑c

E[Yi |Xi = x ,wi ].



An illustration

Figure 1: RDD Example



RDD

The treatment effect can be estimated by estimating conditional
expectation functions E[Yi |Xi ,wi ], both above and below the
cutoff and taking a difference at the point X = c .

The most common estimation strategy is to perform a local
polynomial regression of Y on X with a bandwidth choice that
asymptotically minimizes the mean-squared error (MSE) of the
predictions (Hahn et al., 2001; Imbens and Kalyanaraman, 2012).

Controlling for covariates can increase precision in the estimation
and make the continuity assumption more credible (Calonico et al.,
2019).



CATE

Estimation of conditional average treatment effects (CATE) from
RDD data is a bit more subtle, as interacting many covariates with
the running variable quickly leads to high-variance estimators.

Our contribution: In this respect, Bayesian regression trees, which
incorporate interactions in a data-driven but regularized way, are a
natural framework to pursue.



Basic BART

▶ Bayesian “sum-of-trees” model where each tree is constrained
by a regularization prior to be a weak learner, and fitting and
inference are accomplished via an iterative Bayesian backfitting
MCMC algorithm that generates samples from a posterior.

▶ BART is a nonparametric Bayesian regression approach which
uses dimensionally adaptive random basis elements.

▶ Motivated by ensemble methods in general, and boosting
algorithms in particular, BART is defined by a statistical
model: a prior and a likelihood.

▶ By keeping track of predictor inclusion frequencies, BART can
also be used for model-free variable selection.



Nonlinear regression

We want to “fit” the fundamental model:

yi = g(xi ; θ) + ϵi

BART is a Markov Monte Carlo Method that draws from

g(x ; θ)|(x , y)

We can then use the draws as our inference for g(x ; θ).



A regression tree model

Let T denote the
tree structure including
the decision rules.

Let M = {µ1, µ2, . . . , µb}
denote the set of
bottom node µ’s.

Let g(x ; θ), θ = (T ,M)
be a regression tree function
that assigns a µ value to x .

A Single Regression Tree Model 

x2 < d x2 % d 

x5 < c x5 % c 

µ3 = 7 

µ1 = -2 µ2 = 5 

Let g(x;"), "  = (T, M) be a 
regression tree function that 
assigns a µ value to x 

Let T denote the tree structure 
including the decision rules 

Let M = {µ1, µ2, … µb} denote 
the set of bottom node µ's. 

A Single Tree Model:      Y = g(x;!) + ! 7 

A single tree model:
yi = g(xi ; θ) + ϵi .



A coordinate view of g(x ; θ)

The Coordinate View of g(x;")  

x2 < d x2 % d 

x5 < c x5 % c 

µ3 = 7 

µ1 = -2 µ2 = 5 

Easy to see that g(x;") is just a step function 

µ1 = -2 µ2 = 5 

⇔ 
µ3 = 7 

c 

d x2 

x5 

8 

Easy to see that g(x ; θ) is just a step function.



Turning the Bayesian crank

To get the draws, we will have to:

▶ Put a prior on g(x ; θ).
▶ Specify a Markov chain whose stationary distribution is

p (g(x ; θ)|(x , y)) .



Ensemble methods

Various methods which combine a set of tree models, so called
ensemble methods, have attracted much attention, each of which
use different techniques to fit a linear combination of trees.
▶ Bagging (Breiman, 1996)
▶ Random forests (Breiman, 2001)
▶ Boosting (Friedman, 2001)
▶ Bayesian model averaging (Chipman, George and McCulloch,

1998)

Bagging and random forests use randomization to create a large
number of independent trees, and then reduce prediction variance
by averaging predictions across the trees. Boosting fits a sequence
of single trees, using each tree to fit data variation not explained by
earlier trees in the sequence.

Bayesian model averaging (BMA) applied to the posterior arising
from a Bayesian single-tree model.
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The BART modelLet  " = ((T1,M1), (T2,M2), …, (Tm,Mm)) identify a set of m trees and their µ’s. 

Y = g(x;T1,M1) + g(x;T2,M2) + ... + g(x;Tm,Mm) + ! z,   z ~ N(0,1) 

The BART Ensemble Model 

E(Y | x, ") is the sum of all the corresponding µ’s at each tree bottom node. 

