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Abstract
We briefly review the main developments of Bayesian dynamic models. The
emphasis is on marketing applications. Typical examples in this area are dis-
cussed. The concepts of monitoring and intervention are carefully explained
with illustrative examples and open source computational routines. We avoid
algebraic developments and instead use graphical examples to illustrate theo-
retical aspects. Two real-world problems using Bayesian dynamic models are
discussed. Finally, we describe recent developments and alternative proposals to
formally address the dependence when dealing with the modeling of multiple
time series.
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1 INTRODUCTION

Although dynamic models and Bayesian forecasting were introduced by Jeff Harrison and collaborators more than 50 years
ago (Harrison and Stevens1), there are still a few applied areas that use this method regularly. Bayesian dynamic mod-
els naturally account for time-varying parameters and accommodate real-time monitoring and interventions on time
series, establishing a powerful method which promptly react to pattern changes in the observed trajectory of the data.
Predicting outcomes for future times, such as sales and returns, in order to plan marketing actions, is a common goal
that is also performed in a fairly intuitive way in this class of models, accommodating the uncertainty involved in esti-
mating unobservable quantities. Sequential inference schemes in Bayesian dynamic models allow the learning system to
quickly update and correct forecasts in regime change scenarios. As highlighted by Leeflang et al.,2 dynamic models allow
for a single-stage analysis of long-term phenomena, and the Bayesian nature also allows for the inclusion of subjective
information.

This article presents a didactic and concise but comprehensive description of the models developed since the end
of the last century (partially described in West and Harrison’s seminal book3) for researchers and professionals in the
field of marketing. We highlight the main developments of the method through examples that are illustrated by graphs,
avoiding tedious formulas, as much as possible. The emphasis is on aspects of smoothing, monitoring and subjective
or automatic interventions, based on decision processes under uncertainty. Many advances have taken place since the
models were initially developed in the 1960s, reflecting the practical experiences of the authors in industry. We high-
light modeling through multiple discount factors, the use of variance laws, natural treatment of missing data, models for
multiple data-generating processes (mixtures of distributions), nonlinear and non-normal models, etc. The basic model
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includes polynomial trend and seasonality components (including cycles), regression and transfer functions, as well as
autoregressive components.

Sales forecasting (Johnston and Harrison4), TV advertising and the evolution of its impact on consumer perception
(Migon and Harrison5), modeling based on microeconometric foundations (Migon6), and optimal portfolio development
(Migon et al.,7 Polson and Tew8) are some of the marketing applications that have appeared in the literature. Migon
et al.,9 is a review paper worth highlighting. With the proliferation of massive data and thus in order to make analysis
computationally efficient and scalable,10 several methodological advances exploring the ideas of decouple/recouple have
been recently proposed. Yanchenko et al.,11 focuses on multivariate revenue forecasting across collections of supermarkets
and product categories, adopting hierarchical dynamic models.

The Bayesian literature in marketing also includes some other situations. We highlight the works of Rossi and
Allenby12 and the excellent book by Rossi et al.13 Econometric time series modeling reviews are presented by Pauwels,14

who use repeated measures, as well as by Dekimpe and Hanssens,15 who review marketing time series models.
Chandukala et al.16 discuss the use of sequential hierarchical models to model the relationship between two specific
quantities when measured by others, such as in advertising-sales relationship models intermediated by effects of cognition,
affect and experience. This sort of application relates to dynamic factor models (Lopes17).

The remainder of the paper is organized as follows. In Section 2, we discuss marketing motivation, including dynamic
decouple/recouple models, new product releases, advertising effects, and marketing structure. Section 3 provides an
introduction to Bayesian Forecasting analysis with focus on Dynamic Linear Model and its practical aspects applied in
sales time series data. Section 4 briefly describes non-normal dynamic models. In Section 5, two challenges developed by
Murabei Data Science1 are described, illustrating the usefulness of dynamic linear models to leverage decision making in
real-world problems. Recent research advances of dynamic models are addressed in Section 6 with focus on multivariate
models. The paper closes with some concluding remarks in Section 7.

2 MOTIVATION

This section describes some marketing-related applications. In general, these applications include high-dimensional data
sets requiring the use of efficiently inferential methods. Models of dynamic factors, aggregation of seasonal structure,
release of new products, advertising effect, and the hierarchical structure of a market (top-down models) are some of the
examples addressed as motivation.

Bayesian modeling’s sequential nature combines harmoniously with chronologically available observations. The infer-
ences about the involved probability distributions are continuously updated, and forecasts are naturally made, enabling
regular monitoring of forecasts, and as a result the quality of the developed models can be improved. Furthermore, the
predictive distribution of observable quantities serves as a practical instrument for evaluating the quality of adjusted
models, since it allows observed values for these quantities to be compared to predictions, assisting the decision-making
process under uncertainty.

2.1 Modeling multivariate responses: Decoupling/recoupling

Dekimpe and Hanssens15 highlight that data sets from marketing applications have been increasing into different direc-
tions: from various measured variables, such as performance metrics, prices, sales, and advertising to different temporal
aggregation (hours, week, days), across geographical places (countries or even continents) and over long time spans.
Dealing with high-dimensional time series data requires the development of efficient models and computational pro-
cedures that are scalable. However, commonly used models in marketing, as discussed by Leeflang et al.2—such as
vector-autoregressive (VAR) and the state-space models when using intense simulation (for instance Markov Chain Monte
Carlo methods18-20) - are not scalable and lose the sequential aspect of inference.

The concept of decoupling and recoupling, as seen in West,21 is one major advance that can improve the compu-
tational efficiency in marketing applications, decomposing high-dimensional multivariate analyses into smaller blocks
which are processed in low computational time and can be recoupled by means of some factor aiming at recovering
dependence structures among blocks. In this sense, the dynamic latent factor modeling proposed by Lavine et al.22

1https://www.murabei.com/.
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explores the sequential inference and computational speed of univariate dynamic models that are linked via dynamic fac-
tor processes that share the information across series, preserving scalability as it allows partial parallel inference over the
time series.

The modeling of daily sales of various products at a supermarket is an emblematic example considered by Berry and
West.10 There are a large number of items, multiple time periods, and forecasts are needed for several periods in the future.
It is reasonable to assume that these patterns are due to a common factor, for example customer flow to stores, but this is
often estimated with great inaccuracy due to noise that is present in the most disaggregated levels of the data. To overcome
these difficulties, the authors propose the use of a common seasonal factor estimated from a convenient aggregation of
the data and then incorporating this factor to the models of each item. Alternatively, the multiparametric/multivariate
exponential family models proposed by Alves et al.23 can be applied, dealing with counts on multiple categories in a
dynamic multinomial framework which is efficiently updated, preserving sequential processing.

