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Abstract

We propose a hybrid deep learning model that merges Variational Autoencoders and Convolutional

LSTM Networks (VAE-ConvLSTM) to forecast inflation. Using a public macroeconomic database that

comprises 134 monthly US time series from January 1978 to December 2019, the proposed model is

compared against several popular econometric and machine learning benchmarks, including Ridge regres-

sion, LASSO regression, Random Forests, Bayesian methods, VECM, and multilayer perceptron. We

find that VAE-ConvLSTM outperforms the competing models in terms of consistency and out-of-sample

performance. The robustness of such conclusion is ensured via cross-validation and Monte-Carlo sim-

ulations using different training, validation, and test samples. Our results suggest that macroeconomic

forecasting could take advantage of deep learning models when tackling nonlinearities and nonstationarity,

potentially delivering superior performance in comparison to traditional econometric approaches based

on linear, stationary models.
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1 Introduction

In modern macroeconomics, the relevance of inflation forecasting cannot be overstated, given its prominent

role in many practical situations. For instance, the estimation of DSGE models, which are pervasively em-

ployed by central banks in their decisions regarding monetary policy, requires a thorough understanding

of inflation dynamics, without which it becomes unfeasible to derive the links with other macroeconomic

variables and, thus, make accurate predictions. Additionally, inflation forecasts are crucial for firms when as-

sessing the profitability of long-term investments. Finally, banks and households also rely on such predictions

when celebrating contracts set in nominal values, such as debts.

As the pertaining literature shows, forecasting inflation is challenging and no consensus exists regarding

which is the best econometric approach; see Faust and Wright 2013 and Rudd and Whelan 2007 for a

comprehensive discussion. Undoubtedly, improving upon simple univariate econometric models is daunting

due to several factors. The main hindrance lies on the nonlinear dynamics displayed by inflation, undermining

the use of the standard linear Phillips Curve, despite its theoretical appeal. Supportive evidence is reported

by Kumar and Orrenius 2016 and Zhang 2017, among others.

In this paper, we delve into two important aspects of the problem. First, with respect to nonlinearities,

many of its sources have been identified and documented, such as nominal rigidity (Daly and Hobijn 2014),

zero lower bound for interest rates (Grauwe and Ji 2019), economic uncertainty (Bloom 2009), and fixed

costs (Medeiros et al. 2019). Second, the choice of variables which can be systematically used for prediction,

yielding reliable out-of-sample forecasts, is also paramount. In the era of big data, multiple options are

promptly available. Without tools and criteria to filter them and achieve parsimony, one becomes prone to

data mining biases and overfitting. 1

In an attempt to address the aforementioned obstacles, this work investigates whether deep learning

methods can generate more accurate out-of-sample inflation forecasts than standard models reviewed in the

related literature. The selection of deep learning to overcome the limitations of previous approaches reflects

the encouraging and abounding findings in real situations where nonlinearities are ubiquitous and input

variables abound, such as pattern classification (Lerouge et al. 2015), speech recognition (Li and Wu 2015),

and image processing (J. Kim et al. 2016); see Goodfellow, Bengio, and Courville 2016 and W. Liu et al.

2017 for additional examples.
1As illustration, in an effort to compile and standardize macroeconomic time series for academic research, McCracken and

Ng 2016 provide a monthly database comprised by more than 100 variables that can be neatly applied to forecast inflation,
as Medeiros et al. 2019 and us show. However, it is conceivable that not all of these variables are beneficial for out-of-sample
prediction.
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Despite the potential of deep learning, applications to inflation modeling are scarce. In a seminal work,

Medeiros et al. 2019 were among the first to survey and carefully examine several machine learning models,

evaluating their performance in forecasting inflation, but focused on standard models (with random forest

outperforming), even though recent advances in deep learning have brought forth a myriad of promising

architectures for time series modeling, which are yet to be meticulously tested and appraised in the context

of forecasting macroeconomic variables2. Previously, authors such as McAdam and McNelis 2005, Choudhary

and Haider 2012, and Garcia, Medeiros, and Vasconcelos 2017 have focused solely on assessing individual

models against straightforward benchmarks.

Among these alternative architectures, it is worth mentioning LSTM (Long Short-Term Memory) net-

works, a versatile deep learning model that has been successfully applied in sequential processing such as

textual interpretation. Introduced by Hochreiter and Schmidhuber 1997 and extended by Gers, Schmid-

huber, and Cummins 2000, Graves and Schmidhuber 2005, and Cho et al. 2014, LSTM networks form a

special subset of RNN (Recurrent Neural Networks) whose architecture is well-adapted to capture temporal

dependencies in data. This feature explains their power for text processing and similar tasks.

In time series modeling, where the dependent variable is assumed to be explained by its past values

and other independent variables, LSTM networks should be suitable. Here, a particular variation of LSTM

network introduced by Shi et al. 2015, called Convolutional LSTM network, or ConvLSTM for short, is the

focus due to its desirable flexibility and ability to extract spatiotemporal features from the inputs. Empirical

studies using ConvLSTM and yielding encouraging results are provided by Bao, Yue, and Rao 2017, Essien

and Giannetti 2019, Fischer and Krauss 2018, Shi et al. 2015, and K. Wang, Qi, and H. Liu 2019.

In Macroeconomics, not only the literature lacks an assessment of the performance of recent advances in

forecasting models based on machine learning, but also no consensus regarding the superiority of nonlinear

models exists. For instance, Álvarez-Díaz and Gupta 2016 argue that accounting for nonlinearities does not

necessarily provide statistical gains when forecasting the US CPI. Meanwhile, Ülke et al. 2018 conclude that,

although machine learning models are more accurate under certain conditions, more parsimonious time series

models may outperform in some scenarios. Thus, additional investigation is justified, increasing the value of

our paper.

Furthermore, deep learning methods can also be used for dimension reduction and denoising. An example

is the autoencoder, which is a type of neural network trained in an unsupervised manner for data encoding and
2For demonstration, multiple examples, with positive results, can be found in the surveys conducted by Atsalakis and

Valavanis 2009, Ahmed et al. 2010, Längkvist, Karlsson, and Loutfi 2017, and Tkáč and Verner 2016. Thus, a study of more
modern approaches and their application for inflation forecasting is justified.
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decoding. When applied to time series, it can be seen as roughly equivalent to a nonlinear version of Principal

Component Analysis (PCA). However, as Y. Wang, Yao, and Zhao 2016 argue, unlike PCA, autoencoders

can also detect repetitive structure in the data. In various domains, these networks have achieved positive

results, outperforming alternative dimension reduction techniques; see Y. Wang, Yao, and Zhao 2016 and

Gu, Kelly, and Xiu 2020. For the purpose of dimension reduction and denoising, we employ the Variational

Autoencoder (VAE); see Doersch 2016.

Therefore, in a nutshell, this paper presents a deep learning approach for forecasting inflation accurately.

Namely, we combine ConvLSTM networks and VAEs with this objective, and the resulting model (VAE-

ConvLSTM) is estimated using the dataset compiled by McCracken and Ng 2016. Our results demonstrate

that the proposed model is superior to several benchmarks in terms of out-of-sample accuracy for multiple

forecasting periods and that deep learning models should be used to forecast inflation.

The contributions of this paper are threefold. First, by scrutinizing deep learning methods and applica-

tions in inflation forecasting, there is an opportunity to advance the literature related to the use of machine

learning for macroeconomic prediction, which is a burgeoning and ever-changing field of research. In partic-

ular, it is possible to assess the potential of LSTM networks and their extensions, namely ConvLSTM, in

modeling macroeconomic time series through the development of a novel deep learning model. For the pre-

ceding reasons, it is plausible to believe that deep learning could yield compelling results in several contexts

that demand forecasting macroeconomic variables in general, without constraining itself to inflation.

Second, it is expected that, by using deep learning to model inflation, some knowledge regarding the

sources of nonlinearities within this variable can be acquired. As previously contended, there is still no con-

sensus with respect to the statistical gains of incorporating nonlinearities in models used for inflation fore-

casting. Actually, through the application of autoencoders, it becomes feasible to inspect the factor structure

in the macroeconomic dataset to diagnosis whether nonlinear interactions are existent. Consequently, the

present research may shed some light in these questions as well.

Finally, by examining denoising and dimension reduction techniques, this work intends to measure the

value of data preprocessing for macroeconomic forecasting so as to avoid data mining biases when time series

are plentiful. Bernanke and Boivin (2003) coined the term data-rich environment precisely to describe these

situations where both the number of variables and the length of time series are large and close to each other.