Such a model combines additive and interaction effects. 

µ1 

µ2 µ3 

µ4 

9 
Remark:  We here assume ! ~ N(0, !2) for simplicity, but will later see a successful 
extension to a general DP process model. 

m = 200, 1000, . . . , big, . . .

f (x |·) is the sum of all the corresponding µ’s at each bottom node.

Such a model combines additive and interaction effects.



Complete the model with a regularization prior

The prior of the BART model can be written as

π(θ) = π((T1,M1), (T2,M2), . . . , (Tm,Mm), σ).

π wants:

▶ Each T small.
▶ Each µ small.
▶ “nice” σ (smaller than least squares estimate).

We refer to π as a regularization prior because it keeps the overall
fit small.

In addition, it keeps the contribution of each g(x ;Ti ,Mi ) model
component small.



BART MCMC

The model/prior is described by

Bayesian Nonparametrics: 
     Lots of parameters (to make model flexible) 
     A strong prior to shrink towards simple structure (regularization) 
     BART shrinks towards additive models with some interaction 

Dynamic Random Basis: 
     g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive 

Gradient Boosting: 
     Overall fit becomes the cumulative effort of many “weak learners” 

Connections to Other Modeling Ideas 

Y = g(x;T1,M1) + ... + g(x;Tm,Mm) + & z 
 plus   

#((T1,M1),....(Tm,Mm),&) 

12 

First, it is a “simple” Gibbs sampler:

(Ti ,Mi ) | (T1,M1, . . . ,Ti−1,Mi−1,Ti+1,Mi+1, . . . ,Tm,Mm, σ)

σ | (T1,M1, . . . , . . . ,Tm,Mm)

To draw (Ti ,Mi )|· we subract the contributions of the other trees
from both sides to get a simple one-tree model.

We integrate out M to draw T and then draw M|T .



Birth-death moves

To draw T we use a Metropolis-Hastings with Gibbs step.
We use various moves, but the key is a “birth-death” step.Because p(T | data) is available in closed form (up to a norming constant),  

we use a Metropolis-Hastings  algorithm. 

Our proposal moves around tree space by proposing local modifications  
such as 

=> 
? 

=> 
? 

propose a more complex tree 

propose a simpler tree 

Such modifications are accepted  according to their compatibility 
with p(T | data). 20 

Simulating p(T | data) with the Bayesian CART Algorithm   



Tree moves



motorcycle dataset
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Smooth spline

The goal is to find g(·) that minimizes

n∑
i=1

(yi − g(xi ))
2 + λ

∫
g ′′(t)2dt

for tuning parameter λ > 0.

The basis functions for a global cubic polynomial are Bi (x) = x i−1

for i = 1, 2, 3, 4, so

g(x) =
4∑

j=1

βjBj(x)

Splines are piecewise cubic polynomials: B1(x) = 1, B2(x) = x and

B2+i (x) =
(x − xi )

3
+ − (x − xn)

3
+

xn − xi
−

(x − xn−1)
3
+ − (x − xn)

3
+

xn − xn−1



R code

install.packages("BART")
library(MASS)
library(BART)
xt = mcycle$times[1:132]
yt = mcycle$accel[1:132]
xt = (xt-mean(xt))/sqrt(var(xt))
yt = (yt-mean(yt))/sqrt(var(yt))

d=12
xx = NULL
for (i in 1:d)

xx = as.matrix(cbind(xx,xt^i))
xx = (xx - matrix(apply(xx,2,mean),n,d,byrow=TRUE))%*%diag(sqrt(1/apply(xx,2,var)))

# OLS, smooth spline and BART fits
linear.fit = lm(yt~xx-1)
fit = smooth.spline(xt,yt)
bart.fit = wbart(xt,yt)
bart.q = t(apply(bart.fit$yhat.train,2,quantile,c(0.05,0.5,0.95)))

plot(fit,xlab="Time in miliseconds after impact (standardized)",
ylab="Head accelaration (standardized)",type="l",lwd=2,col=2,
xlim=range(xt),ylim=range(yt))

points(xt,yt)
lines(xt,linear.fit$fit,col=3,lwd=2)
lines(xt,bart.q[,2],col=4,lwd=2)
lines(xt,bart.q[,1],col=4,lwd=2,lty=2)
lines(xt,bart.q[,3],col=4,lwd=2,lty=2)
legend("topleft",legend=c("OLS polymonial-12 fit","Smooth-spline fit","BART fit"),

col=c(3,2,4),lwd=2,lty=1)



lm, smooth.spline and wbart in action

−1 0 1 2

−
2

−
1

0
1

2

Time in miliseconds after impact (standardized)

