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Abstract

This article investigates the benefits of combining information available from daily and intraday

data to model and predict the dependence structure of equity returns. The two data sources are

combined via a density pooling approach, wherein the individual joint densities are represented as

a copula function, and the pooling weights are potentially time-varying. The dependence structure

in the daily frequency case is extracted from a standard multivariate volatility model, and the

high-frequency counterpart is based on the additive inverse Wishart model (AIW). We find that

incorporating both high and low frequency information via density pooling provides significant

gains in predictive model performance over any individual model and any model combination

within the same data frequency. Finally, a portfolio allocation exercise quantifies the economic

gains by producing investment portfolios with the smallest variance.
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1 Introduction

Since the advent of the availability of high frequency financial data, research on how to use, model and

predict measures (such as volatility and co-volatility, for example) extracted from such data has surged

(comprehensive review in McAleer & Medeiros 2008). As a result, high frequency data based models

have proven to be powerful competitors to the standard modeling approaches, which are based on

daily data. Some studies have shown that (co-)volatility models based on high-frequency data perform

better at forecasting than models based solely on daily data (Andersen et al. 2003, Koopman et al.

2005, Horpestad et al. 2019, Lyócsa et al. 2021).

As an alternative to choosing a single modeling approach, some authors have combined the best of

both worlds by augmenting low frequency models with high frequency information, see Engle 2002,

Ghysels et al. 2004, 2005, Shephard & Sheppard 2010, Noureldin et al. 2012, Hansen et al. 2012, 2014

for univariate modeling, and Bauwens & Xu 2022 for a multivariate approach. Such combinations rely

on suitable parametrization, in which the high frequency measure enters the model as an exogenous

covariate, thus creating a new class of models.

In contrast to previous research, we combine low and high frequency information not through pa-

rameters but through the combination of densities. In particular, we model and predict the dependence

structure of multiple financial returns as a weighted sum of two predictive densities, the first arising

from low frequency data and the second arising from high frequency data. Such combinations are

also known as opinion pools (the name was first proposed by Stone 1961). In principle, the proposed

approach could be related to the System for Averaging Models (SAM) procedure of Norges Bank

(Bjørnland et al. 2008, Aastveit et al. 2011) or the Bayesian predictive synthesis of McAlinn (2021)

for combining macroeconomic forecasts. However, we pool models that arise from competing theo-

retical perspectives of understanding volatility, i.e. volatility as an unobserved process estimated from

daily data vs the volatility as an observable quantity extracted from the high frequency data. This is in

contrast to pooling several alternative models that differ exclusively in their parametric specifications.

The combination of predictive densities is a recent topic of increasing interest in the financial and

macroeconomic literature (Hall & Mitchell 2007, Jore et al. 2010, Geweke & Amisano 2011, Billio

et al. 2013, Aastveit et al. 2014, Del Negro et al. 2016, Aastveit et al. 2018, Bassetti et al. 2018,
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McAlinn & West 2019, Casarin et al. 2023). Hall & Mitchell (2007) and Geweke & Amisano (2011)

have relied on log predictive scores to calculate recursive combination weights, which, in the long

term, reach a stable equilibrium. Del Negro et al. (2016) have also used the log scoring rule for

modeling dynamic combination weights. Alternatively, Billio et al. (2013) have considered dynamic

weights based on the model residuals and not on the log scores; Bassetti et al. (2018) have assumed

random combination weights; and Casarin et al. (2023) have modeled the dynamics of the weighting

process via nonlinear dynamic factor model. To control for the effects of the particular weighting

scheme, we consider four options for density pooling, all based on the log predictive scores (LPS):

equally weighted, static (Geweke & Amisano 2011), naı̈ve dynamic (Jore et al. 2010) and dynamic

(Del Negro et al. 2016). In the static weighting scheme, the weights are re-balanced daily as a function

of the expanding set of the past LPS, converging to a stable equilibrium, hence the name static. In the

naı̈ve dynamic scheme, the set of the past LPS is smaller, and only the most recent observations are

considered. Finally, in the “fully” dynamic scheme, the weights are latent and are updated as a function

of the past weights via an AR-type process. For a general introduction and comprehensive reviews of

aggregating probability distributions, readers are referred to Clemen & Winkler (2007) and Aastveit

et al. (2018), among others. Timmermann (2018) has briefly reviewed the forecast combinations in the

financial econometrics context.

Each of the individual densities in the pool, namely that modeled with low frequency and that

modeled with high frequency data, are constructed by a copula function. Using a copula instead of

the complete high-dimensional density is a convenient solution when the focus of the modeling is

explicitly on the dependence structure rather than on the individual series dynamics. Modeling the

dependence via a copula also has practical advantages. It allows to simplify the assessment of the

marginal distributions and avoids dealing with highly parametrized and possibly nonstandard multi-

variate density functions. Models in which dynamic copula parameters are obtained from daily data

are considered a standard approach in the financial times series literature (multivariate GARCH models

in Dias & Embrechts 2004, Patton 2006b, Ausı́n & Lopes 2010; score-driven models in Koopman et al.

2018, Nguyen & Javed 2021; and factor models in Opschoor et al. 2021). In contrast, models in which

the copula dependence structure is obtained from high frequency data are rather sparse (Salvatierra

& Patton 2015, Fengler & Okhrin 2016, Okhrin & Tetereva 2017). Salvatierra & Patton (2015) have
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modeled the dynamics of the copula parameter as a function of past realized correlations via an au-

toregressive score-type model, whereas Fengler & Okhrin (2016) and Okhrin & Tetereva (2017) have

used multiple univariate AR-type processes for the realized covariances. In this work, we use several

standard multivariate GARCH-type models for the copula parameter arising from daily data, and use

an additive inverse Wishart model (Jin & Maheu 2013, 2016) for the copula parameter arising from

the intra-day data. Flexible functional forms for the evolution of the copula parameter affect the joint

density in similar ways to standard multivariate volatility modeling: dynamic specifications are able

to model the conditional heteroscedasticity and produce more precise density forecasts than the static

models (Patton 2006a, Tsay 2014).

In this article, we rely on a Bayesian estimation approach in three stages. In the first stage, the

marginal distributions are estimated. In particular, the daily data are transformed to the unit interval by

standardization of the de-meaned equity returns and application of the probability integral transform.

This approach has the advantage of producing approximately standard normal marginals, which are

very easy to handle. In the second stage, we fit a copula model to the resulting uniformly distributed

data to obtain the joint predictive density for the returns. Finally, the density pooling weights assigned

to a low and to a high frequency model are obtained in order to produce pooled predictive densities for

the daily log returns.

We use daily and intraday US equity return data from 2001 to 2009 to construct multiple variants

of competing density pools differing in (i) the respective underlying low and high frequency modeling

strategy and (ii) the density pooling approach. Empirical results show that pooled models outperform

the best individual model in terms of the entire density forecast as well in the left tail. In addition,

the density pool shows improvement in predictive performance with respect to other mixed frequency

models, such as the natural competitor — the DCC-HEAVY model of Bauwens & Xu (2022). Further-

more, the superiority of the pooled models is supported by different financial market data. In a second

empirical data application consisting of exchange rates, market index and a commodity for the period

from 2012 to 2021, we confirm the results in terms of model ranking. Finally, we perform a global

minimum variance (GMV) portfolio allocation exercise to quantify the economic gains in using the

proposed approach. The results illustrate the benefits of pooling by delivering investment portfolios

with the smallest variance. Overall, we demonstrate that combining information from daily and intra-
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day data sources not only produces superior joint density forecasts but also leads to tangible economic

benefits for the investor.

The article is organized as follows. Sections 2 and 3 present the pooled copula model, estimation

approach and model evaluation. Sections 4 and 5 contain two empirical applications: one for a ten-

variate and another for a five-variate dataset. Finally, Section 6 presents the conclusion.