It is reasonable to believe that, for macroeconomic time series, which are typically observed in low frequency,

generating few observations, this topic is critical.
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2 Methods

In this section, we present a novel approach to improve inflation forecasting. For the sake of brevity, we do

not discuss well-known topics relating to the fundamentals of inflation, trivial linear econometric models, nor

rudimentary, readily available machine learning models. For a comprehensive overview of these methods in a

time series application, we defer to Medeiros et al. 2019, who investigate and compare each of them in terms

of out-of-sample performance.

2.1 The VAE-ConvLSTM Model

Recently, several empirical papers have reported encouraging results regarding the use of deep learning tech-

niques in problems involving time series forecasting. This success is explained mainly by the fact that neural

networks are capable of capturing nonlinearities in the input data, enhancing their forecasting performance.

Some studies illustrating the power and versatility of those models are provided by Adamowski 2008, who

apply a MLP (Multilayer Perceptron) to forecast water demand; Galeshchuk 2016, employing MLPs to model

exchange rates; H. Y. Kim and Won 2018, who combine LSTM networks and GARCH models to analyze

the volatility of selected stock indices; C. Kim et al. 2004, modeling nonstationary time series through ANNs

(Artificial Neural Networks); Shi et al. 2015, who utilize ConvLSTM to predict rainfall; and K. Wang, Qi,

and H. Liu 2019, applying ConvLSTM to forecast energy generation. The interested reader may find exhaus-

tive surveys on the subject in the papers by Ahmed et al. 2010, Atsalakis and Valavanis 2009, Längkvist,

Karlsson, and Loutfi 2017, and W. Liu et al. 2017.

The central idea of the model proposed herein is to build on the adaptability and robustness of LSTM

networks in capturing temporal dependencies to formulate a model that is well-suited to address the non-

linearities observed in inflation time series, as verified by Daly and Hobijn 2014, Correa and Minella 2010,

and Ball and Mazumder 2011. LSTM networks are a reasonable building block since they are designed to

model time-dependent data, succeeding in multiple tasks. For instance, Messina and Louradour 2015, Li and

Wu 2015, and G. Liu and Guo 2019 provide applications for comprehension of handwritten sentences, speech

recognition, and text classification, respectively. Time series analysis with LSTM networks are discussed by

H. Y. Kim and Won 2018 and others.

So as to improve the forecasting capabilities of the LSTM networks, convolutional networks are added

to take advantage of hierarchical patterns that may exist in data, creating the ConvLSTM architecture as

proposed by Shi et al. 2015. Finally, VAEs are included for dimension reduction, forming an architecture
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henceforth called VAE-ConvLSTM. The forecasting process and the full network, with every layer, are shown

in Figure 1 and Figure 2. The architecture and hyperparameters are debated subsequently.

Input Data
Variational
Autoen-
coder

Encoded
Data ConvLSTM Inflation

Forecast

Figure 1: Flowchart exhibiting the proposed forecasting process.

The core references that inspired the development of this model are Bao, Yue, and Rao 2017, Essien and

Giannetti 2019, Shi et al. 2015 and K. Wang, Qi, and H. Liu 2019. The positive results provided therein

when applying ConvLSTM and similar architectures in multiple forecasting contexts encouraged the present

work. In that sense, as argued and demonstrated by Shi et al. 2015, who are credited for the idealization of

ConvLSTM, the choice of this version over the original LSTM network is justified by the fact that, although

the latter has proven powerful when handling temporal serial correlation, it contains undesirable redundancy

for spatial data. In that sense, experiments show that ConvLSTM networks are more effective at capturing

spatiotemporal correlations, consistently outperforming LSTM networks.

Moreover, with the accelerated development and gradual maturity of deep learning, some practitioners

began to realize that the local connection and global sharing features of convolutional neural networks can

greatly diminish the required parameters and training time of the model. This approach is explored by

Sezer and Ozbayoglu 2018 in financial trading, where the authors select 15 distinct technical indicators and

compute their values for a 15-day period to convert price series into 2D images, which are later processed by

a deep CNN.

It is worth emphasizing that the choice of a hybrid model that merges convolutional and LSTM networks

is not only supported by the empirical results reported in the literature regarding the successful applications

of ConvLSTM for time series modeling and forecasting. Supplementary studies show that, in general, hybrid

models tend to deliver more robust performance than a single model in several situations. For instance, Bai,

Tang, and An 2019 demonstrate the effectiveness of utilizing CNNs and LSTMs to classify scene images with

multi-views and multi-levels of abstraction. This combination outperforms several state-of-the-art methods

in their experiments. In distinct contexts, similar results are provided by Kristjanpoller and Minutolo 2015,

who merge ANNs and GARCH models to predict the price return volatility of gold spot and future prices;

by Dash et al. 2010, who combine genetic algorithms and ANNs for groundwater level prediction; and by

Khashei and Bijari 2011, whose model for time series forecasting stems from a hybridization of artificial
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Figure 2: Flowchart representing the layers of the ConvLSTM model. The input layer receives the encoded
data supplied by the VAE (a 57x3x4x478 tensor) and transfers the data to a sequence of convolutional
LSTM, dropout (with a 0.2 dropout rate), and batch normalization layers. The convolutional layers have
16 filters and 3x3 kernel (filter size). Next, a 3D max pooling layer (2x2x2) summarizes the data, which is
then flattened and inserted in a LSTM network formed by two layers with 100 units each, whose output is
processed by a fully connected deep MLP, generating the inflation forecasts.
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neural networks and ARIMA models.

Mathematically, a ConvLSTM network can be formulated as:

it = σ(wxi ∗ xt + whi ∗ ht−1 + wci ◦ ct−1 + bi) (1)

ft = σ(wxf ∗ xt + whf ∗ ht−1 + wcf ◦ ct−1 + bf ) (2)

ot = σ(wxo ∗ xt + who ∗ ht−1 + wco ◦ ct−1 + bo) (3)

c̃t = tanh(wxc ∗ xt + whc ∗ ht−1 + bc) (4)

ct = ft ◦ ct−1 + it ◦ c̃t (5)

ht = ot ◦ tanh(ct) (6)

where σ is the sigmoid function, and wxi, wxf , wxo, wxc, whi, whf , who and whc are 2D convolution kernels.

The input xt, the cell state ct, the hidden state ht, the forget gate ft, the input gate it, and the output gate

ot are all 3D tensors. The symbol ∗ denotes the convolution operator, and ◦ is the Hadamard product. The

main difference between a conventional LSTM network and ConvLSTM lies on the convolutions carried out

when updating states and gates in the latter architecture. This structure allows the network to be more

effective at capturing spatiotemporal correlations, consistently outperforming standard LSTM networks; see

Shi et al. 2015.

In the network proposed, VAEs serve to reduce the dimension of the input data, since the dataset provided

by McCracken and Ng 2016, which is employed to fit the ConvLSTM model as discussed subsequently,

contains several highly correlated time series, implying that some redundancy is expected. As an illustration

of the relevance of dimension reduction, in a real-time forecasting exercise similar to ours, Boivin and Ng

2006 find that factors extracted from as few as 40 pre-screened series often yield satisfactory or even better

results than using all the 147 series available in that occasion. Besides, weighting the data based on their

properties when conceiving the factors also lead to more accurate forecasts, and VAEs have been successfully

applied to transform, encode, and extract features from time series, as shown by Pereira and Silveira 2018,

among others.

Therefore, the architecture begins with a variational autoencoder acting analogously to a nonlinear PCA,

mixing the original series and producing a smaller dataset that can be used to model and forecast inflation.
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The comparison is justified by the fact that, similarly to the conventional PCA, autoencoders allow to extract

principal components by encoding data for later decoding with the intent of replicating the original data. The

nonlinear aspect stems from the fact that, unlike PCA, the components found are not linearly uncorrelated.

Such feature is not a drawback, for neural networks are designed to handle and learn from these nonlinearities.

Moving forward, the encoded data conceived by the VAE is transferred to the ConvLSTM network. The

flowcharts in Figure 2 unveil the inner layers of the architecture, displaying the existence of:

1. Two ConvLSTM layers, which are responsible for extracting spatiotemporal features and transforming

the time series, generating almost a timeline that shows when different features appear in the time series.