H
ea

d 
ac

ce
la

ra
tio

n 
(s

ta
nd

ar
di

ze
d)

●●●●● ●●● ●●●● ●●●●●
● ●●●

●

●●
●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

● ●

●

● ●

●

●

●

●

●

●

OLS polymonial−12 fit
Smooth−spline fit
BART fit



References
1. Chipman, George and McCulloch (2010) BART: Bayesian Additive Regression

Trees. The Annals of Applied Statistics, 4(1), 266-298.

2. Taddy, Gramacy and Polson (2011) Dynamic Trees for Learning and Design.
Journal of the American Statistical Association, 106(493), 109-123.

3. Pratola, Chipman, Higdon, McCulloch and Rust (2014) Parallel BART. Journal
of Computational and Graphical Statistics, 23, 830-852.

4. Lakshminarayanan, Roy and Teh (2015) Particle Gibbs for BART. Proceedings
of the 18th Conference on Artificial Intelligence and Statistics.

5. Kapelner and Bleich (2016) bartMachine: machine learning with BART.
Journal of Statistical Software, 70(4).

6. Pratola (2016) Efficient Metropolis-Hastings Proposal Mechanisms for BART
models. Bayesian Analysis, 11(3), 885-911.

7. Hernández, Raftery, Pennington and Parnell (2017) BART using BMA.
Statistics and Computing.

8. Linero (2017) Bayesian Regression Trees for High Dimensional Prediction and
Variable Selection. Journal of the American Statistical Association.

9. Pratola, Chipman, George and McCulloch (2017) Heteroscedastic BART Using
Multiplicative Regression Trees.



Bayesian Causal Forest (BCF)

BART for causal inference:
S-learners: BART with treatment as covariate (Hill, 2011).

T-learners: Separate BART models for treated and untreated units

Problems:
S-learner: degree of regularization depends on the joint distribution
of the control variables and the treatment variable.

T-learner: regularization of the treatment effect is necessarily
weaker than regularization of each individual model.



BCF

Bayesian Causal Forest (BCF) model (Hahn et al., 2020): fits two
BART models simultaneously to a reparametrized response
function:

Yi = µ(Xi ,wi ) + τ(Xi ,wi )bzi + εi , εi ∼ N(0, σ2), (3)

where b0 ∼ N(0, 1/2) and b1 ∼ N(0, 1/2).

µ(·) is a prognostic function and τ(·) a treatment effect function.

The ATE can be expressed as

E(Y 1 | X = x)− E(Y 0 | X = x) = (b1 − b0)τ(x). (4)



XBART and XBCF

BART MCMC algorithm is very inefficient

Accelerated Bayesian additive regression trees (XBART) algorithm
(He and Hahn, 2021): grows new trees recursively, but
stochastically, at each step

Accelerated Bayesian causal forest (XBCF) algorithm (Krantsevich
et al., 2023): adaptation of XBART to the reparametrized model of
BCF

Our method consists of an adaptation of the XBCF algorithm to
the RDD setting.



XBCF

The new model is almost the same as (3) except that XBCF allows
the error variance to change for each treatment status:

Yi = aµ(xi ) + bzi τ̃(xi ) + ϵi , ϵi ∼ N(0, σ2
zi
)

a ∼ N(0, 1), b0, b1 ∼ N(0, 1/2),
(5)

where µ(x) and τ̃(x) are two XBART forests and τ = (b1 − b0)τ̃ .

The key innovation from He and Hahn (2021) is the so-called
“Grow-From-Root” stochastic tree-fitting algorithm, which we
adapt to the RDD context.