2 Methodology

In this section, we describe the main idea of the article: combining information arising from high

and low frequency data in the copula modeling framework in order to model and predict the depen-

dence structure of equity returns. The choice of modeling the joint distribution via copulas, next to

being a flexible way of constructing multivariate densities, is also convenient from computational and

methodological perspectives. As noted in Opschoor et al. (2021), when the cross-section dimension d

is large, specifying and estimating the marginals separately might considerably ease the computational

burden. In addition, such an approach enables a focus on modeling the dependence structure explic-

itly, independently from the marginals. In particular, we are interested in estimating a copula density

c(ut|MHF,MLF) for uniformly distributed data. The approach consists of three major tasks:

• Modeling the dynamics of the covariance matrices arising from low frequency data via a

model called MLF. In this step, we consider standard specifications for multivariate co-

volatilities, such as the Static model, the RiskMetrics© (RM) model of J.P. Morgan, or

the dynamic conditional correlation (DCC) model of Tse & Tsui (2002), Engle (2002).

• Modeling the dynamics of the covariance matrices arising from high frequency data via

a model called MHF. We concentrate on the additive inverse Wishart (AIW) approach

of Jin & Maheu (2013, 2016).

• Modeling the dynamics of the combination weights ωt. Here, we consider four options,

covering a large part of the variety of linear combination strategies. The schemes are

equally weighted, static (Geweke & Amisano 2011), naı̈ve dynamic (Jore et al. 2010)

and dynamic (Del Negro et al. 2016).
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c(ut|MHF,MLF) = ωtc(ut|MHF) + (1 − ωt)c(ut|MLF)

ωt

Equally weighted, DelNegro’s, Geweke’s, Jore’s

MHF

AIW

MLF

Static, RM, DCC

Figure 1: Model components combining high (MHF) and low (MLF) frequency models via density
pooling with time varying weights ωt.

Figure 1 summarizes the main model components and the approach used at each phase.

Even though both models, based on both high- and low- frequency data, are essentially aimed

at capturing the dependence structure between the standardized returns, they exhibit very different

properties. The low frequency data based models consider the entire series of historical daily data,

and the estimated co-volatility processes are usually smooth. In contrast, the high frequency data

based models can capture instantaneous changes in co-variation and make predictions accordingly;

however, they are more likely to be “contaminated” by the market micro-structure noise. As noted in

Kapetanios et al. (2015), Timmermann (2018), some models might be useful while the markets are in

decline, whereas other models might be more informative when the markets are booming. Therefore,

the time-varying pooling weights might also indicate whether the preference for one model or another

is correlated with the overall market conditions. Such a correlation might affect an investor’s decisions:

if an investor anticipates bull/bear market conditions, they might choose to rely on one model or another

to produce density forecasts.

We start by defining ri,t as the de-meaned log returns (in %) for day t and asset i, such that t =
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1, . . . , T and i = 1, . . . , d:

ri,t = 100 ×
(

log
Pi,t

Pi,t−1
− E

[
log

Pi,t

Pi,t−1

])
,

where Pi,t−1 and Pi,t are the prices at the beginning and at the end of the period, respectively, and

E
[
log Pi,t

Pi,t−1

]
is replaced with its sample equivalent.

Next, we present an approach to combine information arising from high and low frequency data for

dependence modeling between daily financial returns, by relying on a density combination approach.

As noted in Clemen & Winkler (2007), the two major approaches are linear and logarithmic pools.

The linear opinion pool is a weighted linear combination of predictive probabilities, whereas multi-

plicative averaging results in a logarithmic opinion pool. Differently from linear pools, the logarithmic

combinations have been shown to result in unimodal, less dispersed (Rufo et al. 2012) and symmetric

(Kascha & Ravazzolo 2010) densities, in marked contrast to the empirically observed features of fi-

nancial returns. Therefore, in this article, we rely on linear pools only because they appear to be more

appropriate for financial time series.

The linear combination of individual densities obtained from models M is given by:

p(rt) =
N

∑
j=1

ωj p(rt|Mj), t = 1, . . . , T,

where rt = (r1,t, . . . , rd,t)
′ is the d-variate return vector, N is the number of alternative models, ωj

is the combination weight, and p(rt|Mj) is the candidate density, originating from different models.

The dependence structure between low frequency returns rt can be modeled by combining (i) a model

estimated from daily returns p(rt|MLF) with (ii) a model estimated from high frequency returns

p(rt|MHF) .

A convenient way to model the potentially high dimensional joint density p(rt|Mj) involves sep-

arating the dependence structure from the dynamics of the marginals by using copula functions. Fur-

thermore, the treatment of the marginal densities can be substantially simplified by taking advantage of

the available ex post realized volatility measure defined by RVi,t = ∑J
j=1 r̃2

i,t,j. Here, r̃i,t,j is an l-minute

log-return for day t, and J is the number of l-minute intervals in a trading day (Barndorff-Nielsen &

Shephard 2002, Andersen et al. 2003, Barndorff-Nielsen & Shephard 2004). For a review of real-
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ized volatility, readers are referred to McAleer & Medeiros (2008). To account for the time-varying

volatility, the de-meaned log returns are standardized by the realized volatility measure, and some un-

conditional standard deviation1 zi,t = ri,t/(
√

RVi,t · σi). As seen in Andersen et al. (2000, 2001), is it

safe to assume that zi,t∼N(0, 1).2 Finally, call ui,t = Φ1(zi,t) the probability integral transform of the

zi,t, where Φ1(·) is a cumulative distribution function for the univariate standard normal distribution,

and the resulting variables are uniformly distributed ui,t
iid∼ U (0, 1)∀i = 1, . . . , d (serially uncorre-

lated). This procedure helps reduce the number of parameters and the computational burden of the

estimation procedure. Moreover, using the realized volatility for the standardization step circumvents

the inclusion of an additional potential source of estimation error.

The dependence structure of the resulting probability integral transforms can be easily modeled

by using copulas. To define a copula, we consider a collection of random variables Y1, . . . , Yd with

corresponding distribution functions Fi(yi) = P[Yi ≤ yi] for i = 1 . . . , d and a joint distribution

function H(y1, . . . , yd) = P[Y1 ≤ y1, . . . , Yd ≤ yd]. Then, according to a theorem by Sklar (1959), a

copula C exists such that

H(y1, . . . , yd) = C(F1(y1), · · · , Fd(yd)).

That is, the dependence structure can be separated from the marginals. The joint density h(y1, . . . , yd)

is then a product of individual marginal densities fi(yi) and a copula density:

h(y1, . . . , yd) = c(F1(y1), · · · , Fd(yd)) · ∏d
i=1 fi(yi). Copulas are defined in the unit hypercube

[0, 1]d, where d is the dimension of the data, and all univariate marginals are uniformly distributed.

For a detailed treatment of copulas and areas of applications, readers are referred to McNeil et al.

(2005), Nelsen (2006), Patton (2012), Joe (2015).

In this article, we use Gaussian and t copulas, because they are available in high dimensions (d >

2), and their implementation is straightforward. Gaussian copulas, although widely used, do not allow

for fat-tailed co-dependence — an assumption that can be relaxed by using the t copula. Nonetheless,

one could also consider even more flexible vine copulas (Brechmann & Czado 2015, Loaiza-Maya &

1σi is a scaling factor that allows the standard deviation of the returns to deviate from the RV measure; see Jin & Maheu
(2013, 2016).

2Andersen et al. (2000, 2001) have found that the distributions of the returns scaled by realized standard deviations are
approximately Gaussian.
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Smith 2018) or inversion copulas (Demarta & McNeil 2005, Smith et al. 2012, Loaiza-Maya & Smith

2020), for example, which are also available in higher dimensions and can capture stylized features

observed in financial time series, such as heteroscedasticity, pair-wise fat tails and asymmetry.