Each of these are immediately followed by dropout and batch normalization layers, both of which have

the purpose of improving out-of-sample accuracy, as argued by Srivastava et al. 2014 and Goodfellow,

Bengio, and Courville 2016. The 57x3x4x478 tensor these layers receive from the encoding layer of the

VAE network follows the number of encoded variables (which resemble principal components) obtained

from the dataset (57), the spatiotemporal organization of the lags (12 lags arranged in 3x4 dimensions to

be read by the convolutional layers3) of each encoded variable, and the number of inflation observations

(478) included, adjusted by the number of lags and sample sizes;

2. A summarizing max pooling layer that receives as input the outputs of the convolutional layers. By

definition, its purpose is to transform the output of the previous layer prior to letting the data continue

to flow through the network. In practical terms, the pooling function replaces the output at a certain

location with a summary statistic computed using nearby outputs. The consequence is that the rep-

resentation becomes almost invariant to small translations of the input, which is a desirable property

whenever the presence of a certain feature is more important than its position in the data. The 2x2x2

configuration used in our architecture was determined in an ad hoc manner and delivered attractive

results;

3. A flatten layer that converts tensors into vectors that can be read sequentially by a LSTM cell;

4. A conventional, simple, stacked LSTM network that receives the flattened tensors and captures tem-

poral dependencies. These LSTM layers also encompass dropout layers (adding them once again here

improved the out-of-sample performance in our tests); and

5. A MLP that condenses the output of the LSTM network into a single inflation forecast.
3Of all the configurations tested, this one produced the most satisfactory results. It must be highlighted that the conclusions

of this paper are not sensitive to this data arrangement.

9



2.2 Network Training and Hyperparameter Selection

As highlighted by Goodfellow, Bengio, and Courville 2016, the central challenge in machine learning is that

models must perform reasonably well on new, previously unseen inputs. A well-designed training strategy

is decisive to attain this objective4. A popular and effective solution is to split the input data into training

and test samples, implemented as follows. First, 20% of the observations were reserved for testing. Of the

remaining data, 90% of the observations, or 72% of the complete dataset, were applied for training and the

rest, for validation. These percentages are aligned with guidelines available in the literature.

Since we are dealing with a time-series modeling problem, we implemented k-Fold Cross-Validation for

increased reliability, as advocated by James et al. 2013 and Kuhn and Johnson 2013. The approach entails

randomly dividing the set of observations used for fitting the model into k groups, or folds, of equal size. The

first fold is treated as a validation set, and the model is fitted on the remaining (k−1) folds. Typically, k-fold

cross-validation is carried out using k = 5 or k = 10, as these values have been shows empirically to yield

test error rate estimates that suffer neither from excessively high bias nor from unacceptably high variance.

For this study, k = 10 has been adopted.

Furthermore, Monte Carlo simulation supplemented cross-validation so as to enhance the reliability of the

empirical analysis. More specifically, the splitting of the dataset into training, validation, and test sets, plus

the k-Fold Cross-Validation, have been repeated 100 times with different, randomly-generated seeds, yielding

distinct splits of the dataset each time. This strategy was deemed important because, despite the power of

cross-validation, the test set remains unchanged during the process. Simulation also increased the number

of times the out-of-sample performance of each model was measured, allowing the computation of confidence

intervals for these metrics.

When dealing with time series, the preceding splitting process must be adapted. Indeed, random splits

will certainly disrupt the autocorrelation pattern of the series, rendering them unusable for fitting any model.

That is, when splitting the samples, the observation of each variable must be accompanied by its corresponding

lags. If samples are randomized and split without grouping together observations and the corresponding lags,

it would be impossible to know, for a given date, the observations that precede the ones associated with this

particular date and we could run the risk of incurring in look-ahead bias.

An alternative method employed here involves running the procedure in blocks or, equivalently, including
4Regarding the selection of the optimization algorithm for training, ADAM, together with Nesterov momentum and a

quadratic loss function, has also generated the best performance out-of-sample in the context of inflation forecasting, justifying
their selection when fitting the neural networks models considered here. Nesterov momentum accelerates the convergence of
gradient-based algorithms, explaining its inclusion; see Dozat 2016 for further details.
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the lags of the time series as new variables, which was the option chosen. This way, a split does not break the

autocorrelations, for every observation of a given variable in a particular instant will be accompanied by the

lagged observations of this same variable. To illustrate how the procedure works, one should think the inputs

as organized in a table with observed values ordered by date. The columns contain the variables. Since lags

of each variable also appear as input variables, for a given date, the corresponding line in the table contains

not only the observed values of each variable, but also the corresponding lagged values necessary to estimate

inflation, as required by our model and the benchmarks. Here, we included the statistically significant lags

as indicated by the autocorrelation functions.

Another consideration is the integration of the training procedures of the VAEs and the ConvLSTM.

In this initial version, although there could be gains integrating the training of these two networks, we

decided to follow a more naive approach and train the networks independently. That is, the encoded data

is produced according to its ability to recover the input data without considering its predictive power for

inflation forecasting. Despite the potential improvement stemming from this integration, the current results

are already promising, explaining why the exploration of this training strategy is left for future studies.

Inspired by the configurations and hyperparameters tested by Sezer and Ozbayoglu 2018, 16 filters and

a filter (kernel) size of 3x3 provide the convolution capability with closest neighbors’ (upper, lower, right,

left, upper left, upper right, lower left, and lower right) information while processing the current layer. Thus,

sharp variations within the matrix can be captured and a decent number of lags will be assessed each time the

filter is run (i.e. recent past inflation is included, but older observation is discarded). In our experience, these

values delivered a satisfactory performance and the sensitivity to them seemed manageable and negligible.

It is worth mentioning that, although there is no clear rule in the literature guiding how to optimize the

filter size, few filters cannot infer enough features to improve the learning ability of the network. On the other

hand, an excessive number of filters may decrease the efficiency of the feature extraction process, since too

much data will be analyzed simultaneously and, thus, the filter may become blurry and fail to identify the

underlying features. Also, adhering to the best practices in the literature, zero padding is adopted, meaning

that the size of the input is automatically adjusted to avoid shrinking the spatial extent of the network rapidly

and/or using small kernels, harming the generalization power of the network; see Goodfellow, Bengio, and

Courville 2016.

In the model proposed for inflation forecasting, dropout layers have been added exclusively after the

ConvLSTM and the LSTM layers. This decision is justified by the fact that the core of the forecasting
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process happens at those stages. The succeeding MLP layers essentially convert their output into a inflation

estimate, but the knowledge is concentrated in the previous engines. However, to test this reasoning, other

configurations have been implemented, with additional dropout layers, and the results were virtually the

same in terms of out-of-sample performance. Moreover, the calibration of the dropout rate was carried out

empirically, since there is no consensus in the literature and the optimal choice varies according to the context

considered. For the purposes of this paper, a value of 0.2 performed reasonably well, and results did not

appear to be overly sensitive to this hyperparameter.

The number of LSTM units, hidden layers, and nodes per layer in the MLP (see Figure 2) were defined

in an ad hoc manner. Since there was no clear guidance in the literature for the specific problem we are

trying to solve, we tested a few configurations and settled for the one that yielded adequate results. Here,

we did not notice any hypersensitiveness. Hence, although more efficient optimization approaches could be

designed to select these hyperparameters, this improvement can be left for future studies without penalizing

the conclusions of our study.

Moreover, it is appropriate to discuss the influence of the number of epochs and the batch size in the

optimization process. Unfortunately, no consensus exists in the literature regarding adequate values for these

hyperparameters. They must be calibrated in an ad hoc way, usually choosing as criteria the performance

derived out-of-sample, i.e. the generalization power of the network. In the simulations carried out in this

work, the batch size was defaulted to 32, a value in the range of 32 to 512 frequently considered in practice

to balance the trade-off between convergence and generalization power; see Keskar et al. 2017. It should be

noted that batch sizes are usually defined as powers of 2 to offer better run time.

Finally, the computational implementation was carried out in Python. A GitHub repository was created

for public access and the code is freely available to anyone interested5. We invite the readers to check the code

to have a more thorough view on how the forecasting process works and how the hyperparameters influence

the architecture.

2.3 Benchmarks

A broad, diverse, and fundamentally justifiable collection of benchmarks is crucial for the appraisal of fore-

casting models. In an effort to accomplish this objective, a set of 25 benchmarks has been elected for relative

performance analysis, as listed below. These benchmarks have been extensively employed in macroeconomic

modeling and forecasting and/or in the machine learning literature, justifying their choice.
5Available at: https://github.com/AlexandreFT31/Machine_Learning_Inflation
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1. Random walk (RW);

2. Ridge regression with cross-validation (Ridge CV).

3. Bayesian Ridge regression (BRidge);

4. LASSO regression with cross-validation (LASSO CV);

5. Bayesian LASSO (BLASSO);

6. Elastic net with cross-validation (Enet CV);

7. Support vector regression (SVR);

8. Random Forests (RF);

9. BART;

10. Bagging;

11. K-Nearest Neighbors regression (kNN);

12. Robust regression with Huber loss (Huber);

13. Theil-Sen robust regression (Theil-Sen);

14. Factor models (Factors);

15. GARCH model;

16. Vector error correction model (VECM);

17. SETAR model;

18. Moving average model, based on Atkeson and Ohanian 2001 (MA);

19. Seasonal ARIMA (SARIMA);

20. Fractional ARIMA (ARFIMA);

21. Gradient boosting (GradBoost);

22. AdaBoost (AdaBoost);
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23. Bayesian regression (Bayes Reg.);

24. Multilayer perceptron (MLP);

25. Standard LSTM network (LSTM).

With respect to the standard, plain-vanilla LSTM network that appears in the list, other versions were

thought as potential benchmarks, such as GRU (Gated Recurrent Unit) or BiLSTM (Bidirectional LSTM).