BART-RDD

Ensure that the data used to make predictions at X = c warrant a
causal interpretation:
▶ µ(x = c ,w) and τ(x = c ,w) must be composed of trees

where any partition containing the point (x = c,w) has a
corresponding function evaluation that has been estimated
from causally valid contrasts

Assuming continuous conditional expectations, this is possible if the
estimation is based on data close enough to the cutoff.

The BART-RDD model developed here satisfies this criterion by
explicitly imposing it during the tree growing process.



BART-RDD: Splitting Constraints

We define an ‘identification strip’ around the cutoff,
([c − h, c + h]), such that:

▶ Any node which does not contain that region remains entirely
unrestricted

▶ Any node that does contain it has to have both:

1. A minimum number of observations within the region on either
side of the cutoff; and

2. Not too many observations, proportionally, outside of the
identification strip



Splitting Constraints

More formally, these constraints can be expressed as follows:
▶ Define a bandwidth parameter h > 0
▶ Assume that the potential outcome mean function does not

vary abruptly inside the interval [c − h, c + h]

▶ Let B ⊂ X be a hypercube corresponding to a node in a
regression tree and let Nb denote the number of observations
falling within B

▶ Let nl denote the number of observations in B ∩ [c − h, c) and
nr denote the number of observations in B ∩ [c , c + h]



Splitting Constraints

For user-specified variables NOmin ∈ N+ and α ∈ (0, 1), the leaf
node region B is valid if it satisfies the following condition:

A ∪ (C ∩ D ∩ E )

where

A =
(
∀w | (x = c,w) /∈ B

)
C = (∃w | (x = c ,w) ∈ B)

D = (min (nl , nr ) ≥ NOmin)

E = ((nl + nr )/Nb ≥ α)



Splitting constraints

A split that violates condition E can be satisfied by further
branching, ‘trimming’ observations from outside the strip

A split that violates condition D can never be satisfied by further
branching

We set the likelihood of nodes that violate condition D to zero and
force partitions that violate condition E to split until condition E is
not violated anymore



Illustration

▶ Suppose there is only one additional covariate W besides the
running variable X , and X ,W

iid∼ U(−1, 1)

▶ Figure 2 presents different possible partitions of a dataset with
100 observations under this DGP

▶ For this example, we considered h = 0.25 – denoted by the
dashed lines in the plots – and set c = 0 – denoted by the
dotted line

▶ The treated units (x ≥ c) are denoted by triangle dots and the
control units are denoted in round dots



Illustration

(a) (b)

Figure 2: Tree examples



Illustration

(a) (b)

Figure 3: Tree examples



Illustration

▶ Panel 2a presents an initial split at w = 0
▶ This partition is not valid because condition E is violated: both

nodes contain the identification strip, but are highly populated
by points outside of it

▶ However, condition E is not violated because both nodes
feature at least one point inside the identification strip from
both sides of the cutoff

▶ Therefore, our algorithm forces the tree to keep splitting
instead of outright rejecting the split



Illustration

▶ Panel 2b presents a second split in W

▶ This split leads to a partition where one of the nodes features
data inside the left side of the identification strip region but
not from the right side (such points are highlighted), violating
condition D for any NOmin

▶ In this instance, the algorithm rejects that split by attributing
a likelihood of 0 to it



Illustration

▶ Panel 3a starts with the same split at W = 0 as before and
then considers an additional split at X = −0.4 for both regions
W < 0 and W ≥ 0, leading to a tree with four nodes

▶ First, note that the nodes to the left of X = −0.4 are
unrestricted since they do not include the identification strip

▶ For the other two nodes, condition D is not violated, but
condition E is

▶ In this instance, the algorithm would accept the splits and
force the tree to continue splitting until condition E is also met



Illustration

▶ Finally, panel 3b presents the same partition as 3a with an
additional split at X = 0.4 for both W < 0 and W ≥ 0

▶ This partition does not violate any of the conditions, meaning
these splits would not be rejected and the tree would not be
forced to split (although it could keep splitting if the no-split
condition is not chosen and there are still valid splits).