Nonnegative counts time series can arise in marketing settings from underlying complex phenomena, for instance,
forecast product demand at different levels of time or space aggregation is crucial for planning marketing decision. This
type of data usually presents general challenges such as over-dispersion and zero-inflation that are ignored in commonly
used marketing models. The class of Dynamic Count Mixture Models (DCMMs) proposed by Berry and West10 can be
applied to deal with these challenges. Furthermore, this class of model can also be applied for modeling of multivariate
count time series data throughout dynamic factor and copula approaches proposed by Lavine et al.22

2.2 Product development

The four stages that are often featured in the product development process are opportunity identification, product design,
sales forecasting, and commercialization (see chapter 3 of Fan et al.24). One could be interested in modeling both the
quantity of new ideas generated by someone as well as whether or not a new concept is implemented in the context
of opportunity identification. Both situations offer potential applications for dynamic generalized models. The works of
Bass25 and Schmittlein and Mahajan26 describe stochastic modeling for the problem of diffusion/adoption of new ideas
or products within social systems. Individuals of a certain society are classified as innovators or followers. Innovators
exercise their “shopping” independently of others in the social system, while “followers” are influenced by the former and
other factors inherent in the social system itself. After some algebraic efforts, Bass et al.27 obtained a logistic-type growth
model, incorporating some strategic variables of marketing, namely effect of price variation, advertising, promotions and
so forth.

The application of this class of models goes beyond marketing problems and can describe the evolution of an epidemic,
retail services, industrial technologies, consumption of durable goods, and so forth. Bayesian estimation of this class of
models can be seen in Ramírez-Hassan and Montoya-Blandón.28 The logistic model is slightly modified by Bass et al.,27

including marketing components as the price and advertising effects, the coefficients of innovation and imitation, and the
involved population. The dynamic version of Bass’s generalized models (Bass et al.,27) can be easily handled as a member
of the wide class of dynamic growth curve models, that also includes the logistic, Gompertz, and modified exponential
models (Migon and Gamerman29).

2.3 Sales promotions and advertising effect

Sales promotions take up a big portion of the companies’ marketing budgets. Promotions have long-term effects on brands
and categories, in addition to the positive and immediate effects they frequently have on sales (Blattberg et al.30 and Chib
et al.31). Modeling these dynamic effects frequently uses Almon’s lag models as a foundation (Seetharaman32). The class of
Bayesian transfer functions (see Section 3.2), which can parsimoniously explain these impacts, is an efficient alternative
for this purpose. For instance, it is well known how promotions can affect brand preference, category incidence, and
purchase volume. These effects can be modeled using dynamic models with responses in the exponential family, such as
the multinomial and Poisson models.

In the 1980s, a dynamic model for memorization of advertising on TV was developed by Migon and Harrison.5 The
memorization of an ad, broadcast on a certain television channel, was evaluated by interviewing consumers at the door of
a supermarket. A card was presented with competing brands and consumers were asked: “which of these brands’ TV ads
do you remember seeing last week?” The ability of an ad to generate memory was simply the proportion of consumers who
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memorized the brand’s ad (yt). These responses were related to a standardized audience index (xt) of the TV program on
which the ad was aired (TVR - television rate). This example contains a lot of interesting features. First, the introduction of
the memorization measure avoids the discussion of the direction of causality between sales and advertising. The method of
inference should be sequential, consider missing observations (because for a few weeks the survey was not performed due
to weather issues) and external information about changes in the advertising “message’. It should also model proportion
data. The relationship between the proportion of those who remembered the advertisement and TVR, audience rates
where the message was conveyed, is nonlinear requiring proper approximations.

Another interesting application related to advertising was developed by Fernandez et al.,33 where a new media
optimization system based on the Markovitz mean-variance model was presented. These models are relevant to
media planning because they optimally choose resource allocations in different media, that is, how many inserts
for each distinct medium and when to allocate. The inserts can be the advertising space in a magazine or news-
paper, or ad time on a particular radio or TV program. An audience index is constructed from a sample of indi-
viduals from the target audience of the advertising campaign under review. In this way, the assets are the inserts
and the returns are the ratings. Therefore, the goal is to allocate the available resources in a number of inserts in
order to maximize the expected audience index, while simultaneously minimizing the associated risk. The quanti-
ties involved in this optimization problem are time series of past experiences. The idea is to make media allocations
that are efficient for future allocations. Therefore, it is necessary to predict the audience index within the established
planning horizon.

2.4 Modeling of the market structure

The modeling of the market structure is relevant at least at two moments: when starting a new business or when modifying
the strategy in an existing market. Several references cited in Terui et al.34 describe alternative static models to address
this problem of structured or hierarchical modeling in marketing. The basis proposal, however, involves the dynamic
modeling of the involved components.

Suppose one has count data describing sales of m distinct brands. The total market is also observed over time, charac-
terizing a time series consisting of the numbers of the various products sales. An example with three levels (total market,
submarkets and brands within each submarket) is illustrated in Figure 1.

Modeling is based on well-known properties of probability theory. For each brand, a count time series is modeled by
a Poisson distribution with parameters varying in time. Assuming conditional independence between the products and
using the fact that the sum of independent Poisson distributions is also a Poisson, one obtains a structure of competition
between the brands (statistical dependence), transforming the distribution of each brand into its conditional distribution
given the total market (sum over brands). It is known from probability theory that the joint distribution of trademarks,
conditional on total, will be a multinomial distribution. Thus, one recovers the competition between brands.

F I G U R E 1 Hierarchical structure composed by the total market, submarkets, A and B, and brands (Ai,Bi, i = 1, 2).
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What are the lessons of this simple example? First, that implicitly one is assuming that competition between brands
can vary along the planning horizon, which is obviously not captured by traditional statistical models. On the other hand,
this is yet another lesson in how one can achieve computational efficiency with massive data. Each univariate brand’s
sales is modeled to obtain its joint distribution or the competition between brands.

Recent developments by Alves et al.23 for dynamic models in the k-parametric exponential family allow the sequential
modeling of multinomial and compositional data with appropriate approximations and reduced computational time,
which allows, in addition to the aspects already mentioned, testing different structures for the model, in a feasible time
frame.

3 INTRODUCTION TO DYNAMIC MODELS

We begin this section by reviewing the fundamentals in Bayesian inference and the paradigm adopted for updating infor-
mation in dynamic linear models (DLM). The stages of the inference process in such models are described with emphasis
on the sequential updating, which allows the execution of monitoring and intervention in the system in a timely man-
ner, when strategically necessary. Transformations in the data are discussed to accommodate them to possibly restrictive
hypotheses of the DLM class. We also discuss modifications to the models’ variance law in order to accommodate the
data with its original scale, which facilitates communication with decision-makers. The main concern of this paper is to
present sophisticated strategies like intervention and monitoring that help marketing analysts make better decisions.

All the illustrations shown in the remainder of the paper were performed using the open source packages in R and
Python, namelyRBATS,35 PyBATS,36 andPyBATS-detection.37 The codes are available through the Github repository
at https://github.com/Murabei-OpenSource-Codes/dynamic_models_marketing.