Call ut = (u1,t, . . . , ud,t)
′ the collection of uniformly distributed data at time t. The d-variate

Gaussian copula has the following distribution and density functions (Joe 2015):

C(ut|R) = Φd(Φ
−1
1 (u1,t), . . . , Φ−1

1 (ud,t)|R),

c(ut|R) =
ϕd(Φ

−1
1 (u1,t), . . . , Φ−1

1 (ud,t)|R)

∏d
i=1 ϕ1(Φ

−1
1 (ui,t))

.

Here, Φd(·|R) and ϕd(·|R) are a d-variate standard normal distribution and density functions with a

correlation matrix R. The d-variate t copula has the following distribution and density functions (Joe

2015):

C(ut|R, η) = Td,η(T−1
1,η (u1,t), . . . , T−1

1,η (ud,t)|R),

c(ut|R, η) =
td,η(T−1

1,η (u1,t), . . . , T−1
1,η (ud,t)|R)

∏d
i=1 t1,η(T−1

1,η (ui,t))
.

Here, T1,η , Td,η(·|R), t1,η and td,η(·|R) are the univariate and d-variate t distribution and density

functions with degrees of freedom parameter η > 0 and correlation matrix R. When η → ∞, the t

copula becomes a Gaussian copula.

Another important reason exists to focus on Gaussian copula, at least for the high-frequency model.

We make use of the fact that the variance-covariance (or correlation) matrix, estimated from the de-

meaned and standardized log returns zi,t (given that they are approximately normally distributed), is

equivalent to the copula parameter R. This result is valid for only a Gaussian copula with standard

normal marginals and is a result of Hoeffding’s lemma and Sklar’s theorem; details are described in

Fengler & Okhrin (2016). This aspect can be easily seen in the bi-variate case. If we consider two

random variables Y1 and Y2 with standard normal marginal distributions F1(y1) and F2(y2) and a joint

distribution function H(y1, y2), we can find the covariance Cov(y1, y2) = σ12 (also a correlation for
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the standardized data) by inserting the copula function in Hoeffding’s lemma:

σ12 =

∞∫
−∞

∞∫
−∞

[H(y1, y2)− F1(y1)F2(y2)] dy1dy2

=

∞∫
−∞

∞∫
−∞

[C(F1(y1), F2(y2)|R)− F1(y1)F2(y2)] dy1dy2

= κ.

As a special case, if the two random variables Y1 and Y2 are independent, we obtain H(y1, y2) =

F1(y1)F2(y2) and zero covariance. That is, the difference between those two integrals is a measure

of the linear dependence between the two variables. When C(F1(y1), F2(y2)|R) corresponds to the

Gaussian copula, defined above, the resulting scalar κ is just the off-diagonal element of the matrix R.

Therefore, the Gaussian copula function enables one-to-one mapping between the copula dependence

parameter and the linear dependence measure. This result is relevant to our work because it enables

use of the realized correlation, obtained from high frequency data, as a copula parameter R.

Finally, given our proposed framework, the resulting density to describe daily dependence structure

at time t can be written in terms of a copula density pool:

c(ut|MLF,MHF) = ωtc(ut|MHF) + (1 − ωt)c(ut|MLF), (1)

where MHF and MLF present the models estimated by using high and low frequency data. For ex-

ample, consider JP Morgan (JPM) and Bank of America (BAC) log return series, used later in the

empirical application. The left panel of Figure 2 shows the realized correlations (in gray), sample

correlation (thick black horizontal line) and rolling-window correlations (a window of 50, black line);

the middle and left panels show different dependence structures for calm and more volatile periods be-

tween standardized BAC/JPM returns and pairwise estimated t copula degrees of freedom. As shown,

the dependence structure can be described by using multiple alternative measures, both static and dy-

namic. Moreover, the dependence structure changes not only in strength but also in tail thickness. The

proposed mixed frequency pooled copula would allow for all these features observed in real data.
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Figure 2: Left: BAC and JPM realized correlations, sample correlation (for two sub-samples) and
rolling-window correlation. Middle and right: different dependence structures for the first half of the
sample (2001/02/01 to 2005/07/20) and the second half of the sample (2005/07/21 to 2009/12/31)
between the standardized BAC/JPM returns and pairwise estimated t copula degrees of freedom.

2.1 Low frequency covariance modeling

Next, we consider several standard approaches to model the dynamics of the correlation matrix that

arises from the low frequency (daily) data. Call Ω a variance-covariance matrix of the observed stan-

dard normally distributed standardized returns zt = (z1,t, . . . , zd,t)
′. Then the corresponding corre-

lation matrix is R = (diagΩ)−1/2Ω(diagΩ)−1/2. We start with the most straightforward way to

measure dependence, by using a sample correlation matrix. The dependence between ut is modeled

either by fitting a Gaussian or t copula with a static correlation matrix R, estimated given the daily

data up to time t. Another possible model, which is dynamic, is the exponentially weighted moving

average (EWMA) specification, popularized by the RiskMetrics© model. The persistence parameter

for the RM model can be either fixed (λ = 0.94, as recommended for daily data) or estimated:

Ωt = (1 − λ)zt−1z′t−1 + λΩt−1.

This model is very simple and easy to justify: the covariance at time t depends on the previous period’s

covariance adjusted by the most recent shock. Finally, the EWMA model can be generalized to include

an intercept term, thus resulting in the DCC model (Tse & Tsui 2002, Engle 2002):

Ωt = Ω ⊙ (ιι′ − A − B) + A ⊙ zt−1z′t−1 + B′ ⊙ Ωt−1, (2)
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where ⊙ is the Hadamard product of two equally sized matrices (element-by-element multiplication);

ι is a vector of ones; parameter matrices A, B can be replaced with scalars a, b; and Ω is a sample

variance covariance matrix. Naturally, the model choice for daily variance-covariance matrix is not

limited to the models outlined above. For extensive reviews of existing multivariate volatility models,

readers are referred to Asai et al. (2006), Bauwens et al. (2006), Silvennoinen & Teräsvirta (2009),

among others.

2.2 High frequency covariance modeling

As mentioned before, Fengler & Okhrin (2016) have shown that the Gaussian copula’s parameter Rt

can be estimated by using the correlation matrix of the original data (log returns in our case). In the

high frequency data setting, the correlation matrix of the returns can be estimated via Rcort, a realized

correlation measure, obtained from intraday data (Noureldin et al. 2012):

Rcort = (diag Rcovt)
−1/2Rcovt(diag Rcovt)

−1/2,

where Rcovt is a realized covariance measure. Modeling the dynamics of the realized covariance ma-

trices is a notoriously difficult task because of the high dimensions and positive-definite restrictions

on the matrices. One method is to decompose/transform the variance-covariance matrix and use stan-

dard time-series techniques to model the transformed series. This approach has been used by Bauer &

Vorkink (2011) and Chiriac & Voev (2011), among others. Another method is to model the dynamics

of the realized variance-covariance matrices directly by using Wishart distributions (Gourieroux et al.

2009, Jin & Maheu 2013, 2016). In Jin & Maheu (2013, 2016), the scale matrix in the Wishart distri-

bution follows either an additive or a multiplicative component structure, and the authors have found

that the additive structure performs better. Such additive models capture strong persistence in the co-

variances and fat-tailed distributions of the returns. They have compared their proposed model with

multiple other models, such as Cholesky-VARFIMA from Chiriac & Voev (2011), the Wishart auto-

regressive model from Gourieroux et al. (2009), vec-MGARCH from Ding & Engle (2001) and DCC

from Engle (2002). The additive Wishart model has been found to produce superior density forecasts

for all forecast horizons.
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Next, we present the additive component model, introduced in Jin & Maheu (2013, 2016). Consider

a sequence of realized covariance matrices Rcovt of dimension d × d, t = 1, . . . , T. The additive

component inverse Wishart AIW(L) model is given by:

Rcovt ∼ IW((ν − d − 1)Vt, ν),

Vt = B0 +
L

∑
j=1

Bj ⊙ Γt−1,lj , (3)

Bj = bjb′j, j = 1, . . . , L,

Γt−1,lj = 1/lj

lj

∑
i=1

Rcovt−i.