Illustration - Summary

▶ We consider only trees that do not cut through the
identification strip, are well populated with points in that
region from both sides of the cutoff and are tight around that
region

▶ This way, we incorporate the RDD assumption that units
sufficiently near the cutoff are similar enough to warrant a
causal comparison and use this to create an ‘overlap region’
around the cutoff

▶ The shape of the trees is also largely dependent on the data
structure. If there are many points with x ≈ c we can make
the identification strip narrower without being too restrictive
on the tree growth especially if the points are well dispersed in
regards to the other covariates



Illustration - Summary

▶ On the contrary, if most points have x far from the cutoff we
might need to define a wider identification strip to reasonably
explore the tree space

▶ Finally, it is worth noting that this strategy can be used more
generally for any problem where one must fit tree ensembles
and enforce smoothness over a specific variable and around a
specific point



Parameter settings

We add three new parameters to the BART prior: α, NOmin and h

α shouldn’t be set too low (e.g. below 0.5), otherwise points far
from the cutoff could have a big impact in the estimation at that
point

NOmin shouldn’t be set too low so that too few points are used to
obtain the causal contrasts, and not too high so that nearly any
split in W is rejected

Given such considerations, the prior is not very sensitive to these
parameters; we recommend a default setting of α = 0.9 and
NOmin = 5, but encourage sensitivity checks in any given sample



Parameter settings

Regarding h, a very tight window could have too few points to
obtain good estimates, a very large window could lead to points too
far from the cutoff affecting estimation
▶ Problem: the prior is highly sensitive to this parameter and

there is no clear guide for what ‘too high’ or ‘too low’ means

We develop a prior elicitation heuristic to set h appropriately:
▶ For a given sample (y , x ,w), construct a synthetic RDD model

based on (x ,w) to generate s samples of ys
▶ For each sample, fit the model with a grid of candidate h

values
▶ Calculate the RMSE for each candidate h in the syntehtic

samples
▶ Choose the h value that yields the lowest RMSE



Parameter settings

In other words, we choose h by fine tuning BART to some prior
model based on (x ,w)

The question, of course, is how to construct this prior model: we
suggest a polynomial on X with no heterogeneity, i.e. no
dependence on W , and small treatment effects, as this is a
reasonable and commonly used prior in causal inference settings

In our experiments, this procedure was able to find the ‘optimal’
region for h even in cases when the true data had strong
heterogeneity or large effects



Parameter settings

For the h candidates, basing those values on the standard deviation
of X (σx) has led to the best results in our experiments (for the
illustration we will present here, we considered h ∈ {σx/2, σx , 2σx})



Prior exploration - Illustration

DGP (10 samples)

X ∼ N(0, 1)
W ∼ B(3, 0.7) + 1
Z = I(X ≥ 0)

µ(X ,W ) = 0.3W + 0.1WX + 0.1W (X + 0.05)2 + 0.2WX 3

τ(X ,W ) = 0.03W − 0.2WX + 0.05W (X + 0.01)2 − 0.1WX 3

ε ∼ N(0, 1)
Y = µ(X ,W ) + τ(X ,W )Z + ε

(6)



Prior exploration - Illustration
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Prior exploration - Illustration

Prior model (11 samples)

µp(X ) = 0.08 + 0.23X + 0.16X 2

τp(X ) = 0.01 + 0.24X + 0.035X 2

εp ∼ N(0, 0.52)

Ys = µp(X ) + τp(X )Z + εp

(7)



Prior exploration - Illustration
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Prior exploration - Illustration

▶ For each of the 10 samples, the procedure selected
h = sd(x)/2

▶ Using these values to estimate the "true" model, we obtain an
RMSE of 0.067, coverage of 1 and interval size of 0.43



Simulations

Basic setup:

u ∼ U(0, 1)
W1 ∼ U(u, u + 1)
W2 ∼ U(0, 0.5)
W3 ∼ B(2, u) + 1
W4 ∼ B(1, 0.6) + 1
X ∼ 2 × Beta(2, 4)− u − 0.2
Z ∼ I(X ≥ 0)

ε ∼ N(0, σ2)

Yi = µi (X ,W ) + τi (X ,W )Z + 0.5u + ε

(8)



Simulations

Define the following function of W3 and W4:

f34 =



0.43 if W3 = 1 ∩W4 = 1
0.27 if W3 = 2 ∩W4 = 1
0.1 if W3 = 3 ∩W4 = 1
0.77 if W3 = 1 ∩W4 = 2
0.93 if W3 = 2 ∩W4 = 2
1.1 if W3 = 3 ∩W4 = 2