3.1 Basic concepts of Bayesian inference

Let y be a random variable whose generating process is described by a probability distribution. Its density (continuous
case) or probability (discrete case) function is denoted generically by p(y|𝜽), y ∈  , and 𝜽 ∈ 𝚯, where y is observable
and 𝜽 is not observable (parameter). Following the observation of y, the likelihood function of 𝜽 is calculated as follows:
𝓁(𝜽|y) = p(y|𝜽),𝜽 ∈ 𝚯, whose analytic expression is the probabilistic model, but the function argument will now be the
unknown quantity 𝜽 with the observable y provided. This function describes the relevance of each value of 𝜽, based on
the observed value of y. Note that the likelihood function of a sequence of independently and identically distributed
observations, a random sample, will be the product of the marginal distributions.

In Bayesian inference, an initial distribution over the parameter space, called a prior distribution, is introduced. This
distribution probabilistically describes what is known about the parameter initially and is subjectively evaluated. Its
probability density is denoted by p(𝜽|𝜓),𝜽 ∈ 𝚯, where 𝜓 denotes hyperparameters. Bayes’ theorem allows obtaining a
posterior distribution:

p(𝜽|y, 𝜓) ∝ 𝓁(𝜽|y)p(𝜽|𝜓). (1)

A numerical summary of posterior distributions is desirable. Based on fundamentals of decision theory, we can choose
the average, the mode or the median of the posterior distribution as a point estimate, depending on the loss function
chosen by the decision maker. We can use the variance of the posterior distribution or the curvature around the mode as
a measure of uncertainty . Finally we can build intervals of highest posterior density. These concepts can be seen in detail
in Migon et al.38

The Bayesian paradigm naturally produces predictive distributions, that is, the distribution of future observations
based on observed data. We need, again, to solve an integral, possibly of high dimensionality:

p(yf |y) =
∫

p(yf |𝜽) p(𝜽|y) d𝜽 = E𝜽|y
[
p(yf |𝜽)

]
, (2)

where y denotes the given observed data and yf denotes future data. Predictive distributions play a crucial role in
assessing the quality of a model: since they are distributions of future observable quantities, once these are available
it is possible to compare the predictions made to the actual observed values. In the context of time series, predictive
distribution is not infrequently one of the main objectives of the analysis. Examples of Bayesian updating based on

https://github.com/Murabei-OpenSource-Codes/dynamic_models_marketing
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normal and Poisson models are presented in Appendix A and could be beneficial for marketing researchers unfamiliar
with Bayesian modeling.

3.2 Dynamic linear models

A broad class of time series models was introduced by Jeff Harrison in works published in the 1970s.1,39 The models
are formulated in state space and probabilistically describe both the observations and the unobservable parameters, or
states. Inference is based on Bayes’ theorem and is processed sequentially as each new observation becomes available.
The class includes several facilities for dealing with applied problems, especially in marketing, and includes the author’s
actual expertise in the Imperial Chemical Industry (ICI). These models go far beyond the equally relevant and well-known
Kalman filter, which was created in the field of electrical engineering in the 1960s.

The class of parametric dynamic linear models (DLM) is a natural extension of regression models in which all
the parameters are assumed to vary with time. The following are the observational and parameter evolution (system)
equations:

yt = F′t 𝜽t + 𝝐t, 𝝐t ∼ Nm[0,Vt],
𝜽t = Gt 𝜽t−1 + 𝝎t, 𝝎t ∼ Np[0,Wt], (3)

where yt is an m−dimensional time series of observations that are conditionally independent given 𝜽t (p × 1 vector) and
normally distributed with covariance matrix Vt. A Markovian rule guides the evolution of the states 𝜽t, and conditional on
Gt and 𝜽t−1 they are normally distributed with a covariance matrix Wt. In summary, the above-mentioned class of models
is defined by the quadruple {F,G,V,W}t, where Ft is a p ×m matrix of regressors and Gt is a p × p matrix describing state
evolution. For univariate time series (m = 1), there are two broad model classes to consider: time series models, where
Ft = F and Gt = G,∀t, and dynamic regression models, when F′t = (X1, … ,Xp)′t , Gt = Ip, where Ip denotes the identity
matrix of order p. Let Dt = {D0, y1, · · · , yt, It} the available information up to time t, where It denotes any subjective
information external to the data. If no extra information is incorporated into the observed time series at each time t, that
is, Dt = {Dt−1, yt}, the model is said to be closed to external information and static if Wt = 0.

In several temporal contexts, the main focus are h steps ahead predictions, given information Dt up to time t. For each
t and h ≥ 0, the forecast distribution is

yt+h ∼ Nm[ft(h),Qt(h)], (4)

with ft(h) = E[yt+h|Dt] = F′tat(h); Qt(h) = V[yt+h|Dt] = F′tRt(h)Ft + Vt+h, where at(h) = Gt+hat(h − 1); Rt(h) = Gt+hRt
(h − 1)G′

t+h +Wt+h; with initial values: at(0) = mt = E[𝜽t|Dt]; Rt(0) = Ct = V[𝜽t|Dt].
In some applications, as seen in Subsection 5.1, interest lies in the distribution of (Xt(h)|Dt), called h-steps lead-time

distribution, where Xt(h) = Yt+1 + Yt+2 + … + Yt+h. The lead-time distributions for any time t and h > 0 are naturally
obtained from the forecasting h-steps ahead distributions at time t, as seen in West and Harrison3(pp 38-39, 138,139). Following
that, we will show some univariate examples of how the model’s components are defined (m = 1).

(a) First-order polynomial model
This model corresponds to the specification {1, 1,V ,W}t. As usual, yt ∼ N[𝜇t,Vt] and

𝜇t = 𝜇t−1 + 𝜔t, 𝜔t ∼ N[0,Wt]. (5)

Some relevant remarks are: (i) this is the simplest DLM and corresponds to a time-varying mean model; (ii) to imple-
ment it, we need to know the values of Vt and Wt, which are not known in practical applications (these topics will
be addressed ahead); (iii) the point prediction function ft(h) = E[yt+h|Dt] of a first-order polynomial model is constant
for whatever h = 1, 2, … , resulting in forecasts that do not appropriately account for trend and seasonal patterns, for
example. As a consequence, it is a good model for making very short-term forecasts. The estimation of Vt = V will be
detailed in Section 3.5, as well as the specification of Wt using discount factors.

(b) Second-order polynomial model (linear growth)
By inserting a linear growth factor in the first-order polynomial model, a slightly more sophisticated second-order

model is generated. Then F = (1, 0)′ and G =
(

1 1
0 1

)

will be obtained. This model has an increasing or decreasing linear
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(A) (B)

F I G U R E 2 (A) First-order transfer function with instantaneous stochastic gain factor 𝜓 ∼ N[𝜇
𝜓
, 𝜎

2
𝜓

] and decay factor 0 < 𝜆 < 1. (B)
1(k)-step ahead forecast in blue (red) for DLM with first-order transfer function in a simulated example.

prediction function, ft(h) = E[yt+h|Dt], h = 1, 2, … , which is suitable for medium-term prediction of time series with
trend patterns. In general, a kth order polynomial model generates a polynomial prediction function of order k − 1, so to
capture linear trends it suffices to specify a second-order polynomial model.