Here, IW(A, b) is the inverse-Wishart distribution with scale matrix A and degrees of freedom b. We

set l1 = 1; furthermore, ljs indicates how many past observations are used to form a component Γt−1,lj

and L is the number of autoregressive components. B0 is a symmetric positive definite matrix and is

set to B0 = (ιι′ − B1 − . . . − BK)⊙Rcov so that the long-term mean of the covariances is equal to the

sample mean.

2.3 Choosing the weights

In this article, we attempt to cover a large part of the types of linear pooling schemes by focusing on

four different approaches: equally weighted, static (Geweke & Amisano 2011), naı̈ve dynamic (Jore

et al. 2010) and dynamic (Del Negro et al. 2016).

Geweke & Amisano (2011) have proposed to maximize the log predictive score function at each

point in time:

ωGew
T+k+1 = arg max

ω
f (ω), such that (4)

f (ω) =
T+k

∑
t=1

log[ωc(ut|MHF) + (1 − ω)c(ut|MLF)],

where c(ut|MHF) and c(ut|MLF) are predictive copula densities for ut, and k = 1, . . . , K is the

out of sample evaluation period. Even though the weights are recalculated at each time point, this

weighting scheme is considered static because, for a large K, the weights reach a stable equilibrium
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(Del Negro et al. 2016). Another approach involves using the log-score rolling weights calculated at

each time t by using m̃ lags, as defined in Jore et al. (2010):

ω Jore
T+k+1,m̃ =

exp[∑T+k
τ=T+k+1−m̃ log c(uτ|MHF)]

∑r={HF,LF} exp[∑T+k
τ=T+k+1−m̃ log c(uτ|Mr)]

. (5)

We call this a naı̈ve time-varying weighting approach. The main difference between the weights in

Eqs. (4) and (5) is that Geweke’s approach considers the predictive densities from the entire sample,

whereas Jore’s weighting scheme places importance on only the last m̃ observations. Finally, as in Del

Negro et al. (2016), we allow for persistence in weights by introducing a latent variable st, thus giving

rise to a dynamic weighting scheme:

st = βst−1 +
√

1 − β2ξt, ξt ∼ N (0, 1) (6)

ωDN
t = Φ(st).

The unconditional mean of st is 0, and the unconditional variance is 1. Parameter β controls the

persistence of the weight dynamics: when β = 1, the process reduces to a random walk; when β = 0,

at each time t, the weights ωDN
t will be uniformly distributed a priori.

For the sake of simplicity, in this article, we consider only a few of the available linear pools,

because the main goal is to investigate the potential benefits of high and low frequency data combina-

tions. By no means do we wish to present a horse-race among the pooling methods, given that a more

flexible/advanced density combination method would probably result in better performing models. For

example, a similar approach to ours has been proposed by McAlinn (2021), wherein macroeconomic

data from different frequencies are synthesized by using Bayesian predictive synthesis (McAlinn &

West 2019). This approach is particularly powerful and beneficial when models are dependent, as

shown by Takanashi & McAlinn (2021). Finally, because the data are multivariate, one might also

consider weighing each series separately (McAlinn et al. 2020). This route would potentially be ben-

eficial if the marginal distributions form a part of the overall model. Therefore, the use of Bayesian

predictive synthesis in our proposed modeling framework should definitely be pursued in a follow-up

research agenda.
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2.4 Competitor model

For comparison purposes, we also include a model that augments the low frequency DCC model with

the high frequency information via the high-frequency-based volatility (HEAVY) approach (Noureldin

et al. 2012), thus resulting in a scalar DCC-HEAVY specification of Bauwens & Xu (2022). In this

model, the lagged outer product of standardized returns in Eq.(2) is replaced by the lagged realized cor-

relations. More specifically, we can model the correlation matrix directly, without using the variance-

covariance matrix, as follows:

Rt = R̄ + a(Rcort−1 − Rcor) + b(Rt−1 − R̄).

Here, a, b ≥ 0, b = 0 if a = 0, b < 1; R̄ is the d × d sample correlation matrix of zt; and Rcor is the

sample mean of the realized correlation matrices. We consider the DCC-HEAVY model with Gaussian

and t copulas. For more details, readers are referred to Bauwens & Xu (2022).

3 Posterior Inference and Model Selection

3.1 Posterior inference

For posterior inference and prediction, we rely on Bayesian computation, particularly Markov chain

Monte Carlo (MCMC) methods. To estimate the density pool in Eq. (1), we first sample from the

posterior of the individual models MHF and MLF. Conditional on those samples, the density pooling

weights in Eqs. (4)-(6) can be obtained. Next, we briefly describe the posterior sampling details for

each of the models presented in Sections 2.1 and 2.2.

Static model. Consider an inverse-Wishart prior on the unconditional variance covariance matrix

Ω ∼ IW(Id(ν0 − d − 1), ν0), ν0 ≥ d + 1, so that E[Ω] = Id and Id id the d-dimensional unit ma-

trix. Given the observed standardized approximately normally distributed data zt = (z1,t, . . . , zd,t)
′,

where z1:T = (z′1, . . . , z′T)
′, the parameter Ω can be sampled directly from the posterior Ω|z1:T ∼

IW(z1:Tz′1:T + Id(ν0 − d− 1), ν0 + T); derivations are provided in Appendix A in the Online Supple-
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mentary Material3. The correlation matrix used as a copula parameter is obtained as R = (diagΩ)−1/2

Ω(diagΩ)−1/2.

RiskMetrics. The estimated RiskMetrics (RMe) model contains only one parameter, λ ∈ (0, 1). We

assume a beta prior λ ∼ B(aλ, bλ) so that 0 < λ < 1. Given that the data are normally distributed,

the likelihood can be easily written as a function of Ωt (or Rt). Our target density is the posterior

p(λ|ut) ∝ ∏T
t=1 c(ut|Rt)π(λ), which is of a non-standard form. Therefore, we can sample from

p(λ|ut) via a random walk metropolis Hastings (RWMH) step, for m = 1, . . . , M, where M is the

length of the MCMC chain, and given some starting value λ(0):

1. At iteration m, draw a new value of λ̃ from a normal proposal distribution N (λ(m−1), Vλ).

2. Accept the new draw with probability α = max
{

1, p(λ̃|ut)/p(λ|ut)
}

.

3. If the draw is accepted, set λ(m) = λ̃, if not, set λ(m) = λ(m−1).

Tuning the parameter Vλ allows to control the acceptance ratio.

DCC, DCC-t and DCC-HEAVY. Similarly to the RMe model above, the parameters for the scalar

DCC, DCC-t and DCC-HEAVY models (a, b, η) can be sampled via RWMH. The priors for the pa-

rameters (a, b) are assumed beta so that 0 < a, b < 1, and the prior for the degrees of freedom of

the Student t distribution, η, is exponential. We sample (a, b, η) jointly in one step from a trivariate

normal proposal distribution given some starting values (a, b, η)(0). The algorithm iterates via MH

steps, and we always reject the draws for which a + b > 1 (except in the DCC-HEAVY model, in

which this restriction is not necessary), to ensure that the process is mean-reverting. For the DCC and

DCC-HEAVY models with Gaussian copulas, we have only parameters (a, b).

AIW. For estimation of the AIW model, as in Jin & Maheu (2013, 2016), we use MH within Gibbs.