However, these networks lack the additional capabilities introduced by the convolutional part of the VAE-

ConvLSTM architecture and have an architecture similar to the LSTM. Also, they offer mixed improvements

over the original LSTM; see Su and Kay 2019, for instance. Thereby, to keep the list succinct and focus on

the comparison of deep learning methods vs. usual econometric and machine learning approaches, we left

them out of the comparison.

Finally, the criteria adopted to compare the performance of each model is comprised by five metrics

computed for the set of out-of-sample predictions. These metrics are well established in the machine learning

literature and many empirical studies resort to them as a means to compare different models. The metrics are:

mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and cosine

similarity (CS). Intrinsically, the theoretical distribution of the performance metrics listed in the previous

subsection, although unknown, most certainly depart from the normal distribution. A method to effectively

overcome the aforementioned challenge entails kernel density estimation (KDE). KDE was implemented here

using the popular Gaussian Kernel and a bandwidth following the rule-of-thumb provided by Silverman 1986.

Hypothesis testing was carried out using a significance level of 5%.

3 Data

In this section, the database used to fit the model and the benchmarks is detailed and general descriptive

statistics are presented.

3.1 Database for Model Fitting

The database employed was provided by McCracken and Ng 2016. The authors maintain in their website6

a public macroeconomic database comprising 134 monthly US time series freely available at FRED (Federal

Reserve Economic Data, which belongs to the Federal Reserve Bank of St. Louis). These time series had to be
6https://research.stlouisfed.org/econ/mccracken/fred-databases/. Last access: 28 Dec. 2020.
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supplemented by the PMI (Purchasing Managers’ Index) compiled by the Institute for Supply Management

(ISM), which, at the time of this publication, is no longer available at FRED. The variables are grouped

in the following categories: (1) Output and income (17 time series); (2) Labor market (32 time series); (3)

Housing (10 time series); (4) Consumption, orders, and inventories (13 time series); (5) Money and credit

(14 time series); (6) Interest and exchange rates (22 time series); (7) Prices (21 time series); and (8) Stock

market (5 time series).

The selection of this database is justified for multiple reasons. Primordially, McCracken and Ng 2016

implemented the best practices reported in the literature to design a database convenient for empirical

analysis that requires big data. Hence, it seems appropriate for the intent of this work. Furthermore,

this data has been extensively used in the literature in similar studies; for example, see Medeiros et al.

2019. Finally, the time series provided are lengthy, covering several decades and economic cycles, thus being

appropriate for the performance comparison between multiple models avoiding potential biases when short

periods of analysis are used.

For the purposes of this work, the period analyzed ranges from January 1978 to December 2019, amounting

to 504 observations, which is a size deemed significantly superior to the number of variables contained in

the dataset and is sufficient for model estimation with controlled errors. In this time period, there are no

missing observations to be treated. Inflation is gauged by US Consumer Price Index (CPI) for All Urban

Consumers, which is a measure of the average monthly change in the price for goods and services paid

by urban consumers in United States between any two periods. Also, each time series was subjected to

the corresponding transformation suggested by McCracken and Ng 2016. Generally, the transformations

encompass computing the log values when economically justified and differentiating the series (once or twice,

depending on the case) to avoid unit roots and other statistical issues.

3.2 Descriptive Statistics

As a preliminary background before presenting the results, we describe the empirical properties of the inflation

time series. The first difference of the log prices is exhibited in Figure 3. The profile suggests that, after the

transformation, no persistence remains and, thus, the series does not have unit roots, which can be confirmed

via the Augmented Dickey-Fuller (ADF) test. Also, inflation is nonstationary due to time-varying volatility,

which is shown in Figure 4 and can also be confirmed through a hypothesis test.

Moreover, as the Q-Q plot in Figure 5 shows, the hypothesis of normality may be immediately rejected
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Figure 3: Normalized first difference of the log prices, as measured by the US CPI.
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Figure 4: Standard deviation of the first difference of the log prices, as measured by the US CPI. Computed
using a 12-month rolling window.
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(although not provided here, a Jarque-Bera test also corroborate this inference). Indeed, extreme observations

have been reported far more often than implied by the normal distribution, signaling that the true distribution

must have positive excess kurtosis, consistently with Monache and Petrella 2017. These observation have

typically occurred during turbulent periods, such as the late 70s, when the US economy suffered from high

and indomitable inflation, and the 2008-09 financial crisis.
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Figure 5: Q-Q plot of the normalized first difference of the log prices, as measured by the US CPI.

The autocorrelation and partial autocorrelation functions of the first difference of the log inflation are

plotted in Figure 6 and Figure 7. Both plots show that lags have predictive power to explain current inflation.

There are no apparent evidence of long-term memory in the series, despite the fact that the autocorrelation

function decays somewhat slowly and several lags are statistically significant.

Since McCracken and Ng 2016 advise in favor of the use of the second difference of the log prices, the

respective autocorrelation and partial autocorrelation functions are also displayed in Figure 8 and Figure 9.

This additional differencing corrects the autocorrelation function, which now decays exponentially, leaving

few statistically significant lags. The partial autocorrelation function remains well-behaved.
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Figure 6: Autocorrelation function of the first difference of the log prices, as measured by the US CPI.
Confidence interval (shaded area) is computed using Bartlett’s formula with a significance level of 5%.
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Figure 7: Partial autocorrelation function of the first difference of the log prices, as measured by the US CPI.
Confidence interval (shaded area) is computed using Bartlett’s formula with a significance level of 5%.
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Figure 8: Autocorrelation function of the log inflation series after twice-differencing. Confidence interval
(shaded area) is computed using Bartlett’s formula with a significance level of 5%.
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Figure 9: Partial autocorrelation function of the log inflation series after twice-differencing. Confidence
interval (shaded area) is computed using Bartlett’s formula with a significance level of 5%.
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4 Results

Initially, Table 1 presents the ranks produced by the average of the out-of-sample MSE for all forecasting

horizons (1, 2, 3, 6, and 12 months ahead) as well as for the cumulative forecasts over 3, 6, and 12 months.

We leave the actual numbers and its correspondent reduction with respect to a random walk forecast to the

appendix7. In addition, interested readers may find in the appendix analogous results for other performance

metrics such as MAE, MAPE, and R2. Since the conclusions inferred from each of these metrics are virtually

the same, and MSE is possibly the most common one for performance assessment in machine learning, we

will concentrate the analysis only on the MSE.

Table 1: Ranks produced by comparing the models according to their average MSE through the simulations.

The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M

LSTM 2 2 2 2 2 2 2 2

ConvLSTM 1 1 1 1 1 1 1 1

MLP 19 19 18 17 17 20 21 21

RW 26 24 24 24 24 26 24 24

Ridge CV 11 7 6 6 6 11 10 9

BRidge 10 14 12 13 12 13 14 14

LASSO CV 8 6 5 5 5 9 9 8

BLASSO 9 5 4 4 4 8 8 7

Enet CV 7 4 3 3 3 7 6 6

SVR 14 8 7 7 7 10 12 13

RF 18 16 13 14 14 16 17 15

BART 12 11 10 10 10 12 11 11

Bagging 20 20 16 16 16 19 20 20

kNN 21 9 8 8 8 14 13 12

Huber 23 25 25 25 25 24 25 25

Theil-Sen 24 26 26 26 26 25 26 26

Factors 22 12 9 11 11 17 18 16
7The empirical probability distributions of the MSE and MAE metrics reveal that, across simulations, the performance

naturally oscillates, but within a tight range, and never reaching high loss levels. The additional data is available upon request.
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Table 1: Ranks produced by comparing the models according to their average MSE through the simulations.

The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M

GARCH 4 15 19 19 18 5 4 5

VECM 3 23 23 23 23 6 7 18

SETAR 17 21 21 20 19 23 23 23

MA 15 17 14 12 9 21 15 10

SARIMA 6 10 17 18 21 4 3 3

ARFIMA 5 3 20 21 20 3 5 4

GradBoost 13 18 15 15 15 18 19 19

AdaBoost 16 13 11 9 13 15 16 17

Bayes Reg. 25 22 22 22 22 22 22 22

Comparing the median MSE across the models, one infers that the winning model is the ConvLSTM

coupled with a variational autoencoder for dimension reduction. Since this conclusion stems from a significant

amount of simulations, with a rigorous division of the sample into training, validation, and test windows, the

accomplishments of the ConvLSTM model are fairly sound and robust. In fact, the superiority is statistically

significant at 5% in most horizons considered and in comparison with most benchmarks, as confirmed by the

confidence intervals computed. 8 In particular, the ConvLSTM model generate loss reductions as large as

91.5% for some horizons.