(c) Seasonal model
Seasonal models can be specified in terms of seasonal factors. For a seasonal pattern of period p, F = Ep = (1, 0, … , 0)′,

with evolution dictated by the permutation matrix G = P =
(

0 Ip−1
1 0′

)

. Alternatively, one can parsimoniously

specify seasonal patterns, using harmonics. The kth seasonal harmonic component is given by F = E2 = (1, 0)′,

G(k, 𝜔) =
(

cos(k𝜔) sin(k𝜔)
− sin(k𝜔) cos(k𝜔)

)

, 𝜔 = 2𝜋∕p, k = 1, 2, … , h, h = p∕2, if p is even, and h = (p − 1)∕2 if p is odd.

(d) Dynamic regression model
Suppose the pair of values (yt, xt), t = 1, · · · ,T is observed. {F, I2,V ,W}t is the dynamic regression model, with

F′t = (1, xt). The regressor xt could be the price of a product, the existence or absence of a promotion, a holiday indicator
and so on. The dynamic regression model approximates a true nonlinear relationship between xt and yt at a local level.
This approach explicitly acknowledges that the impact of a regressor on the response yt might change over time.

(e) Transfer function models
These are parsimonious representations of a regression with lagged regressors. Let xt be an observable input variable,

and Et denote the state component describing its effect. When the effect of the regressor on the response is not only
instantaneous, but also spread over time, as detailed in the works by Alves et al.40 and Ravines et al.,41 this type of structure
is effective. Let 𝜓 denote an instantaneous effect per unit variation of xt, and 𝜆 ∈ (0, 1) denote an exponential decay
parameter. A very basic first-order transfer function example is given by Et = 𝜆Et−1 + 𝜓xt. Consider the observational
model yt = 𝜇t + Et + 𝜖t, where 𝜖t ∼ N[0,Vt].

An example of first-order dynamics is the relationship between advertising investments and their dynamic effect on
recall (yt). Note that if 𝜆 and 𝜓 are not known, the model will be nonlinear. For example, 𝜓 ∼ N[𝜇

𝜓
, 𝜎

2
𝜓

] represents an
instantaneous stochastic gain. We can increase the vector of states to sequentially estimate the quantities (𝜆, 𝜓) (Figure 2).

(f) Superposition of structural blocks
In practice, it is advisable to develop a component-to-component model through the superposition principle, to take

into account, in different structural blocks, the perceptible components of trend, seasonality, regression and so forth.
The ith model is denoted by {Fi,Gi, 0,Wi}, i = 1, … , r and by {0, 0,Vi, 0} a model for observational noise. Define
Ft = (F′1t, … ,F′rt)′, G = diag(G1, … ,Gr) and Wt = diag(W1t, · · · ,Wrt). Consider the monthly observed data, where
r = 3.

One possible structure for the DLM is composed of a linear growth block (b), F1t = F1 = (1, 0)′ and

G1 =
(

1 1
0 1

)

; a seasonal component (c) with annual and half-yearly period specified in terms of harmonics and given

by F2t = F2 = (1, 0, 1, 0)′ and G2 =
(

G(1, 𝜔) 0
0 G(2, 𝜔)

)

, 𝜔 = 2𝜋∕12; and a dynamic regression component (d) F3t = xt,

G3 = 1.
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3.3 Inference in DLMs

As stated above, the set of available information up to time t, in general, equispaced observations, is denoted by
Dt = {D0, y1, … , yt}. The main inferential aspect in the DLMs is to obtain the prior, predictive, and posterior distribution,
which are defined, respectively, by:

p(𝜽t|Dt−1) =
∫

p(𝜽t|𝜽t−1,Dt−1) p(𝜽t−1|Dt−1) d𝜽t−1, (6)

p(yt|Dt−1) =
∫

p(yt|𝜽t,Dt−1) p(𝜽t|Dt−1) d𝜽t, (7)

p(𝜽t|Dt) ∝ p(𝜽t|Dt−1) p(yt|𝜽t,Dt−1), (8)

where, technically, some hypotheses of conditional independence are used.
These expressions can be found in chapter 4 of West and Harrison,3 where the normal posterior (mean and covariance)

parameters at time t − 1 are denoted by mt−1,Ct−1, the prior parameters for time t, at,Rt, and the mean and variance for
the predictive distribution for time t, ft,Qt, respectively. For normal models with known variances, Figure 3 illustrates the
evolution and updating of the distributions of the random quantities involved, as well as the parameters defining it.

3.4 Some examples of inference in DLM

(i) The components of a time series
Our first illustration is based on the well-known monthly number of passengers carried in the United Kingdom from

1949 to 1960, as seen in Figure 4A. This time series presents multiplicative seasonality and linear growth trend. As an
approximation for a multiplicative model, a dynamic linear growth model (Example (c)) with the superposition of two
harmonic components describing the seasonal effects (see West and Harrison3(p. 97)) was sequentially adjusted to the data.
As will be seen later, “default” discount factors describe the evolution of the states: 0.95 for the trend block and 0.98 for the
seasonal block, respectively. All the analyses in this article use vague normal priors with null mean and large variance. We

(A)

(B)

F I G U R E 3 Evolution and updating of the distributions involved (A) and notation of the parameters that characterize these
distributions (B).
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(A) (B)

(C) (D)

F I G U R E 4 (A) Observed time series and E[𝛉t|Dt], filtered expected values of the model components . (B) Current level. (C) Growth
factor. (D) Seasonal component.

F I G U R E 5 Expected value of forecasts one step ahead (E[yt|Dt−1]) with 95 % credibility intervals.

use a conjugate inverse-gamma prior for the observational variance, which is assumed to be unknown, but constant. The
conjugation beta-gamma (random walk approach) is used when the observational variance is time-varying. In addition,
the first 2 p observations are omitted in all of the following graphs, where p represents the dimension of the state vector.

The expected value of the posterior distributions of the filtered states (E[𝜽t|Dt]) and the corresponding 95% credibility
intervals are shown in Figure 4: the observed time series in (A); the current level in (B); the growth factor in (C); and
finally, seasonality in (D). This DLM is a good “approximation” of the observed data, although its generating process is
clearly nonlinear.

Figure 5 exhibits the expected value of the predictive distribution E[yt|Dt−1] and the corresponding 95% credibility
interval.