(9)



Simulations

Prognostic functions:

µ1(X ,W ) = 0.1875 sin((W1 +W2)π) + 1 + 1.875X

− 1.25X 2 + 1.75X 3

µ2(X ,W ) = 0.1W4 sin((W1 +W2)π) + 1 + 0.9W4 +W4X

− 0.9W4X
2 +W4X

3

µ3(X ,W ) = 0.2f34 sin((W1 +W2)π) + 1 + 2f34 + 2.27f34X

− 1.13f34X
2 + 2f34X

3

(10)



Simulations

Treatment effect functions:

τ1(X ,W ) = 0.025 cos((W1 +W2)π) + 0.05 − 2.8X

+ 1.4X 2 − 0.14X 3

τ2(X ,W ) = 0.0125W4 cos((W1 +W2)π) + 0.03 + 0.03W4

− 1.8W4X + 0.9W4X
2 − 0.09W4X

3

τ3(X ,W ) = 0.05f34 cos((W1 +W2)π) + 0.03 + 0.06f34

− 3.4f34X + 1.7f34X
2 − 0.17f34X

3

(11)



Simulations

Finally, we consider three different noise levels:

σ ∈ {0.25, 1, 4} (12)

These scenarios showcase small, mild and strong heterogeneity plus
low, mild and high signal-to-noise ratio



Simulation Data
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Simulation Data
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Figure 7: Prognostic and treatment functions
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Simulation - Estimators

BART-based models:
▶ BART-RDD
▶ S-learner BART (S-BART)
▶ T-Learner BART (T-BART)
▶ BCF

Non-BART models:
▶ Calonico et al. (2019) (CKT) - local polynomial regression

Estimators are compared in terms of RMSE, bias, variance,
coverage and interval size



Simulation Results - ATE (Low Noise)

BART-RDD BCF S-BART T-BART CKT

(1)

RMSE 0.045 0.071 0.056 0.084 0.102
Bias 0.026 0.013 -0.011 0.024 0.003
Variance 0.001 0.005 0.003 0.007 0.010
Coverage 0.961 0.921 0.937 0.962 0.939
Size 0.170 0.232 0.256 0.369 0.381

(2)

RMSE 0.041 0.080 0.064 0.092 0.109
Bias -0.029 0.011 -0.031 0.013 0.005
Variance 0.001 0.006 0.003 0.008 0.012
Coverage 0.930 0.898 0.897 0.941 0.934
Size 0.150 0.274 0.257 0.367 0.381

(3)

RMSE 0.038 0.076 0.058 0.103 0.137
Bias 0.011 0.039 -0.017 0.027 0.010
Variance 0.001 0.004 0.003 0.010 0.019
Coverage 0.979 0.869 0.945 0.885 0.927
Size 0.174 0.236 0.266 0.347 0.496



Simulation Results - ATE (Mild Noise)

BART-RDD BCF S-BART T-BART CKT

(1)

RMSE 0.073 0.170 0.143 0.210 0.354
Bias 0.014 0.093 0.030 0.008 0.009
Variance 0.005 0.020 0.019 0.044 0.125
Coverage 0.985 0.907 0.996 0.970 0.940
Size 0.359 0.537 0.775 0.972 1.330

(2)

RMSE 0.091 0.129 0.147 0.221 0.373
Bias -0.049 -0.009 -0.012 -0.001 0.009
Variance 0.006 0.016 0.021 0.049 0.139
Coverage 0.921 0.962 0.992 0.974 0.940
Size 0.356 0.525 0.778 1.004 1.330

(3)

RMSE 0.064 0.174 0.149 0.227 0.381
Bias 0.001 0.101 0.022 0.052 0.019
Variance 0.004 0.020 0.022 0.049 0.145
Coverage 0.986 0.884 0.991 0.955 0.934
Size 0.335 0.533 0.806 0.989 1.371



Simulation Results - ATE (High Noise)

BART-RDD BCF S-BART T-BART CKT

(1)