By contrast, the random walk is the worst performer in some forecasting windows. An immediate conclu-

sion is that, given the weak accuracy exhibited by the naive random walk, even simple econometric models

enhance out-of-sample predictions. Therefore, although inflation forecasting remains challenging, the results

shown demonstrate that informative predictions can be generated, confronting other studies that claim the

impossibility of beating the random walk. In addition, the simple moving average model of Atkeson and

Ohanian 2001 is also defeated by the ConvLSTM and other benchmarks, showing inflation can be forecast.

Analyzing the full picture, corroborating the findings of Medeiros et al. 2019, we find that machine learning
8Usually, for more distant horizons, the intervals become wider due to the higher uncertainty and, thus, it is impossible to

reject the null hypothesis that the models produce equivalent out-of-sample performance. Nevertheless, it must be mentioned
though that, in most machine learning forecasting studies, the direct comparison of the median (or average) MSE is sufficient
to claim the superiority of a model and, using this criterion, the ConvLSTM is a indisputable winner in every horizon, as one
can see in the appendix.
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methods and models that impose sparsity and/or regularization perform satisfactorily and provide substantial

improvements with respect to the random walk. However, deep learning models do not perform equally.

Indeed, the multilayer perceptron delivers lackluster results, consistently with the findings by Medeiros et al.

2019. In our view, such behavior is explained by the fact that, unlike LSTM and ConvLSTM, the MLP

does not have an architecture designed to capture temporal dependencies in the input data. Therefore, it

requires an excessive number of parameters to adjust to the inputs, leading to overfitting and, thus, poor

out-of-sample performance.

The performance of the factor model offers interesting insights. The mixed results are most likely explained

by a missing structure of linear factors in the data, consistently with the findings reported by Medeiros et al.

2019. This conclusion is also supported by the fragile accuracy of other standard linear models added as

benchmarks and reinforces the use of deep learning to identify these nonlinear interactions between factors9.

A question that immediately arises when adjusting models to time series is whether the outperformance

of a certain model is verified exclusively in a particular time window, or whether it depends on business

cycles or other exogenous variables. The approach established in this work, based on successive splits of

the dataset, conceiving a diverse collection of training, validation, and test samples with which models are

adjusted, addresses this question. Hence, each model has been trained on different samples, covering distinct

periods of time, and tested on multiple settings as well.

With the purpose of inspecting how MSE behaves across time, we display the evolution of the MSE for

the ConvLSTM. We find a strong, positive correlation between the MSE and the CPI volatility, meaning

that, in periods of greater turbulence, performance seems to deteriorate, which is reasonable. Still, in the case

of the model proposed, even during the 2008-09 crisis, when volatility reached its peak, the MSE remained

under control. We find that the outperfomance of ConvLSTM does not depend on the state of the economy,

meaning that it outperforms both during expansions and recessions, or during periods with high and low

uncertainty.

In the framework of machine learning and big data, dimension reduction gains become explicit when

assessing the performance offered by the ConvLSTM model with and without the variational autoencoder. As

the outcomes show, reducing the dimension of the dataset improves the out-of-sample performance, meaning

that redundant information exist in the time series. In order to confirm that using a nonlinear technique for

dimension reduction provides greater gains than a linear one, the same exercise is conducted, but replacing
9Gu, Kelly, and Xiu 2020 also supports such conclusion using financial data. Using autoencoders, the authors demonstrate

that a nonlinear factor structure is more suitable to explain the variability of the data in comparison with linear models.
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Figure 10: MSE of the ConvLSTM model computed using a 12-month rolling window.
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the VAE by PCA. Although not fully reported here, but available at request, the results demonstrate that the

combination of VAE and ConvLSTM is superior to the alternative specification proposed, which is another

piece of evidence of the existence of a nonlinear factor structure in the input data.

The inferences obtained using the MSE criterion hold if one uses RMS, MAPE and CS, although the

confidence intervals seem wider and losses are higher. To conclude, the results shown in this section confirm

that the combination of ConvLSTM and variational autoencoders yields the best out-of-sample performance

according to different metrics and in distinct windows of the time horizon considered in this study. Further-

more, the outperformance of nonlinear models reveals that the linear Phillips curve, despite its theoretical

appeal, fails to explain inflation due to the nonlinearities present in the latter.

5 Conclusions

The present work is devoted to the evaluation of deep learning methods for inflation forecasting. In particular,

a combination of ConvLSTM networks and variational autoencoders is compared against a wide selection of

benchmarks comprised by popular econometric and machine learning models to forecast the US inflation data.

The decision to pursue this analysis stems from the promising findings reported in the literature, showing the

robust prediction power deep learning has, especially in contexts where nonlinearities and nonstationarity

abound.

As expected, the experiments conducted demonstrate that coupling variational autoencoders to a ConvL-

STM networks yields compelling results. Merging these techniques significantly improves the out-of-sample

accuracy in comparison with the benchmarks, generating the lowest median MSE across simulations. The

same conclusion is obtained using distinct performance metrics, such as MAE, and is robust in multiple fore-

casting horizons. The simulations using different training and test samples confirm that, despite the variations

observed across iterations, the proposed model delivers more accurate predictions in every scenario.

Since this is a initial study on the application of deep learning in macroeconomics, venues for improvement

abound. On the modelling side, multiple extensions of the present work can be envisioned, such as applying

wavelets for denoising and decomposition of the input data (Percival and Walden 2006). By working in

multiple scales and high resolution, wavelets determine not only which frequencies are existent in a signal,

but also at which time they have occured, which is helpful to detect noise and local features. An instructive

example is provided by Hsieh, Hsiao, and Yeh 2011. Furthermore, adding a Bayesian refinement through the

incorporation of priors might be worth exploring since inflation is usually positive due to the low frequency
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of deflation periods in most economies.

Apart from that, variable selection was outside the scope of this work, but may also improve out-of-

sample performance. Duarte and Rua 2007 appraise inflation forecast accuracy over short-term horizon

via CPI disaggregated data. The authors adopt a bottom-up approach, aggregating forecasts and later

comparing against predictions obtained using the aggregated CPI. In this sense, the combination of forecasts

for disaggregated prices also shows potential; see Monacelli and Sala 2009 and Coleman 2010.

Another area of improvements comprehends prevention of overfitting. In this study, techniques such

as dropout layers and batch normalization have been extensively adopted with this purpose, but other

approaches exist. For instance, Courbariaux, Bengio, and David 2015 introduce the BinaryConnect, a method

which consists in training a deep neural network with binary weights. The authors conclude that, analogously

to other dropout schemes, BinaryConnect acts as a regularizes and yields near state-of-the-art results in many

applications.

Taking together the refinements envisioned, the performance of the VAE-ConvLSTM model could be

improved, but this does not invalidate the study, since the current version is successful in tackling the main

issues laid down in the introduction: (1) demonstrating the existence of nonlinearities in inflation, which can

be seen through the lackluster performance of the linear benchmarks and the statistical analysis in subsection

4.1; (2) showing the importance of preparation and dimension reduction of input data; and (3) presenting a

promising modeling alternative based on deep learning to deal with nonlinearities and redundant input data.

About this last point, we conjecture that our model could also be successful in forecasting other macroe-

conomic variables, since most of them suffer from the same complexities identified in inflation time series.

Based on our findings and the accomplishments of the VAE-ConvLSTM model, this exploration is definitly

worthy for future studies.
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6 Appendix: Out-of-Sample MSE

Table 2: Descriptive statistics of the out-of-sample MSE of each model.

Model MSE 1 2 3 6 12 3M 6M 12M

LSTM Q1 0.24 0.46 0.50 0.50 0.51 0.37 0.47 0.41

Median 0.32 0.51 0.55 0.55 0.57 0.42 0.55 0.49

Q3 0.40 0.60 0.60 0.64 0.62 0.49 0.68 0.57

ConvLSTM Q1 0.15 0.40 0.44 0.45 0.46 0.30 0.39 0.29

Median 0.17 0.42 0.45 0.46 0.46 0.33 0.43 0.34

Q3 0.19 0.44 0.46 0.46 0.47 0.37 0.50 0.40

MLP Q1 0.92 1.10 1.10 1.10 1.09 1.05 1.09 1.11

Median 0.99 1.16 1.16 1.16 1.18 1.11 1.15 1.17

Q3 1.07 1.22 1.21 1.25 1.25 1.17 1.24 1.24

RW Q1 1.89 1.84 1.87 1.88 1.81 1.90 1.94 1.91

Median 2.04 1.99 1.99 2.05 1.97 2.01 2.06 2.07

Q3 2.15 2.11 2.16 2.19 2.18 2.14 2.19 2.24
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Table 2: Descriptive statistics of the out-of-sample MSE of each model.