(ii) Sequential nature of Bayesian inference
A relevant aspect relates to obtaining the mean of the predictive distribution for a certain h horizon, called the

h−horizon forecast function. This function is useful for defining the components of the dynamic model. For time
series models closed to external information, this function reduces to ft(h) = E [yt+h|Dt] = E[FGh

𝜽t|Dt] = F Gh mt,

h = 1, … ,H.
Figure 6 shows 3 year forecasts beginning in December 1955 and one year ahead starting in December 1957, respec-

tively. When including data from 1956 and 1957, the forecasts for the next year become substantially more accurate. This
example demonstrates the method’s sequential nature as well as the seasonal additive model’s ability to approximate the
current situation, where seasonality is clearly multiplicative. After receiving the additional observations, it was possible
to significantly improve the forecasts for the following year. This is primarily due to the method’s sequential structure.
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(A) (B)

F I G U R E 6 Example of the sequential nature of dynamic Bayesian models. (A) Forecasts after December 1955. (B) Forecasts after
December 1957 (E

[
yt+h|Dt

]
, h = 1, … ,H). Red line: forecast 1 month ahead. Blue line: forecast 36 and 12 months ahead, respectively.

(A) (B)

(C) (D)

F I G U R E 7 Smoothed expected values of model components, E [𝜽t|DT], with 95% credibility intervals. (A) Predictive distribution. (B)
Current level. (C) Growth factor. (D) Seasonal component.

(iii) Retrospective analysis or smoothing
The structure of the upgrading process makes it natural to obtain smoothed (or retrospective) distributions, denoted

by p(𝜽t|Dt+k), k > 0, in addition to the ones listed before.
The smoothed distribution, which corresponds to reviewing all past states based on all the observations may be of

particular interest (see details in West and Harrison3(p. 116)). For example, an advertising campaign launched at time t0
can result in effects that dynamically fade over time. It will be beneficial to plan future campaigns if these effects can be
more precisely established.

Figure 7 illustrates the smoothed expected values (E[𝜽t|DT]) and the corresponding 95% credibility intervals for the
previous example of the time series of passengers carried in the UK.

As can be seen, retrospective analysis has no predictive value because the nature of the prediction process follows
the chronological order. Nevertheless, it is useful for revising latent components of the model in light of all information
available up to time T, giving the analyst a new perspective on the structure under investigation and possibly deepening
the analyst’s understanding of the process.

3.5 Practical aspects of Bayesian forecasting models

(i) Normal model with transformed data
Before applying the normal dynamic models, the Box-Cox family (1964) can be used to transform the data in order

to stabilize the variance of the observations. Its simplest form corresponds to the power transformation y𝜆t if 𝜆 ≠ 0
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(A) (B)

(C) (D)

F I G U R E 8 One-step-ahead predictions with 95% credibility interval, with different data transformations: (A) original scale; (B) square
root; (C) power 3∕4 and (D) logarithm. The MAPEs are 0.083, 0.041, 0.061, and 0.016, respectively.

T A B L E 1 Summary statistics of the predictive distribution for different values of 𝜆.

𝝀 𝓵∗ MAPE MSPE

1 −767.049 0.082 0.009

1∕2 −693.857 0.041 0.002

3∕4 −740.243 0.061 0.005

log −656.838 0.015 <0.001

and log(yt) if 𝜆→ 0. The transformed series’ likelihood function will be equal to the original series’ likelihood
multiplied by the transformation Jacobian, J = 𝜆n∏n

i=1 y𝜆−1
i , which is critical for choosing the best transformation (see

Pole et al.42(pp 95–100)) .
We once more use the series of passengers transported in the United Kingdom to demonstrate the effect of time

series transformations. Thus, using Box-Cox transformations with 𝜆 = 1∕2 and 3∕4, as well as logarithmic transforma-
tion, the previously specified DLM was adjusted to the transformed series. The values of the predictive log-likelihood
adjusted by the Jacobian (𝓁∗), the mean absolute percent error (MAPE), and the mean square percent error (MSPE) for
the different models are reported in Table 1. The logarithmic transformation resulted in the lowest MAPE and MSPE,
and the highest predictive log-likelihood values. The effect of each of these transformations on predictions can be seen in
Figure 8, which shows one-step-ahead forecasts for the four models, where second-order approximations were employed
to restore the original scale. Because the logarithmic transformation transforms the model into an additive one, it is the
most appropriate choice based on all the adopted criteria.

(ii) Variance laws
As seen above, it is customary in statistical applications to seek transformations of the data in order to stabilize variance

and/or induce symmetry in the distribution. In such cases, inferences, including forecasts, should be communicated to
the decision maker on the transformed scale, which can be inconvenient. An alternative, avoiding data transformation, is
to use a variance law, Vt = V k(𝜇t), where k(𝜇t) = 𝜇

𝛼1
t (1 − 𝜇t)𝛼2 , and 𝜇t = F′t 𝜃t represents the mean of the data generating

process.
Two special cases are: (i) binomial variance law if 𝛼1 = 𝛼2 = 1, and (ii) Poisson variance law if 𝛼1 = 1, 𝛼2 = 0. An

interpretation of the Poisson variance law in a business environment would be the following: the number of orders of
a product follows a Poisson distribution, but the number of items varies by order so that the number of items per order
follows a composite Poisson process.

The constants 𝛼1, 𝛼2 can be chosen to correspond to the Box-Cox family of transformations. For instance, 𝛼1 = −2,
𝛼2 = 0 corresponds the logarithmic transformation often used in economic data modeling. Theorem 4.3 in West and
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(A) (B) (C)

F I G U R E 9 Expected values and 95 % credibility interval of the smoothed level for different discount factors. (A) 𝛿 = 0.80. (B) 𝛿 = 0.95.
(C) 𝛿 = 1.0. The MAPEs are 0.057, 0.071, and 0.079, respectively.

Harrison3 establishes that the constant, V , can be estimated sequentially. In summary, we have V |Dt ∼ Gamma
[

nt
2
,

dt
2

]

where nt = nt−1 + 1 and dt = dt−1 +
e2

t
Qt

. Note that nt is the number of degrees of freedom and dt is the sum of the squares
of the standardized prediction errors.

(iii) Discount factors and missing data
The use of discount factors to specify the variance of the evolution of the states (rather than estimating it), and the

treatment of missing data are two important issues in dynamic models.
The sequential updating of DLMs depends on the specification of covariance matrices for the states evolution. Thus,

the structure and magnitude specification of the Wt matrices are critical for modeling and forecasting using DLMs. In
this regard, an intuitive and computational efficient solution is to use discount factors.