We assume L = 2 and call b = (b′1, b′2). The priors for the model parameters are ν ∼ Eν>d+1(ξν),

b ∼ N2d(0, Vb · I2d), l2 ∼ UZ(al , bl). Here E(·) is an exponential distribution, N2d(·) is a 2d-

variate normal distribution, and UZ(·) is a discrete uniform distribution. Given some starting values

(l2, ν, b)(0), the algorithm iterates through the following for m = 1, . . . , M:

3Available at https://sites.google.com/view/audravirbickaitephd.

16

https://sites.google.com/view/audravirbickaitephd


1. Sample ν via RWMH from the conditional posterior:

p(ν|l2, b, Rcov1:T) ∝ π(ν)∏t gIW(Rcovt|l2, ν, b), where gIW is the density function

of the inverse-Wishart distribution.

2. Sample b = (b′1, b′2) via RWMH jointly from the 2d-variate normal proposal, where the

first elements of each vector are truncated to be positive, for identification purposes. As

in Jin & Maheu (2013, 2016) we reject such draws of b where B0 is not positive definite,

or the absolute value of any element of ∑2
i=1 Bi is not less than 1.

3. Sample l2 via RWMH by using Poisson increments that can be either positive or negative

with equal probability.

Pooling weights. Estimation of the static and naı̈ve time-varying weights is straightforward and can

be performed by applying the formulas in Eqs. (4) and (5) on the log predictive scores at each MCMC

iteration after the estimation is performed for all models individually. For the time-varying persistent

weights ωDN
t , we use a variant of particle MCMC called particle marginal Metropolis-Hastings sam-

pler (Andrieu et al. 2010). In particular, we use a bootstrap filter of Gordon et al. (1993) for the latent

state st filtering and a standard MH step with normal prior truncated at (-1,1) β ∼ T N (−1,1)(mβ, Vβ)

with a random walk proposal for the persistence parameter β.

3.2 Model selection

To compare model performance, we consider one-step-ahead density prediction. One-step-ahead hori-

zon has also been considered by Billio et al. (2013), for example. For that purpose, we calculate

the correlation matrices for t + 1. For the static and fixed-parameter RiskMetrics (RMf) model, the

marginal predictive is available analytically:

pstatic(ut+1|z1:t) = x−1td,ν0+t−d+1

(
zt+1

∣∣∣∣ Id(ν0 − d − 1) + z′1:tz1:t

ν0 + t − d + 1

)
,

pRMf(ut+1|z1:t) = x−1ϕd(zt+1|Rt+1(λ)),

where zt+1 = (Φ−1(u1,t+1), . . . , Φ−1(ud,t+1))
′, x = ∏d

i=1 ϕ1(zi,t+1), and Rt+1(λ) is a correlation

matrix from the RMf model with known parameter λ. Of note, the marginal predictive for the static
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model is the Student t density, which is a result of the normal-inverse Wishart conjugacy.

For the DCC (DCC-HEAVY) and RMe models described in Section 2.1, the posterior predictive

distributions are given by

pDCC(ut+1|z1:t, θDCC) = x−1ϕd(zt+1|Rt+1(θDCC)),

pDCCt(ut+1|z1:t, θDCCt) =

(
d

∏
i=1

t1,η(T−1
1,η (ui,t+1))

)−1

td,η(ut+1|Rt+1(θDCCt)),

pRMe(ut+1|z1:t, θRMe) = x−1ϕd(zt+1|Rt+1(θRMe)).

Here, θDCC = (Ω, a, b); θDCCt = (Ω, a, b, η); and θRMe = λ are the estimated parameters for the

DCC (DCC-HEAVY), DCC-t (DCC-HEAVY-t) and RMe models.

Finally, the posterior predictive density for the AIW model is:

pAIW(ut+1|z1:t, θAIW) =x−1td,v−d+1

(
zt+1

∣∣∣∣v − d − 1
v − d + 1

Vt+1

)
,

where θAIW is a vector of the parameters in the AIW model.

The marginal predictive densities p(ut+1|z1:t) that account for parameter uncertainty for the DCC,

DCC-t, DCC-HEAVY, RMe and AIW models can be obtained by using the MCMC output:

p(ut+1|z1:t) =
∫

p(ut+1|z1:t, θ)p(θ|z1:t)dθ ≈ 1
M

M

∑
m=1

p(ut+1|z1:t, θ(m)),

where (θ(1), . . . , θ(M)) are the M posterior samples obtained from the MCMC.

The model comparison is carried out via predictive Bayes factors (BF) given K out of sample

observations. The BF between model 0 (M0) and model 1 (M1) is defined as (West 1986, Kass &

Raftery 1995):

BFT:T+K =
p(uT:T+K|z1:T,M0)

p(uT:T+K|z1:T,M1)
,

where p(uT:T+K|z1:T,Mr) = ∏K
k=1 p(uT+k|z1:T+k−1,Mr). The exact calculation of p(uT:T+K|z1:T,Mr)

is time consuming because of an expanding time horizon, i.e., the model must be re-estimated K times.
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For notational convenience, we do not condition on the model Mr and instead of condition on z1:T,

because ui,t = Φ(zi,t). Then we can write:

p(uT:T+K|u1:T) =
K

∏
k=1

p(uT+k|u1:T+k−1)

=
K

∏
k=1

∫
p(uT+k|θ)p(θ|u1:T+k−1)dθ

T large
≈

K

∏
k=1

∫
p(uT+k|θ) p̂(θ)dθ, where θ(1), . . . , θ(M) ∼ p̂(θ),

≈
K

∏
k=1

1
M

M

∑
m=1

p(uT+k|θ(m)).

The marginal predictive distribution of uT:T+K can be approximated by using a posterior sample of

estimated model parameters p̂(θ) until time T (instead of re-estimating the model K times).

Another necessary measure used for calculating the pooling weights is the log predictive score

(LPS):

LPS =
T+K−1

∑
t=T

log p(ut+1|z1:t). (7)

Finally, we also compare the predictive model performance for the lower q∗ percentile. Similar

metrics have also been considered by Delatola & Griffin (2011) and Opschoor et al. (2021), among

others. We define the log predictive tail score (LPTS) measure as follows:

LPTSq∗ =
T+K−1

∑
t=T

I[ut+1 < q]× log p(ut+1|z1:t),

where q is a d × 1 vector, and I[ut+1 < q] = ∏d
i=1 I[ui,t+1 < qi] with qi ∈ [0, 1]. Here I[a]

denotes the indicator function, which equals 1 if condition a is fulfilled and 0 otherwise. We select

q = [q1, . . . , qd] such that K−1 ∑T+K−1
t=T I[ut+1 < q] = q∗, for q∗ = 0.5, 0.25, 0.10 (Opschoor et al.

2021). That is, we examine the LPS from Eq.(7) only when the d-variate data are jointly in the lower

region [0, q1]× . . . × [0, qd].
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4 Empirical Application I

4.1 Data description

The daily and intraday equity return data as well as the realized variance and covariance data are from

the Multivariate HEAVY article of Noureldin et al. (2012), available at Herber et al. (2009). The data

are from 2001/02/01 to 2009/12/31, and contain 2242 data points in total. High frequency returns

and the realized covariance measures are extracted by using 5-minute returns with subsampling, as de-

scribed in Noureldin et al. (2012). The dataset contains some of the most liquid stocks in the Dow Jones

Industrial Average (DJIA) index. These are Alcoa (AA), American Express (AXP), Bank of America

(BAC), Coca Cola (KO), DuPont (DD), General Electric (GE), International Business Machines (IBM),

JP Morgan (JPM), Microsoft (MSFT) and Exxon Mobil (XOM). The online Supplementary Material

contains descriptive statistics for all assets. To preserve space, the first set of descriptive plots is for

BAC and JPM returns. Figure 3 draws the log returns together with the realized standard deviations,

QQ-plots for the standardized returns (z1,t, z2,t) against the normal distribution and histograms for the

probability integral transforms against the uniform distribution. The corresponding plots for all ten

assets can be found in the Online Supplementary Material. As seen from the plots, the time series

data includes calm and volatile episodes. The QQ-plot indicates that the data, standardized by the RV

measure, are approximately normally distributed, as shown by Andersen et al. (2000, 2001). This is

also confirmed by the probability integral transforms of the standardized returns ui,t = Φ(zi,t), which

are uniformly distributed.