Model MSE 1 2 3 6 12 3M 6M 12M

Ridge CV Q1 0.80 0.99 0.99 0.99 0.97 0.97 0.99 0.99

Median 0.85 1.01 1.02 1.03 1.03 0.99 1.00 1.00

Q3 0.89 1.02 1.03 1.04 1.07 1.01 1.02 1.01

BRidge Q1 0.78 1.03 1.03 1.03 1.02 0.97 1.00 1.02

Median 0.85 1.07 1.08 1.08 1.10 1.01 1.04 1.05

Q3 0.91 1.11 1.11 1.14 1.15 1.07 1.10 1.11

LASSO CV Q1 0.78 1.00 1.00 0.99 0.98 0.96 1.00 1.00

Median 0.81 1.01 1.01 1.02 1.03 1.00 1.00 1.00

Q3 0.87 1.01 1.02 1.04 1.07 1.00 1.00 1.00

LASSO Q1 0.78 1.00 0.99 0.99 0.97 0.96 0.99 0.99

Median 0.83 1.01 1.01 1.02 1.02 0.98 1.00 1.00

Q3 0.90 1.01 1.02 1.04 1.07 1.00 1.00 1.00

Enet CV Q1 0.71 0.98 0.98 0.98 0.95 0.93 0.96 0.97

Median 0.76 1.00 1.00 1.01 1.01 0.96 0.98 0.99

Q3 0.83 1.01 1.01 1.03 1.06 0.98 1.00 1.00

SVR Q1 0.90 1.01 1.01 1.00 1.00 0.97 0.99 1.00

Median 0.92 1.03 1.03 1.05 1.06 0.99 1.02 1.03

Q3 0.94 1.06 1.05 1.08 1.10 1.02 1.04 1.06

RF Q1 0.87 1.05 1.04 1.05 1.03 1.01 1.02 1.02

Median 0.93 1.09 1.09 1.10 1.10 1.05 1.05 1.07

Q3 1.00 1.13 1.13 1.15 1.17 1.08 1.10 1.10

BART Q1 0.86 1.01 1.02 1.02 1.02 0.96 0.98 1.00

Median 0.91 1.05 1.06 1.07 1.08 1.00 1.01 1.02

Q3 0.96 1.08 1.10 1.11 1.13 1.04 1.04 1.04

Bagging Q1 0.94 1.12 1.08 1.08 1.10 1.05 1.05 1.05

Median 0.99 1.16 1.14 1.15 1.17 1.10 1.09 1.12

Q3 1.06 1.21 1.21 1.21 1.23 1.15 1.14 1.17
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Table 2: Descriptive statistics of the out-of-sample MSE of each model.

Model MSE 1 2 3 6 12 3M 6M 12M

kNN Q1 0.98 1.00 1.00 1.01 1.00 1.00 1.01 1.00

Median 1.00 1.03 1.04 1.05 1.05 1.02 1.03 1.03

Q3 1.02 1.07 1.07 1.07 1.11 1.05 1.05 1.06

Huber Q1 0.93 1.99 2.03 1.98 2.01 1.67 1.88 1.92

Median 1.04 2.18 2.25 2.32 2.20 1.85 2.04 2.14

Q3 1.19 2.42 2.43 2.55 2.52 2.04 2.25 2.44

Theil-Sen Q1 0.94 2.08 2.10 2.14 2.11 1.71 1.93 1.97

Median 1.04 2.31 2.33 2.44 2.33 1.90 2.09 2.19

Q3 1.20 2.55 2.58 2.68 2.60 2.11 2.30 2.52

Factors Q1 0.93 1.01 1.01 1.02 1.02 1.01 1.01 1.01

Median 1.01 1.04 1.05 1.07 1.08 1.06 1.05 1.03

Q3 1.08 1.08 1.08 1.11 1.13 1.10 1.11 1.08

GARCH Q1 0.49 0.72 0.83 0.79 0.82 0.67 0.60 0.64

Median 0.64 0.93 1.05 1.11 1.09 0.72 0.70 0.70

Q3 0.89 1.34 1.52 1.52 1.46 0.82 0.80 0.83

VECM Q1 0.63 1.28 1.45 1.27 1.42 0.78 0.79 0.77

Median 0.70 1.44 1.63 1.48 1.57 0.91 0.96 1.13

Q3 0.77 1.65 1.94 1.70 1.82 1.05 1.15 1.38

SETAR Q1 0.80 0.99 1.11 1.04 1.04 1.27 1.33 1.53

Median 0.93 1.16 1.27 1.20 1.17 1.42 1.55 1.81

Q3 1.06 1.33 1.48 1.36 1.41 1.59 1.74 2.01

MA Q1 0.84 1.01 0.99 0.92 0.92 1.01 0.93 0.88

Median 0.93 1.13 1.12 1.06 1.07 1.12 1.06 1.02

Q3 1.03 1.27 1.27 1.22 1.24 1.24 1.20 1.19

SARIMA Q1 0.70 0.93 1.02 1.09 1.10 0.67 0.60 0.61

Median 0.77 1.02 1.13 1.24 1.22 0.75 0.69 0.68

Q3 0.82 1.14 1.28 1.35 1.34 0.81 0.78 0.77
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Table 2: Descriptive statistics of the out-of-sample MSE of each model.

Model MSE 1 2 3 6 12 3M 6M 12M

ARFIMA Q1 0.69 0.83 1.02 1.08 1.08 0.62 0.63 0.62

Median 0.75 0.95 1.14 1.19 1.21 0.70 0.71 0.71

Q3 0.82 1.11 1.38 1.34 1.35 0.79 0.81 0.81

GradBoost Q1 0.84 1.07 1.09 1.09 1.07 1.03 1.03 1.05

Median 0.92 1.13 1.16 1.14 1.15 1.07 1.08 1.10

Q3 0.98 1.19 1.20 1.20 1.23 1.12 1.13 1.15

AdaBoost Q1 0.88 1.02 1.03 1.03 1.02 0.99 1.02 1.02

Median 0.93 1.06 1.06 1.07 1.10 1.04 1.06 1.06

Q3 0.97 1.09 1.10 1.10 1.15 1.08 1.09 1.11

Bayes Reg. Q1 0.99 1.22 1.22 1.23 1.24 1.19 1.20 1.23

Median 1.07 1.33 1.32 1.33 1.34 1.30 1.31 1.33

Q3 1.20 1.43 1.42 1.42 1.50 1.40 1.42 1.46

Table 3: Average MSE reduction delivered by each model with respect to random walk. Negative values

mean that the model increased the MSE. The winning model is highlighted in bold font.

Model 1 2 3 6 12 3M 6M 12M

LSTM 83.6% 72.8% 72.4% 71.6% 70.9% 78.4% 71.4% 75.2%

ConvLSTM 91.5% 79.0% 77.9% 77.9% 77.0% 83.4% 77.8% 82.8%

MLP 50.5% 41.5% 42.5% 42.3% 40.8% 44.8% 43.7% 43.4%

RW 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Ridge CV 57.5% 49.3% 49.9% 49.9% 49.0% 50.6% 51.3% 51.7%

BRidge 57.7% 46.0% 46.9% 46.6% 45.7% 49.8% 49.1% 48.9%

LASSO CV 58.8% 49.3% 50.3% 50.4% 49.1% 51.2% 51.4% 51.8%

BLASSO 58.5% 49.5% 50.3% 50.5% 49.3% 51.6% 51.7% 51.9%

Enet CV 62.0% 50.1% 50.8% 50.9% 50.0% 53.0% 52.7% 52.7%

SVR 54.5% 48.1% 48.9% 49.1% 47.5% 50.7% 50.8% 50.4%

RF 53.3% 44.8% 46.1% 45.9% 45.0% 48.4% 48.6% 48.8%
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Table 3: Average MSE reduction delivered by each model with respect to random walk. Negative values

mean that the model increased the MSE. The winning model is highlighted in bold font.