RMSE 0.225 0.627 0.351 0.549 1.397
Bias -0.019 0.438 0.176 0.114 0.024
Variance 0.050 0.202 0.092 0.288 1.953
Coverage 0.989 0.868 0.997 0.980 0.940
Size 1.244 1.767 1.890 2.665 5.257

(2)

RMSE 0.231 0.486 0.317 0.585 1.460
Bias -0.082 0.261 0.077 0.051 0.017
Variance 0.047 0.168 0.095 0.340 2.135
Coverage 0.984 0.923 0.998 0.980 0.942
Size 1.198 1.727 1.950 2.849 5.257

(3)

RMSE 0.198 0.617 0.340 0.600 1.479
Bias -0.019 0.454 0.124 0.132 0.056
Variance 0.039 0.175 0.100 0.343 2.185
Coverage 0.997 0.871 0.993 0.973 0.932
Size 1.153 1.732 1.987 2.860 5.271



Simulation exercise

X ∼ 2 × Beta(2, 4)− 1

Wp ∼ N(0, 0.252), p ∈ {1, 2}

Wp ∼ N

(
p − 1
p

X , 1
)
, p ∈ {3, 4}

W5 ∼ Bernoulli(0.7)
Z = 1(X ≥ 0)
ε ∼ N(0, 1)

σµ =
√
V [µm(0,W )]

στ =
√

V [τm(0,W )]

τ̄ = E [τm(0,W )]

Y =
µm(X ,W )

σµ
+

(
ξ +

ν

στ
(τm(X ,W )− τ̄)

)
Z + κε.

(13)



Simulations

{
µ1(X ,W ) = 0.1X − 0.2X 2 + 0.5X 3 +

∑4
p=1 αpWp

τ1(X ,W ) = 0.7X + 0.4X 2 − 0.1X 3 +
∑4

p=1 βpWp{
µ2(X ,W ) = 0.1X − 0.2X 2 + 0.5X 3 +

∑4
p=1 αpWp +W5X

τ2(X ,W ) = 0.7X + 0.4X 2 − 0.1X 3 +
∑4

p=1 βpWp + 0.5W5X{
µ3(X ,W ) = expX +

∑4
p=1 αp

√
|Wp|

τ3(X ,W ) = sinX +
∑4

p=1 βp
√

|Wp|{
µ4(X ,W ) = expX +

∑4
p=1 αp

√
|Wp|+W5X

τ4(X ,W ) = sinX +
∑4

p=1 βp
√

|Wp|+ 0.5W5X ,

(14)



Simulations

ξ ∈ {0.25, 2}
κ ∈ {0.25, 2}
ν ∈ {0.25, 2}.

(15)

αp = 2/p
βp = 1/p.

(16)



Estimators

BART-based models:
▶ BART-RDD
▶ S-learner (BART1)
▶ T-Learner (BART2)
▶ BCF

Non-BART models:
▶ Calonico et al. (2019) (CKT) - local polynomial regression
▶ Chib et al. (2014) (CGS) - cubic splines on the running variable
▶ Kreiß and Rothe (2021) (KR) - local linear regression to

high-dimensional settings
Estimators are compared in terms of RMSE, coverage and interval
length



Summary of Results

ATE estimation:
▶ BART-RDD generally outperforms and never lags far behind

the other estimators
▶ Only the T-learner BART stands out as a reasonable

alternative among BART-based models
▶ Among the non-BART models, CKT stands out as the best,

while CGS is competitive but more sensitive to noise
▶ KR is the worst performer and highly sensitive to noise
▶ Model complexity plays an important role

CATE estimation:
▶ BART-RDD clearly outperforms the others in CATE

estimation, producing more precise estimates and intervals
with comparable size but better coverage



Application: effect of academic probation on education

▶ We investigate the effect of academic probation in educational
outcomes in a large Canadian university (Lindo et al., 2010)

▶ Students who, by the end of each term, present GPA lower
than a certain threshold (which differs between each campus)
are placed on academic probation and must improve their GPA
in the next term

▶ Punishment if they fail to achieve this goal can range from
1-year to permanent suspension from the university

▶ We focus on GPA in the term after a student is placed on
probation



Application

▶ Running variable is the negative distance between a student’s
GPA and the probation threshold, meaning students below the
limit have a positive score and the cutoff is 0

▶ Additional student features: gender, age, a dummy for being
born in North America, attempted credits in the first year,
dummies for which campus each student belongs to, and the
student’s position in the distribution of high school grades of
students entering the university in the same year as a measure
of high school performance.