4.2 Prior specification and estimation

The prior hyperparameters for the variance-covariance matrix in the static model are set to Ω ∼

IW(Id, 10); for the RMe model, the prior is λ ∼ B(10, 3) and for the DCC (DCC-HEAVY)-t, the pri-

ors are a ∼ B(3, 10), b ∼ B(10, 3), η ∼ E(0.1). The priors for the AIW model are ν ∼ Eν>d+1(0.1),

b ∼ N2d(0, 10 · I2d) and l2 ∼ UZ(2, 100). In general, all priors are somewhat uninformative but

proper. The size of the MCMC chain is M = 50k for all models; the first half is retained as burn-

in, and thinning is performed every 25th observation from the second half, thus resulting in posterior

samples of 1000 observations. For the RWMH steps, the proposal variances are adjusted such that the
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Figure 3: First column: log returns (open-to-close, in gray) and square root of realized volatility (in
black). Second column: QQ-plots of the standardized returns against the normal distribution. Third
column: histograms of the probability integral transforms against the uniform density for BAC (top
row) and JPM (bottom row) assets.

acceptance rate is approximately 0.5 for univariate parameter vectors and 0.10 to 0.30 for multivariate

parameter vectors. For sampling l2 Poisson increments have a rate parameter equal to either 1.5 or 2,

depending on the acceptance probability. All MCMC chains have converged after 50k iterations. Ap-

pendix B in the Online Supplementary Material contains parameter estimation results and trace plots

for the parameters for all models. Appendix B also contains the robustness check study, wherein all

models are re-estimated by using different hyper-parameter values resulting in more vague priors. The

results for all the models using different hyperparameter values remained virtually identical.

4.3 Full model results

For estimation, we used almost all available data, retaining the last year for the out-of-sample per-

formance evaluation. In particular, the data used for estimation are from 2001/02/01 to 2008/12/31

(1990 data points), and the out-of-sample evaluation period is from 2009/01/02 to 2009/12/31 (252

data points). Table 1 presents the average LPS for the K = 252 out of sample observations for five low

frequency data based models, a high frequency model and a competitor DCC-HEAVY model with t

copula (results for the Gaussian copula are not included, because of considerably poorer performance).

According to the LPS, the DCC-t model performs best among the low frequency data based models,
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and AIW performs best overall. Figure 4 draws expanding-window log predictive BFs for each of

the models, wherein the static model is the benchmark. Positive BFs indicate that the model outper-

forms the static specification. AIW, DCC and DCC-t provide superior out of sample density forecasts,

whereas the more restrictive RiskMetrics models are comparable to the static model.

Table 1: 1-step-ahead log predictive scores (LPS) for all individual models: Static, Dynamic condi-
tional correlation with Gaussian and t copulas (DCC and DCC-t), Additive Inverse Wishart (AIW) and
DCC-HEAVY model with t copula for 2009/01/02-2009/12/31 out-of-sample period (K = 252 obser-
vations).

Static DCC DCC-t AIW DCC-HEAVY-t
-3134.07 -3125.25 -3119.98 -3111.74 -3127.40
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Figure 4: Expanding-window predictive log Bayes factors with a static model as a benchmark for
all individual models: RiskMetrics fixed (RMf), RiskMetrics estimated (RMe), Dynamic conditional
correlation with Gaussian and t copulas (DCC and DCC-t), Additive inverse Wishart (AIW) and DCC-
HEAVY model with t copula for 2009/01/02 to 2009/12/31 out-of-sample period (K = 252 observa-
tions). Average standardized realized volatility (in gray) in the background.

Next, we perform the predictive density combination exercise, as described in Section 2.3. As seen

from Figure 4, model preference is non-constant, and some models that might appear “universally” the

best are outperformed by others in certain periods (e.g., AIW vs DCC-t). Therefore, instead of choosing

a single model for density prediction, we combine predictive densities by using several alternative

weighting schemes. We combine the DCC-t and AIW models, which are the best models in the LF

and HF model classes. In fact, the results reported in Appendix D show that combining any other

LF model that does not perform as well as DCC-t with the AIW still yields superior predictions to
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the best individual model, the AIW. This superiority is not the case for model pools within the same

frequency, which perform systematically more poorly than the benchmark. According to those results,

we conclude that the predictive gains are primarily from the incorporation of low and high frequency

information and not from the model pooling itself.

Figure 5 shows the posterior average of the weights for the HF component (AIW model) for the

four weighting schemes: equally weighted, Geweke’s as in Eq. (4), Jore’s with m̃ = {1, 5, 10} as

in Eq. (5) and Del Negro (DN) as in Eq. (6). Jore’s weights are more volatile because they take into

consideration only the last m̃ observations, whereas Geweke’s weight takes into consideration the entire

out of sample period until the time when the weights are calculated, and reaches a seemingly stable

level of approximately 0.6. Drawing the 95% credible intervals around Geweke’s weight indicates that

the HF component weight is almost always different from 0.5. DN weights are not as volatile as Jore’s;

however, both follow similar patterns. In particular, because the estimated persistence parameter β in

the DN weighting scheme is close to zero, DN and Jore’s weights with m̃ = 1 are nearly identical, and

Jore1 is slightly less smooth. Overall, DN and Jore1 weights fluctuate around 0.5, as expected, given

that both DCC-t and AIW perform similarly, particularly during calm periods.

The bottom plot of Figure 5 draws expanding-window predictive log BFs for density combinations

and individual models, with the AIW model as the benchmark. All four combination schemes out-

perform the best individual AIW model. Geweke’s and equal weights shows the poorest performance,

mainly because the weights are not re-balanced to adjust to a rapidly changing environment. Del Ne-

gro’s scheme performs better than Geweke’s and equal weights, but not as well as Jore1. Even though

DN and Jore1 move in very similar patterns, the more extreme movements of Jore1’s weights appear

to be the source of the superior performance. Overall, all four weighting schemes produce significant

improvements in one-step-ahead density prediction over individual LF and HF models. The results

also hold for five-step-ahead prediction horizon; Online Supplementary Material Appendix D presents

the five-step ahead counterparts of Table 1 and Figures 4 and 5.

Next, Figure 6 draws the posterior densities for the average per observation out-of-sample LPS

and LPTSq∗ for lower 10, 25 and 50% quantiles, only for some individual and some pooled models

(for ease of readability of the graph). Of note, 5% or even 1% quantiles would ideally be examined;

however, because of the short out-of-sample period (K = 252), the resulting sample size would be
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Figure 5: Results for pooling the high-frequency AIW-Gaussian and low-frequency DCC-t copulas.
Top plot: posterior mean of the high-frequency component weight for the five different weighting
schemes. Bottom plot: expanding-window predictive log Bayes factor for density combinations and in-
dividual models, with additive inverse Wishart (AIW) as the benchmark, for 2009/01/02 to 2009/12/31
out-of-sample period (K = 252 observations). Average standardized realized volatility (in gray) in the
background.

very small.4 The posterior densities also indicate whether the differences in these average LPS and

LPTS are statistically significant. The top left plot indicates that the difference in average overall LPS

is statistically significant, pooled models provide the best predictive out of sample performance, and

the DCC-t model has the poorest performance. The results change somewhat within the 50% lower

quantile (top right plot). Here, the preference for the high-frequency based model is less clear, because

the DCC-t and AIW intervals overlap. Pooled models continue to perform best, particularly Jore’s 1-

period mixing weights. Examination of the first quartile (bottom left) instead of the lower half indicates

4There are 12.6 observations in the 5% quantile and only 2.52 in the 1% quantile.
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that the model ordering remains the same, but the differences between the models further decrease.