Model 1 2 3 6 12 3M 6M 12M

BART 55.0% 47.1% 47.4% 47.2% 46.2% 50.4% 50.9% 51.1%

Bagging 50.4% 41.4% 43.2% 42.5% 41.5% 45.6% 46.9% 46.5%

kNN 50.3% 47.9% 48.6% 48.4% 47.4% 49.3% 50.2% 50.4%

Huber 47.4% -12.5% -11.7% -11.9% -13.4% 7.5% -0.3% -4.9%

Theil-Sen 47.0% -18.4% -17.5% -17.7% -19.0% 4.8% -3.0% -7.6%

Factors 49.6% 46.9% 48.2% 47.0% 46.2% 47.3% 48.5% 48.7%

GARCH 65.0% 46.0% 41.0% 40.1% 39.3% 63.0% 65.5% 64.8%

VECM 65.0% 25.7% 15.1% 17.2% 17.4% 54.4% 52.7% 47.3%

SETAR 53.6% 41.1% 35.3% 40.0% 38.6% 28.6% 24.2% 15.1%

MA 54.0% 43.1% 44.2% 46.8% 46.4% 44.4% 48.8% 51.2%

SARIMA 62.0% 47.8% 43.0% 40.7% 38.2% 63.0% 66.0% 66.6%

ARFIMA 62.7% 51.1% 40.5% 39.3% 38.6% 64.7% 65.3% 65.2%

GradBoost 54.6% 42.8% 43.3% 42.9% 42.2% 46.8% 47.5% 47.0%

AdaBoost 54.0% 46.6% 47.2% 47.2% 45.6% 48.4% 48.7% 48.6%

Bayes Reg. 45.5% 32.9% 34.3% 33.9% 31.4% 35.2% 35.9% 35.2%

7 Appendix: Out-of-Sample MAE

Table 4: Descriptive statistics of the out-of-sample MAE of each model.

Model Statistic 1 2 3 6 12 3M 6M 12M

LSTM Q1 0.40 0.55 0.57 0.57 0.56 0.49 0.55 0.51

Median 0.45 0.58 0.60 0.59 0.61 0.53 0.59 0.57

Q3 0.51 0.63 0.63 0.64 0.64 0.58 0.66 0.63

ConvLSTM Q1 0.30 0.52 0.53 0.54 0.54 0.44 0.50 0.43

Median 0.32 0.53 0.54 0.54 0.54 0.46 0.53 0.46

Q3 0.35 0.54 0.55 0.55 0.55 0.49 0.58 0.50
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Table 4: Descriptive statistics of the out-of-sample MAE of each model.

Model Statistic 1 2 3 6 12 3M 6M 12M

MLP Q1 0.68 0.76 0.76 0.76 0.77 0.79 0.82 0.86

Median 0.71 0.79 0.79 0.80 0.80 0.82 0.85 0.88

Q3 0.74 0.82 0.82 0.84 0.83 0.85 0.88 0.91

RW Q1 1.02 1.01 1.01 1.02 1.00 1.06 1.08 1.09

Median 1.07 1.05 1.06 1.07 1.05 1.10 1.11 1.13

Q3 1.10 1.09 1.11 1.10 1.11 1.13 1.15 1.16

Ridge CV Q1 0.62 0.69 0.69 0.68 0.69 0.75 0.77 0.80

Median 0.64 0.72 0.71 0.71 0.71 0.77 0.79 0.82

Q3 0.67 0.73 0.73 0.74 0.74 0.79 0.82 0.84

BRidge Q1 0.63 0.72 0.72 0.72 0.72 0.75 0.79 0.81

Median 0.65 0.75 0.74 0.76 0.75 0.78 0.82 0.84

Q3 0.68 0.78 0.77 0.78 0.78 0.80 0.84 0.86

LASSO CV Q1 0.62 0.69 0.69 0.69 0.70 0.74 0.77 0.80

Median 0.64 0.71 0.71 0.71 0.71 0.76 0.79 0.82

Q3 0.66 0.73 0.73 0.74 0.74 0.78 0.82 0.84

BLASSO Q1 0.63 0.69 0.69 0.68 0.69 0.74 0.77 0.80

Median 0.66 0.71 0.71 0.71 0.71 0.76 0.79 0.82

Q3 0.69 0.73 0.73 0.73 0.74 0.78 0.81 0.84

Enet CV Q1 0.60 0.68 0.68 0.68 0.68 0.73 0.76 0.79

Median 0.63 0.71 0.71 0.71 0.71 0.75 0.78 0.81

Q3 0.65 0.73 0.72 0.73 0.73 0.77 0.81 0.83

SVR Q1 0.65 0.70 0.70 0.70 0.70 0.74 0.78 0.80

Median 0.67 0.73 0.73 0.73 0.73 0.77 0.80 0.83

Q3 0.69 0.75 0.74 0.75 0.75 0.79 0.82 0.85

RF Q1 0.67 0.74 0.72 0.73 0.73 0.76 0.79 0.81

Median 0.69 0.76 0.75 0.76 0.76 0.79 0.82 0.84

Q3 0.71 0.78 0.77 0.78 0.79 0.81 0.84 0.87
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Table 4: Descriptive statistics of the out-of-sample MAE of each model.

Model Statistic 1 2 3 6 12 3M 6M 12M

BART Q1 0.66 0.71 0.71 0.71 0.72 0.75 0.78 0.80

Median 0.68 0.74 0.74 0.74 0.75 0.77 0.80 0.83

Q3 0.71 0.76 0.76 0.77 0.78 0.79 0.82 0.85

Bagging Q1 0.70 0.77 0.74 0.75 0.76 0.79 0.81 0.83

Median 0.72 0.79 0.77 0.78 0.79 0.82 0.83 0.86

Q3 0.74 0.82 0.80 0.81 0.82 0.83 0.86 0.89

kNN Q1 0.69 0.71 0.70 0.71 0.71 0.76 0.78 0.81

Median 0.71 0.73 0.72 0.73 0.73 0.78 0.81 0.83

Q3 0.73 0.75 0.75 0.76 0.77 0.80 0.83 0.85

Huber Q1 0.72 1.10 1.09 1.11 1.10 1.01 1.09 1.11

Median 0.76 1.15 1.15 1.17 1.16 1.07 1.14 1.16

Q3 0.79 1.22 1.22 1.23 1.25 1.10 1.20 1.24

Theil-Sen Q1 0.72 1.11 1.12 1.13 1.13 1.02 1.09 1.12

Median 0.76 1.19 1.18 1.20 1.20 1.08 1.16 1.18

Q3 0.79 1.25 1.26 1.27 1.28 1.12 1.22 1.26

Factors Q1 0.69 0.71 0.71 0.71 0.71 0.76 0.79 0.81

Median 0.72 0.74 0.74 0.74 0.74 0.79 0.82 0.83

Q3 0.76 0.76 0.76 0.77 0.77 0.82 0.85 0.86

GARCH Q1 0.56 0.67 0.68 0.70 0.71 0.62 0.61 0.62

Median 0.63 0.74 0.79 0.81 0.81 0.67 0.65 0.67

Q3 0.72 0.89 0.93 0.93 0.95 0.71 0.70 0.73

VECM Q1 0.61 0.89 0.95 0.90 0.94 0.70 0.69 0.72

Median 0.64 0.93 1.02 0.96 0.99 0.75 0.78 0.85

Q3 0.68 1.02 1.12 1.03 1.06 0.81 0.86 0.94

SETAR Q1 0.64 0.73 0.78 0.76 0.75 0.87 0.92 1.00

Median 0.68 0.78 0.85 0.81 0.81 0.93 0.98 1.07

Q3 0.72 0.84 0.91 0.87 0.89 0.99 1.06 1.14
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Table 4: Descriptive statistics of the out-of-sample MAE of each model.

Model Statistic 1 2 3 6 12 3M 6M 12M

MA Q1 0.61 0.68 0.66 0.64 0.64 0.68 0.64 0.62

Median 0.68 0.76 0.75 0.73 0.74 0.75 0.73 0.72

Q3 0.76 0.85 0.85 0.84 0.86 0.83 0.83 0.84

SARIMA Q1 0.67 0.77 0.81 0.83 0.84 0.65 0.62 0.62

Median 0.71 0.81 0.85 0.88 0.88 0.69 0.67 0.67

Q3 0.74 0.85 0.91 0.93 0.95 0.73 0.71 0.71

ARFIMA Q1 0.65 0.73 0.80 0.82 0.83 0.63 0.64 0.63

Median 0.69 0.77 0.85 0.87 0.87 0.66 0.68 0.68

Q3 0.72 0.84 0.94 0.92 0.93 0.70 0.71 0.72

GradBoost Q1 0.66 0.75 0.76 0.75 0.75 0.78 0.80 0.83

Median 0.68 0.77 0.78 0.78 0.78 0.80 0.83 0.86

Q3 0.71 0.80 0.80 0.80 0.81 0.82 0.85 0.88

AdaBoost Q1 0.66 0.72 0.72 0.72 0.72 0.76 0.79 0.82

Median 0.69 0.74 0.74 0.74 0.75 0.78 0.82 0.84

Q3 0.71 0.76 0.77 0.77 0.78 0.81 0.84 0.86

Bayes Reg. Q1 0.73 0.82 0.82 0.82 0.83 0.85 0.86 0.90

Median 0.77 0.86 0.86 0.87 0.87 0.88 0.91 0.93

Q3 0.81 0.90 0.90 0.90 0.92 0.92 0.95 0.98

Table 5: Average MAE reduction delivered by each model with respect to random walk. Negative values

mean that the model increased the MAE. The winning model is highlighted in bold font.