The discount factors, 0 < 𝛿 ≤ 1, are constants that can be used in place of Wt when evaluating the states’ prior vari-
ances, Rt. Denoting Pt = G Ct−1 G′, where Ct−1 is the posterior variance at time t − 1, gives Rt = Pt−1 +Wt. As can be
seen, the role of Wt is to add uncertainty when passing from the posterior at time t − 1 to the prior at time t. Alterna-
tively, one can specify Rt = Pt−1∕𝛿, 𝛿 ∈ (0, 1), as both increase the structural part of the previous variance, as desired.
Both specifications are equivalent (one step ahead) if Wt = (1∕𝛿 − 1)Pt−1. The discount factor can be chosen subjectively
or through the optimization of an objective function. An educated guess about the discount factor can be calculated using
the information’s half-life (N) as follows: 𝛿 = 3N−1

3N+1
, where N is the number of periods required for the information of an

observation to decay to half its original value. It is important to remember that if 𝛿 = 1, the model is static.
As discussed in Section 3.2, DLMs are usually designed in terms of structural blocks with the system matrix G

assuming a block-diagonal form, with submatrices reflecting the contribution of individual component models. Con-
sider a DLM model resulting from the superposition of r submodels Mi: {Fit,Git,Vit,Wit}, so that: Ft = (F′1t, … ,F′rt)′,
Gt = diag(G1t, … ,Grt) and Wt = diag(W1t, · · · ,Wrt). One can be interested in modeling the decay of current infor-
mation at different rates for each structural component, leading to the adoption of different discounts 𝛿1, … , 𝛿r. Thus
Wit =

1−𝛿i
𝛿i

Pit, which is the construction that West and Harrison3 refer to as component discount DLM. Under this
block discounting strategy, component covariances are left unchanged and block diagonal elements are divided by their
respective discount factors, resulting in Rit = (1∕𝛿i)Pit, i = 1, … , r.

The effect of different discount factors is illustrated through the analysis of a monthly tobacco time series in the UK
(CP6).3 Figure 9 shows the expected values and 95% credibility interval of the smoothed level (E[𝜇t|DT], t = 1, … ,T)
with the following discount factors: 𝛿 = 0.80, 0.95, and 1.0, for the CP6 series. When 𝛿 = 1, notice the excessive smoothing
and the attempt to better adapt to the data when the discount is set to 0.8, which corresponds to a three-period half-life.
This time series will be re-analyzed in the next sections to illustrate subjective interventions.

One can also consider weighted observations, through the adoption of an observational variance divisor Vt = V∕kt.
Thus an observation with little or no weight (kt → 0) has infinite variance (equivalently, null precision). Missing obser-
vations can be directly and simply handled assuming that the observation precision, at that specific moment, is null
(V−1

t = kt∕V = 0). As a result, the posterior at time t (the missing observation moment) will equal the prior at this time
instant. As a consequence, its mean and variance will be mt = at and Ct = Rt.

(iv) Intervention analysis
External data can be included in the DLM analysis as long as it is probabilistically described. Therefore, marketing

experts should be trained to use probability distributions to describe their subjective information or have the assistance
of an analyst who can play that role (Garthwaite et al.43).
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(A) (B)

F I G U R E 10 Expected values and 95% credibility intervals of the smooth level. (A) Without and (B) with intervention. The MAPEs are
0.029 and 0.019, respectively.

We highlight transitory and persistent interventions among the types of intervention (West and Harrison3). The first
consists of adjusting the variance of the observations (Vt) to reduce or eliminate an outlying observation. The second is
intended to incorporate the effect of regime changes and consists of introducing the component𝝍 t ∼ N[ht,Ht], where ht
represents a subjective assessment of change in the states prior mean, at time t, and Ht is the uncertainty associated with
this change.

Changes in level and growth components are of particular interest. Suppose that 𝜓t is uncorrelated with (𝜃t−1|Dt−1)
and with𝜔t, the states will as follows: 𝜽t = Gt 𝜽t−1 + 𝝍 t + 𝝎t. simplest type of intervention is just to change Wt arbitrarily,
leaving the system in alert because some unknown event is about to occur.

To illustrate the intervention analysis, we again use the monthly tobacco sales series. It can be seen in Figure 10
that sales increased rapidly in 1955, but then decreased towards the end of the year. Early in 1957 and 1958, two level
adjustments with higher volatility were observed. The growth factor of total sales changed in the last two years of the
series, 1958 and 1959. The intervention analysis was carried out using a dynamic linear growth model as follows:

1. Observation y12 was ignored (outlier) and H12 was set appropriately to anticipate the change in the growth factor;
2. In Jan/1957 (t = 25), an elicited subjective intervention was undertaken through modifications in h25 and H25, in

addition to treating y25 as an outlier, to anticipate the change in sales level;
3. In Jan/1958 (t = 37), changes occurred in both the level and the growth factor. A subjective intervention is performed

by changing the values of the prior parameters.

Figure 10 exhibits the expected values of the smoothed level and the corresponding 95% credibility interval without
(A) and with (B) intervention.

(v) Bayesian monitoring and interventions
In this section, we present a sequential and automatic monitoring method (West and Harrison3). This consists of

verifying whether a future observation is consistent with forecasts made with the current model (M0) or whether it
favors some alternative model (M1). The monitoring will be based on the most recent observations at time t. The concept
of the local Bayes factor is defined as follows: Ht(k) =

p0(yt ,··· ,yt−k+1)
p1(yt ,··· ,yt−k+1)

, where p0 and p1 are the current model’s and an
alternative model’s predictive distributions, respectively. For each t > 1, the Bayes factor accumulates multiplicatively:
Ht(k) = HtHt−1(k − 1), k = 2, … , t. For each k, Ht(k) evaluates the predictive performance of M0 against M1 for the
k most recent observations. A small value of Ht = Ht(1) signs for a possible outlier or the onset of a change in the
time series, at time t. A small Ht(k) for k > 1 indicates that, possibly, changes have taken place at least k instants
back. Let Lt = min1≤k≤t Ht(k), with L1 = H1. This quantity can be calculated recursively using Lt = Ht min{1,Lt−1} and
lt = 1 + lt−1 I(−∞,1)(Lt−1), where Ht = Ht(1) and lt denotes the time the minimum occurs. This procedure depends on a
threshold 𝜏, 0 < 𝜏 < 1 and kmax. Small values of Lt < 𝜏 or the accumulation of a maximum number of installments
lt > kmax indicate possible inadequacy of M0. West and Harrison3(pp 392–397) provide a detailed discussion on model
monitoring via Bayes factors.

The application of Bayesian monitoring is illustrated using two examples, one based on simulated data and the other
on a real-time series. The monitoring parameters were set as kmax = 3 and 𝜏 = 0.135. The data in the first application is
simulated from a normal generating process N[𝜇, 𝜎2], with 𝜇 = 100,104, 98. and 𝜎2 = 0.8 , 0.5 , 0.5 respectively, for the
first 40 observations, for the next 20 observations, and for the last 40.
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(A) (B)

F I G U R E 11 One-step-ahead forecasts with 95% credibility intervals for the simulated data, (A) without monitoring, (B) with
monitoring. The MAPEs are 0.010 and 0.008, respectively.