Finally, in the 10% lower quantile (bottom right plot), both single component models and two of the

pooled models perform virtually identically, and only Jore’s pooling scheme performs significantly

better than the rest. These results show that different models perform differently depending on the

metric used (whole distribution vs the tail of the distribution). Therefore, finding a universally best

model is conceptually impossible. In this article, the best model is characterized as that providing

the highest log predictive score, because we are interested in the entire predictive distribution of the

returns. Nonetheless, if one is interested exclusively in the tails, for example, the log predictive tail

score would be a more appropriate metric for calculating the pooling weights. For example, Kapetanios

et al. (2015) have proposed to model weights dependent on some variable of interest, which could be

some measure related to the lower region of a predictive density.
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Figure 6: Posterior densities for the average per observation one-step-ahead log predictive score and
log predictive tail scores for the lower 50%, 25% and 10% quantiles for 2009/01/02 to 2009/12/31 out-
of-sample period (K = 252 observations). Additive inverse Wishart (AIW) and dynamic conditional
correlation with t copula (DCC-t) are the high and low frequency models, and the pooled models are
according to Geweke’s, Jore’s and equally weighted schemes.

Finally, we sought to determine whether the preference for the high-frequency model might cor-
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relate with overall market conditions, proxied by the market volatility. The preference for the high-

frequency model is measured as the pooling weight of the high-frequency component in various pool-

ing schemes. We also consider the difference between the predictive log likelihoods between the two

best models: AIW and DCC-t. Positive values would indicate that the AIW model is preferred, whereas

negative values would indicate that the AIW model is outperformed by the DCC-t. As a proxy for the

market volatility, we take the average standardized realized volatility (obtained by using the 5-minute

returns with subsampling; see Noureldin et al. 2012) over the ten assets. As alternative proxies, we also

consider the equally weighted market portfolio realized volatility, the MCap5 weighted market portfo-

lio volatility and daily VIX index6 for the corresponding period. Table 2 reports the posterior medians

of the sample correlation coefficients between the preference for the high-frequency weight and the

market volatility proxies. Except for Geweke’s weights, the rest are negatively correlated, meaning

that the preference for the HF model is negatively correlated with the market volatility. The correla-

tions are of relatively small magnitude, but mostly with 95% posterior credible intervals excluding the

zero (except for Del Negro’s weights). We argue that, as the market volatility increases, the realized

variance-covariance measure, used in the AIW model, becomes more contaminated by the market mi-

crostructure noise. Hansen & Lunde (2006), for example, have found that the market microstructure

noise is negatively correlated with returns. Therefore, the preference for the high-frequency component

might decrease because of less reliable estimators during volatile times. Such results have important

implications from the investor’s perspective: investors anticipating bull (or bear) market conditions,

might choose to rely on high-frequency (or low-frequency) models to produce density forecasts.

4.4 Portfolio allocation exercise

Next, we are interested in quantifying how the use of one model versus another translates to a better

performing portfolio in terms of economic gains. To this end, we consider the Global Minimum Vari-

ance (GMV) portfolio. We note that, even though we have the explicit form of the K one-step-ahead

predictive densities for the ten-variate return series at each MCMC iteration, the closed-form expres-

sions for the variance-covariance matrix for the pooled models are analytically unavailable. Therefore,

5Market capitalization (MCap) data are from October 31, 2022.
6VIX is the Chicago Board Options Exchange’s volatility index, based on S&P500 index options.
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Table 2: Posterior medians of sample correlations between the preference for high-frequency model
and four proxies for the market volatility for 2009/01/02-2009/12/31 out-of-sample period (K = 252
observations). The preference for the high-frequency model is measured as a high-frequency com-
ponent weight in various pooling schemes as well as the difference between the daily log likelihood
(diff:logLik) between the AIW and DCC-t models. The proxies for the market volatility are: aver-
age standardized realized volatility (avrg RV), equally weighted market portfolio realized volatility
(Mkt:eql), MCap weighted market portfolio realized volaltity (Mkt:MCap) and VIX index.

Geweke Jore1 Jore5 Jore10 DelNegro diff:logLik
avrg RV 0.624 -0.028 -0.076 -0.108 -0.060 -0.031
Mkt:eql 0.604 -0.024 -0.069 -0.099 -0.056 -0.027

Mkt:Mcap 0.628 -0.015 -0.067 -0.095 -0.047 -0.019
VIX 0.722 -0.011 -0.026 -0.035 -0.006 -0.015

we use a similar approach to those in Ausı́n & Lopes (2010) and Opschoor et al. (2021), wherein at

each MCMC iteration, and for each out-of-sample point, we draw N replications from the ten-variate

predictive distribution, where N is a large number.7 Given this simulated data, we then can calculate

the one-step-ahead variance covariance matrix and perform the GMV portfolio weight calculation. The

procedure can be summarized as follows. For each m = 1, . . . , M and for each k = 1, . . . , K:

1. Simulate N replications of u(m)
T+k from p(uT+k|z1:T+k−1) and transform the uniformly

distributed data to predictive returns r∗(m)
T+k via the corresponding quantile function. Be-

cause in the copula setting, the modeling of the marginals is performed separately

from the dependence structure, all predictive returns have the same marginals (across

models, not across assets). To obtain the realized volatility forecasts, we use the log-

HAR(1,5,22) model of Corsi (2009); this model produces the best out-of-sample results

among some alternative specifications according to six criteria outlined in Hansen &

Lunde (2005) (details in Online Supplementary Material Appendix C).

2. Calculate the empirical one-step-ahead variance-covariance matrix Σ
(m)
T+k of the predic-

tive returns and obtain the solution to the quadratic programming problem analytically:

w(m)
T+k = min w′(m)

T+kΣ
(m)
T+kw(m)

T+k s.t.w′(m)
T+kι = 1, with w(m)

T+k =
Σ
−1(m)
T+k ι

ι′Σ
−1(m)
T+k ι

.

7N = 10, 000 in our case.
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3. Given the estimated predictive optimal portfolio weights w(m)
T+k and the actual ex post

observed returns rT+k, we can calculate various ex post portfolio metrics of interest.

Because we have M of such weight vectors for each time period, we can also have the

entire posterior distributions of these quantities.

In particular, we calculate the K = 252 sequence of the realized portfolio returns. Given these re-

alizations, we can obtain the overall portfolio variance, Sharpe ratio (the ratio between the expected

return and the standard deviation), the empirical 5% and 10% quantiles or the expected value in these

quantiles, which is the value-at-risk (VaR) and the expected shortfall (ES). Next, as in Opschoor et al.

(2021), we also calculate portfolio turnover (TO), concentration (CO) and short position (SP):

TO(m)
T+k =

d

∑
i=1

∣∣∣∣∣w(m)
i,T+k+1 − w(m)

i,T+k
1 + ri,T+k

1 + w
′(m)
T+krT+k

∣∣∣∣∣ ,

CO(m)
T+k =

d

∑
i=1

(
w(m)2

i,T+k

)1/2
,

SP(m)
T+k =

d

∑
i=1

w(m)
i,T+k × I[w(m)

i,T+k < 0].