Model 1 2 3 6 12 3M 6M 12M

LSTM 57.9% 44.5% 43.5% 43.5% 42.1% 51.6% 46.9% 49.5%

ConvLSTM 69.7% 49.7% 48.9% 49.2% 48.0% 58.2% 52.1% 58.8%

MLP 33.1% 24.5% 25.7% 25.6% 23.8% 25.7% 23.3% 22.0%

RW 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Ridge CV 39.8% 31.6% 32.9% 33.1% 31.8% 30.2% 28.8% 27.1%
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Table 5: Average MAE reduction delivered by each model with respect to random walk. Negative values

mean that the model increased the MAE. The winning model is highlighted in bold font.

Model 1 2 3 6 12 3M 6M 12M

BRidge 39.1% 28.7% 30.1% 29.9% 28.4% 29.2% 26.5% 25.3%

LASSO CV 39.7% 32.6% 33.7% 33.4% 32.3% 30.4% 28.9% 27.3%

BLASSO 38.3% 32.4% 33.7% 33.8% 32.4% 30.6% 28.9% 27.3%

Enet CV 41.2% 32.6% 33.7% 33.7% 32.3% 31.4% 29.6% 27.7%

SVR 36.9% 30.4% 31.6% 32.5% 30.4% 29.7% 28.1% 26.1%

RF 35.7% 27.4% 29.3% 29.7% 27.1% 28.5% 26.4% 25.6%

BART 36.3% 29.2% 30.5% 30.5% 28.8% 30.0% 28.5% 26.6%

Bagging 32.5% 24.6% 27.4% 26.8% 24.7% 25.6% 25.7% 23.6%

kNN 33.2% 30.3% 32.0% 31.6% 30.4% 29.4% 27.6% 26.0%

Huber 29.2% -10.0% -7.8% -9.0% -11.2% 2.5% -2.0% -2.9%

Theil-Sen 28.6% -14.0% -10.6% -11.9% -14.5% 1.4% -4.2% -4.6%

Factors 32.2% 29.8% 30.9% 30.5% 29.2% 27.6% 26.7% 26.0%

GARCH 40.7% 29.1% 25.4% 23.8% 23.0% 39.3% 41.4% 40.6%

VECM 39.9% 11.2% 3.8% 5.9% 5.4% 31.3% 29.8% 24.6%

SETAR 36.3% 25.5% 20.4% 24.6% 23.0% 15.7% 12.3% 5.3%

MA 35.9% 27.9% 29.9% 31.9% 29.6% 32.0% 34.3% 36.5%

SARIMA 33.7% 22.4% 19.9% 18.1% 15.9% 37.2% 40.3% 40.9%

ARFIMA 35.4% 27.0% 20.1% 18.6% 17.1% 39.5% 38.8% 39.8%

GradBoost 36.3% 26.1% 26.7% 27.2% 26.0% 27.4% 25.6% 24.0%

AdaBoost 35.3% 29.4% 30.1% 30.0% 28.8% 28.7% 26.6% 25.6%

Bayes Reg. 27.7% 18.0% 18.9% 19.6% 17.3% 19.7% 18.4% 17.3%
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Table 6: Ranks produced by comparing the models according to their average MAE through the simulations.

The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M

LSTM 2 2 2 2 2 2 2 2

ConvLSTM 1 1 1 1 1 1 1 1

MLP 20 20 17 17 19 20 21 21

RW 26 24 24 24 24 26 24 24

Ridge CV 6 6 6 6 6 11 11 10

BRidge 8 13 11 13 13 15 17 17

LASSO CV 7 3 5 5 5 10 9 9

BLASSO 9 5 3 3 4 9 10 8

Enet CV 3 4 4 4 3 7 8 7

SVR 10 7 8 7 8 13 13 12

RF 15 15 14 14 15 17 18 15

BART 13 11 10 11 10 12 12 11

Bagging 21 19 15 16 17 21 19 20

kNN 19 8 7 9 7 14 14 13

Huber 23 25 25 25 25 24 25 25

Theil-Sen 24 26 26 26 26 25 26 26

Factors 22 9 9 10 11 18 15 14

GARCH 4 12 18 19 12 4 3 4

VECM 5 23 23 23 23 8 7 18

SETAR 11 18 19 18 18 23 23 23

MA 14 14 13 8 9 6 6 6

SARIMA 18 21 21 22 21 5 4 3

ARFIMA 16 16 20 21 20 3 5 5

GradBoost 12 17 16 15 16 19 20 19

AdaBoost 17 10 12 12 14 16 16 16

Bayes Reg. 25 22 22 20 22 22 22 22
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8 Appendix: Out-of-Sample MAPE

Since MAPE is closely related to MAE and MSE, for the sake of brevity, we are here providing only the

ranks of the models according to their respective MAPE.

Table 7: Ranks produced by comparing the models according to their average MAE through the simulations.

The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M

LSTM 2 2 2 2 2 2 2 2

ConvLSTM 1 1 1 1 1 1 1 1

MLP 21 22 21 22 20 20 21 21

RW 26 25 24 24 24 26 24 24

Ridge CV 6 7 6 6 6 9 9 10

BRidge 7 8 7 9 7 15 17 17

LASSO CV 8 3 5 5 5 10 11 9

BLASSO 3 5 3 3 4 4 3 8

Enet CV 5 4 4 4 3 7 8 7

SVR 10 6 8 7 8 13 13 12

RF 15 15 14 14 15 17 18 18

BART 4 11 10 11 10 11 10 11

Bagging 20 19 15 16 17 21 19 20

kNN 19 13 11 13 13 14 14 13

Huber 23 24 25 25 25 24 25 25

Theil-Sen 25 26 26 26 26 25 26 26

Factors 22 9 9 10 11 18 15 14

GARCH 13 12 18 19 12 12 12 4

VECM 9 23 23 23 23 8 7 15

SETAR 11 18 19 18 18 23 23 23

MA 14 14 13 8 9 6 6 6

SARIMA 18 21 17 17 21 5 4 3

ARFIMA 16 16 20 21 19 3 5 5
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Table 7: Ranks produced by comparing the models according to their average MAE through the simulations.

The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M

GradBoost 17 17 16 15 16 19 20 19

AdaBoost 12 10 12 12 14 16 16 16

Bayes Reg. 24 20 22 20 22 22 22 22

9 Appendix: Out-of-Sample R2

Analogously to the case of MAPE, we are simply providing the ranks of each model according to their

respective out-of-sample R2.

Table 8: Ranks produced by comparing the models according to their average R2 through the simulations.

The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M

LSTM 2 2 2 2 2 2 2 2

ConvLSTM 1 1 1 1 1 1 1 1

MLP 17 17 16 15 15 18 19 19

RW 25 22 22 22 22 22 22 22

Ridge CV 26 26 26 26 26 26 26 26

BRidge 9 6 5 5 5 10 9 8

LASSO CV 24 25 25 25 25 25 25 25

BLASSO 8 5 4 4 4 8 8 7

Enet CV 7 4 3 3 3 7 6 6

SVR 12 7 6 6 6 9 11 12

RF 16 14 11 12 12 14 15 13

BART 10 10 9 9 9 11 10 10

Bagging 18 18 14 14 14 17 18 18

kNN 19 8 7 7 7 12 12 11
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Table 8: Ranks produced by comparing the models according to their average R2 through the simulations.

The two best models are highlight in bold font.

Model 1 2 3 6 12 3M 6M 12M

Huber 21 23 23 23 23 23 23 23

Theil-Sen 22 24 24 24 24 24 24 24

Factors 20 11 8 10 10 15 16 14

GARCH 4 13 17 17 16 5 4 5

VECM 3 21 21 21 21 6 7 16

SETAR 15 19 19 18 17 21 21 21

MA 13 15 12 11 8 19 13 9

SARIMA 6 9 15 16 19 4 3 3

ARFIMA 5 3 18 19 18 3 5 4

GradBoost 11 16 13 13 13 16 17 17

AdaBoost 14 12 10 8 11 13 14 15

Bayes Reg. 23 20 20 20 20 20 20 20
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