T A B L E 2 Summary of monitor detection.

t Time Detection type et lt Lt Ht

48 Dec/1965 Upper outlier 2.51 1 0.13 0.13

60 Dec/1966 Upper outlier 3.18 1 0.01 0.01

72 Dec/1967 Upper outlier 2.65 1 0.08 0.08

77 May/1968 Lower outlier −3.18 1 0.01 0.01

80 Aug/1968 Lower parametric change −2.06 3 <0.001 0.78

84 Dec/1968 Upper outlier 2.54 1 0.11 0.11

97 Jan/1970 Upper parametric change 1.07 3 <0.001 42.05

115 Jul/1971 Lower outlier −3.80 1 <0.001 <0.001

120 Dec/1971 Upper outlier 2.69 1 0.06 0.06

138 Jun/1973 Lower outlier −2.53 1 0.12 0.12

140 Aug/1973 Lower outlier −3.06 1 0.01 0.01

141 Sep/1973 Lower outlier −4.64 1 <0.001 <0.001

146 Feb/1974 Lower outlier −5.80 1 <0.001 <0.001

147 Mar/1974 Lower outlier −11.82 1 <0.001 <0.001

148 Apr/1974 Lower outlier −4.79 1 <0.001 <0.001

Evidence against model M0 was detected at t = 41 and t = 61, with L41 = 6.85 e−6 and L61 = 2.23 e−4, both with lt = 1,
indicating a potential outlier. With the arrival of the following observations, a regime change is recognized by the monitor.
The interventions performed can be observed in Figure 11, which shows that the monitored learning system quickly
adapts to regime changes (B), compared to the learning system without monitoring (A).

The second illustration is based on the monthly average number of phone calls in Cincinnati, USA (Pankratz44). The
series features three level changes. The first was in early 1968, with three months of impact; the second was in the middle
of 1973, less significant; and the third was in early 1974, more lasting. Table 2 exhibits the monitor’s detection.

Figures 11 and 12 show that the monitor sometimes abdicates model M0 in favor of a more adaptive model. It is
noteworthy that there are peaks of uncertainty at these moments, making it clear that the alternative model has inflated
variance components, readily accommodating new patterns in moments of structural changes.

4 NON-NORMAL DYNAMIC MODELS

In the 1980s, developments in the area of Bayesian forecasting models were very intense. We highlight the use of discount
factors by model component, applications to advertising data, models for sales data in a certain beverage industry, and the
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(A) (B)

F I G U R E 12 One-step-ahead forecasts with 95% credibility intervals for the phone calls series. (A) With monitoring. (B) Without
monitoring. Observations represented by × indicate instants with intervention. The MAPEs are 0.208 and 0.076, respectively.

extension of the standard DLM to dynamic generalized linear models (DGLM) as well as nonlinear models (West et al.45).
The DGLM class presented by West et al.45 includes models for counting data and for continuous scale data. Observations
are described by probabilistic models in the uniparametric exponential family.

4.1 Dynamic generalized linear models-DGLM

Let EF(𝜂t) denote a distribution in the uniparametric exponential family, parameterized by 𝜂t. The class of dynamic
generalized models is defined as:

yt|𝜂t ∼ EF(𝜂t),
g(𝜂t) = 𝜆t = F′t 𝜽t,

𝜽t = Gt 𝜽t−1 + 𝝎t, 𝝎t ∼ [0,Wt]. (9)

Note that now the observed data, conditionally independent, given 𝜂t, are members of the exponential family, and
the evolution of the states follows a Markovian rule, but with partially specified probabilistic structure, where [A,B]
denotes a distribution partially specified in terms first and second moments. In addition, we now have to deal
with the monotone differentiable link function g(.), which relates the exponential family parameter 𝜂t to the linear
predictor 𝜆t.

The exponential family is characterized by probability or density functions in the form:

p(yt|𝜂t, 𝜙t) = b(yt, 𝜙t) exp[𝜙−1
t {yt𝜂t − a(𝜂t)}], yt ∈  , (10)

where 𝜂t ∈  ⊂  is the natural parameter, 𝜙t > 0 is a scale parameter, a(𝜂) is a twice-differentiable function from
which the expected value and variance can be derived: E[yt|𝜂] = d

d𝜂
a(𝜂) and Var[yt|𝜂] = 𝜙t

d2

d2
𝜂

a(𝜂). The conjugate
distribution for 𝜂t is p(𝜂t|Dt−1) = c(rt, st) exp[rt 𝜂t − st a(𝜂)], where rt and st are known functions of Dt−1.

Once yt is observed, the conjugate posterior distribution can be easily obtained by updating r∗t = rt +
yt
𝜙

and s∗t = st + 1
𝜙

.

The predictive distribution is also easily available: p(yt|Dt−1) =
c(rt ,st) b(yt ,𝜙t)

c(rt+𝜙−1
t yt , st+𝜙−1

t )
.

The sequential inference approach for observations in a single parametric exponential family relies solely on partially
specified prior knowledge, in terms of first and second moments, and on the Linear Bayes method. Three steps are nec-
essary to complete the inference (see details in West et al.45), since we are also interested in the structure of the linear
predictor:

(i) Make prior distributions compatible, which implies relating (rt, st) to (ft, qt) through the link function g, where
ft = E[𝜆t|Dt−1], qt = Var[𝜆t|Dt−1].

(ii) After updating the exponential family parameters, obtain f ∗t = E[𝜆t|Dt] and q∗t = Var[𝜆t|Dt] compatible with r∗t , s
∗
t .

(iii) Finally, use the linear Bayes method to obtain the first and second moments of the posterior of the state
parameters.
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4.2 Sequential inference

In this class of models sequential inference demands some approximations. The first consists of reconciling, at
each time, the parameters of the conjugate prior distribution (rt, st) with those of the linear predictor (ft, qt),
which in turn depend on the first and second moments of the prior distribution of the states (at,Rt). If on the
one hand the linearity of the linear predictor facilitates the computations, on the other the link function must
be linearized. Remember that states and natural parameters of the exponential family assume values in different
spaces.

The graph in Figure 13 exhibits the different stages of the inference procedure in DGLMs (see West and Harrison3 for
details).

4.3 Illustration: A Poisson model for quarterly sales

The time series of total quarterly sales of turkeys in Eire during the years 1974 to 1982 is used to exemplify a Poisson
log-linear dynamic model composed of a second order polynomial trend block (level and growth factor) and another
structural block representing quarterly seasonality, with 2 harmonics. The discount factors for trend and seasonality
blocks are respectively 0.95 and 0.98, reflecting the usual fact that level and trend vary more than seasonal patterns. Vague
priors are used to specify the first two moments.

Figure 14 shows one-step-ahead predictive modes (blue) and 95% credibility intervals (gray area). Note
that in this model, the exact predictive distribution is available: yy|Dt−1 ∼ BNeg[𝛼t, 𝛽t∕(1 − 𝛽t)]. The model
presented was able to identify the changes in the seasonal patterns (Figure 15A,D) induced by marketing
campaigns.