Application

(1) full sample, (2) h = 0.1, (3) h = 0.46

(1) (2) (3)
Mean Std. Dev Mean Std. Dev Mean Std. Dev

Next Term GPA 2.57 0.91 1.95 0.81 1.98 0.8
Distance from cutoff -0.96 0.86 0 0.05 -0.08 0.26
Treatment assignment 0.14 0.35 0.41 0.49 0.36 0.48
High school grade percentile 51 28.71 31.65 22.79 32.76 23.15
Credits attempted in first year 4.58 0.51 4.39 0.54 4.42 0.53
Age at entry 18.66 0.74 18.72 0.75 18.71 0.74
Male 0.38 0.49 0.38 0.48 0.37 0.48
Born in North America 0.87 0.34 0.87 0.34 0.87 0.34
Campus 1 0.59 0.49 0.45 0.5 0.47 0.5
Campus 2 0.17 0.38 0.21 0.41 0.21 0.41
Campus 3 0.24 0.42 0.34 0.47 0.32 0.46

Table 1: Descriptive statistics



Application

(a) Density (b) Scatter plot

Figure 9: High school grade percentile



Application

(a) Scatter plot (b) Loess Fit

Figure 10: Second x First Year GPA



Application: BART-RDD vs CKT

Controls τ̂ 95% CI h N

BART-RDD
No 0.11 [0.04,0.17] 0.1 1757
Yes 0.13 [0.08,0.2] 0.1 1757

CKT
No 0.22 [0.13,0.3] 0.47 8776
Yes 0.22 [0.12,0.3] 0.46 8776

Table 2: RD Estimates



Application: fit-the-fit

▶ As in Hahn et al. (2020), we explore the individual effect
estimates – the posterior mean of the individual effects – by
fitting a CART tree to these estimates based on the covariate
set (‘fit-the-fit’)

▶ With this strategy, we allow the data to determine relevant
treatment effective modifiers and potential interactions
between them



Application: fit-the-fit

hsgrade_pct >= 43

bpl_north_america = 1

age_at_entry >= 19

loc_campus2 = 1

0.13
100%

0.085
30%

0.072
26%

0.043
15%

0.11
11%

−0.077
1%

0.13
10%

0.17
4%

0.15
70%

yes no

Figure 11: CART trees for individual effect estimates



Application: fit-the-fit

It indicates that high school grades, age and campus location are
important effect moderators.

The effects of the probation policy are decreasing on high school
grades and age, meaning younger students who performed worst in
high school are likely to benefit the most from the policy.

Campus 1 is the central campus and has the lowest acceptance rate
(55%) and more closely resembles a large university while the other
two have a higher acceptance rate (77%) and are composed mainly
of part-time and commuter students.

It would make sense then that the composition of each campus
should affect the effectiveness of the probation policy.



Application

(a) CATE posterior by age
(b) CATE posterior by high school
grade percentile



Application

∆1: Difference in the posterior distribution for students below 19 in
campus 3 versus the other campuses.
∆2: Difference in the posterior distribution for students below 19
and below the 34th percentile of high school grades in campus 3
versus the other campuses.

(a) ∆1 (b) ∆2

Figure 13: Heterogeneity in τ posterior



Conclusion

▶ Main contributions: incorporating RDD assumptions into the
BART framework and producing reliable ATE and CATE
estimates

▶ Results:
▶ BART-RDD presents lower errors, competitive coverage and

smaller intervals than commonly used polynomial-based
estimators

▶ ATE variance for BART-RDD is not sensitive to the strength
of heterogeneity in the data

▶ BCF and S-BART are still good options for CATE estimation;
BART-RDD presents better coverage for the CATE at the cost
of larger intervals

▶ Limitations: Sensitivity to prior hyperparameters
▶ Next steps: Application to real data Lindo et al. (2010),

exploration of CATE results, more formal argument about
identification of the BART-RDD tree ensemble
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