Here, w(m)
i,T+k is the ith element of the GMV portfolio weight vector at iteration m = 1, . . . , M for

out-of-sample period k = 1, . . . , K. The portfolio turnover measures the value of the portfolio that is

bought/sold from time T + k to T + k + 1. An investor would prefer smaller values of TOt, which

imply lower transaction costs. We also calculate the turnover-adjusted realized portfolio returns and

Sharpe ratios for a fairer economic comparison (using 1% transaction costs). Portfolio concentration

and portfolio short position measure how extreme the portfolio weights are. An investor will prefer

a model that provides the smallest concentration and the largest short position measures. Finally, we

calculate the gain/loss (G/L) ratio, as in Conrad & Stürmer (2017). The G/L ratio shows the percentage

of the expected return gain if we use some other model over the benchmark model to form our portfolio:

G/L(m) = 100%(σ
(m)
AIW − σ

(m)
P )/σ

(m)
P ,

where σ
2(m)
AIW and σ

2(m)
P are the realized portfolio variances at iteration m, based on the predicted

variance-covariance matrices of the best performing individual model, which is AIW, and some other

28



competing model, respectively. The preferred portfolio will have a positive and higher G/L ratio.

Table 3 reports the posterior medians of various GMV portfolio metrics based on the one-step-

ahead predictions for the competing models. The realized portfolio standard deviations, Sharpe ratios

and G/L criteria are annualized. In the upper panel of the table, we focus on the most relevant measures

for an investor minimizing the global variance. Two of the pooled models, Geweke’s and Jore’s, reduce

the portfolio variance in comparison to the AIW model, which provides the smallest variance among

the individual models. The adjusted Sharpe ratio, calculated by using the turnover-adjusted returns, is

the highest for Jore’s pooled model, and the DCC-HEAVY-t model is second best. The G/L criteria

favor Jore’s and Geweke’s pooled models, with a 3.5% and 2.6% relative increase in the required

access return, respectively, when moving away from the benchmark AIW. In the lower panel of Table

3, we provide the results for additional risk measures, which do not necessarily reflect the investor’s

objective of minimal portfolio variance. In most cases, Jore’s pooled model provides the best results

in terms of realized 5% and 10% VaR and ES of the one-step-ahead portfolio returns. In contrast,

the SP, CO and TO metrics favor the AIW model. In conclusion, the portfolio allocation results show

favorable economic outcomes for density pooling, as compared with the individual models, when the

variance-targeting measures are considered.

Table 3: GMV portfolio results based on 1-step-ahead forecasts for 2009/01/02 to 2009/12/31 out-of-
sample period (K = 252 observations) for 10-variate dataset. The table reports the posterior 5, 50
and 95 percentiles of G/L criteria as well as portfolio standard deviation (in %) for the pooled models
(Geweke’s, Jore’s and equally weighted), two best individual models (Additive Inverse Wishart and
Dynamic Conditional Correlation with t copula) and a competitor model (DCC-HEAVY-t).

G/L Portfolio stdev.
P05 Median P95 P05 Median P95

Geweke -12.606 -9.521 -5.483 91.182 91.611 92.009
Jore1 0.288 12.388 19.471 89.976 90.362 91.051
Equal -17.907 -11.755 -5.542 91.400 91.747 92.094
AIW 0.000 0.000 0.000 90.692 91.067 91.448
DCC-t -21.173 -12.276 -3.331 91.410 91.777 92.147
DCC-HEAVY-t -48.392 -37.908 -28.554 92.846 93.306 93.786
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5 Empirical Application II

To verify whether the previous results hold for different samples/periods, we perform a second empir-

ical exercise, which is briefly summarized here. We consider a five-variate dataset of three exchange

rates (EUR/USD, USD/JPY and EUR/GBP), the SP500 market index and WTI oil spot prices for the

period 2012/01/04 to 2021/12/31 (10 years of data, with 2508 daily observations in total). We use the

first 9 years for estimation (2256 observations) and the last 1 year (252 observations) for one-step-

ahead forecast evaluation. Table 4 presents the differences between the one-step-ahead LPS between

the AIW model and the rest of the models. As in the previous empirical application, among the single

frequency models the high-frequency AIW model performs best overall, and the low-frequency DCC

model with t copula is the second best. Interestingly, the competitor DCC-HEAVY-t outperforms all

single frequency models but not the pools: almost all HF-LF pooling schemes outperform all other

models (except for the equally weighted pool), and the Jore1 model performs best. This is the same

conclusion that we made according to the first data set considered in Section 4. Finally, Table 5 presents

the GMV portfolio allocation results. Jore’s pool produces the highest G/L ratio, as compared with the

individual AIW model, with a remarkable 17.6% gain. The results in the upper panel of the table are

close to those seen in the Empirical Application I. However, for the rest of the measures, we a find less

clear preference for one model over another.

Table 4: Differences in the 1-step-ahead log predictive scores (LPS) between the best-fitting individual
model (AIW) and the rest of the models: Static, Dynamic conditional correlation with Gaussian and t
copulas (DCC and DCC-t), DCC-HEAVY with t copula and various AIW-DCC-t pools for 2021/01/04
- 2021/12/31 out-of-sample period (K = 252 observations).

Static DCC DCC-t AIW DCC-HEAVY-t Gew Jore1 Jore5 Jore10 DN Equal
-18.12 -3.62 -2.55 0.00 4.84 5.09 10.32 8.79 6.81 6.41 3.06

All the details containing data description, estimation and prediction results, with corresponding

tables and figures, can be found in the Appendix E in the Online Supplementary Material.

6 Discussion and Conclusion

In this paper, we propose a mixed frequency copula-based approach that enables to model the depen-

dence between financial returns by using information arising from data sampled at different frequen-
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Table 5: GMV portfolio results based on 1-step-ahead predictions for 2021/01/04-2021/12/31 out-of-
sample period (K = 252 observations) for 5-variate dataset. The table reports the posterior 5, 50
and 95 percentiles of G/L criteria as well as portfolio standard deviation (in %) for the pooled models
(Geweke’s, Jore’s and equally weighted), two best individual models (Additive Inverse Wishart and
Dynamic Conditional Correlation with t copula) and a competitor model (DCC-HEAVY-t).

G/L Portfolio stdev.
P05 Median P95 P05 Median P95

Geweke 7.412 13.036 19.115 14.086 14.141 14.193
Jore1 24.647 30.459 35.342 13.950 13.990 14.035
Equal -1.321 3.772 8.738 14.183 14.224 14.269
AIW 0.000 0.000 0.000 14.221 14.258 14.299
DCC-t 2.027 8.521 14.480 14.143 14.182 14.225
DCC-HEAVY-t 0.068 6.925 13.198 14.148 14.198 14.242

cies. We rely on a density pooling approach to combine alternative copula models to describe the daily

dependence structure.

In particular, we pool two copula densities, wherein the parameters are obtained from low and

high frequency data. For the high frequency copula parameter, we use a realized correlation measure.

We model the dynamics of the realized variance-covariance matrices via an additive inverse Wishart

model with a Gaussian copula; meanwhile, for the low-frequency dependence structure, we consider

five standard models: static, RMf, RMe and DCC, all with Gaussian copula, and DCC with t copula.

The DCC-t model always performs best among the low frequency data based models. In both empirical

applications, even though the overall log predictive scores favor the AIW model, incorporating infor-

mation arising from the low frequency data improves the predictive model’s performance. In addition,

the density pool shows an improvement in predictive performance over those of other mixed frequency

models, such as the natural competitor the DCC-HEAVY model. Finally, we show that the gains arise

not from density pooling itself, but from pooling different frequencies, and that the results also hold

for longer prediction horizons.

For future research, an infinite component mixture could be considered for high-frequency data

based models (Jin & Maheu 2016). In addition, a more flexible pooling scheme, such as Bayesian

predictive synthesis, would result in overall better models. Finally, the use of more flexible copulas,

such as inversion copulas, should also be considered.
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