Other exponential family models that could be useful in marketing applications are Binomial, for instance
accounting for the number of consumers aware of an advertised product; multinomial, for multiple counts

F I G U R E 13 Inference graph-DAG.

F I G U R E 14 Mode of the predictive distribution and 95% credible interval. The MAPE is 0.1922.
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(A) (B)

(C) (D)

F I G U R E 15 Smoothed expected values with the corresponding ranges of about 2 standard deviations from the model components. (A)
Predictive. (B) Current level. (C) Growth factor. (D) Seasonal component.

in marketing structure etc. Additional comprehensive examples in the exponential family are provided by
Triantafyllopoulos.46

5 REAL-WORLD CHALLENGES

This section discuss the model formulation of two real-world problems solved using Bayesian dynamic models by two of
the authors of this paper during their work at Murabei Data Science.

5.1 Marketing planning decision of returnable containers

A real world challenge solved by two of the authors while working for Murabei Data Science using dynamic latent factors
and the copula approach to represent the dependence relationship between multivariate time series is discussed here.

This challenge addresses forecasting the availability of returnable containers in production plants. This topic is import
for different sectors, such as alcoholic and soft drinks, water and cooking gas, among others. The use of returnable pack-
aging has gained attention in recent years, prompted by various laws and regulations on reverse logistics, which specify
responsibility for the full life cycle of products, based on the circular economy idea, reflecting the increased concerns of
consumers about the social and environmental impacts of waste disposal (Narayana47). Additionally, having a forecast
probability distribution for available containers can leverage marketing campaigns that encourage customers to return
their empty containers.

The random variable Yt denotes available containers at time t and is modeled using a Bayesian dynamic linear model
with dynamic level and growth components. The Bayesian dynamic model can be used to derive a measure of uncertainty
about the factory’s lack of containers, giving a more accurate picture of the risk of production stoppage than a point
forecast. The h-step lead time forecast distribution is of particular interest in this context and is defined as the distribution
of the aggregate:

Xt(h) = Yt+1 + Yt+2 + … + Yt+h, h > 0.

Given the available information Dt up to time t, it is possible to obtain an estimate of the probability of container shortage
for the next h months using h-step lead time forecast distribution, as:

𝜋h = Pr
[
Xt(h) < No|Dt

]
,

where No is a fixed and known number related to the operational need of the factory. Decisions based on the model’s
results can lead to cost savings as well as better production and delivery scheduling.
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5.2 Pre-launch forecast

Another common and difficult task in marketing is to forecast a new product’s initial few months of sales.
Obtaining a medium to long-term pre-launch forecast is critical for planning purposes, such as production, dis-
tribution and advertising campaigns. This is challenging because accurate forecasts require a large amount of
past data.

The diffusion model (Schmittlein and Mahajan26), more specifically the Bass model (Bass25), is one of the models that
has been extensively investigated for new product sales forecasts (Bass25). Because of its interpretation, the Bass model is
particularly attractive.

The previous model was extended by Bass et al.,27 allowing it to include factors such as price growth rate and advertise-
ment. As already mentioned, Ramírez-Hassan and Montoya-Blandón28 recently proposed a Bayesian inference approach
for the generalized Bass model. Although the Bayesian approach has several fundamental aspects to guide marketers,
such as prior specifications by marketing experts and predictive distributions to support the decision making, taking into
account the uncertainty, there are some drawbacks to this model that can be easily solved by the dynamic generalized
exponential growth models (DGEGM) introduced by Gamerman and Migon48 and Migon and Gamerman.29 Specifi-
cally, the Bayesian inference proposed by Ramírez-Hassan and Montoya-Blandón28 is computationally expensive, since
it requires Markov chain Monte Carlo (MCMC) methods, while inference in DGEGMs is performed sequentially and
analytically.

The class of DGEGMs assumes that yt is modeled by a probability distribution on the exponential family with mean
response function 𝜇t = E(yt|𝜽t), where 𝜽t denote the state vector parameters. Application of a Box-Cox link function that
maps the mean of yt, 𝜇t, to the state parameters vector, that is,

h(𝜇t) =

{
𝜇

𝜆

t , if 𝜆 ≠ 0,
log𝜇t, if 𝜆 = 0,

(11)

where 𝜆 is a known value, leads to well-known models such as the modified exponential (𝜆 = 1), logistic (𝜆 = −1), and
Gompertz (𝜆 = 0).

Using linearization techniques based on Taylor approximations, the DGEGM can be approximate as a dynamic linear
model and all inferences discussed are valid. The DGEGM is defined as follows

yt = Ft(𝜽t) + 𝜈t,

𝜽t = gt(𝜽t−1) + 𝝎t,

where Ft(⋅) is a known, nonlinear function mapping the vector 𝜽t to the real line, gt(⋅) is a known nonlinear vector
evolution function, and 𝜈t and 𝝎t are error terms subject to the usual DLM assumptions.

To complete the model specifications Ft(⋅) and gt(⋅) are defined as:

Ft(𝜽t) = h−1(𝜃1t) and gt(𝜽t−1) =
⎛
⎜
⎜
⎜
⎝

𝜃1 + 𝜃2

𝜃2 𝜃3

𝜃3

⎞
⎟
⎟
⎟
⎠

,

where h−1(⋅) denotes the inverse of (11).
Further details concerning the inference in DGEGMs can be found in Migon and Gamerman29 and chapter 13 of West

and Harrison.3 It should be mentioned that the R package RBATS provides computational implementation for this class
of models through the class dgegm.35

6 RECENT ADVANCES

This section is devoted to discussing relevant recent research advances in the field of Bayesian dynamic models. A recent
overview is presented by West21 with main focus on the “decouple/recouple” concept, applied to large-scale data. Alves
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et al.23 recently extended the DGLMs by taking into account the k-parametric family of distributions, which can include,
for example, the multinomial distribution. A distinct class of models, that was just recently developed by Berry and
West,49 combines binary and conditionally Poisson DGLMs to handle zero-inflated time series data. In the sequel, we
present two alternative versions that explore particular specifications of the dependence structure on multiple observed
quantities.

6.1 Linear matrix-variable dynamic models

Matrix-varied models have been used to facilitate the estimation of the covariance matrix of m time series. Modeling of
wind intensity and direction is a recent example (Garcia et al.50), in which case m = 2.

yt,j = F′t𝜃t,j + 𝜖t,j, 𝜖t,j ∼ N[0,Vt𝜎
2
j ],

𝜃t,j = Gt𝜃t−1,j + 𝜔t,j, 𝜔t,j ∼ N[0,Wt𝜎
2
j ], (12)

where j = 1, … ,m, Ft, Gt, andΩt are common to the m series, Vt is a scale factor common to all series but 𝜃t,j are distinct,
reflecting the fact that the structural components can have different impacts on each of the m responses. In matrix form,
we have:

yt = F′t𝛉t + 𝝐′t ,
𝛉t = G 𝛉t−1 + 𝝎t,

where yt = (y1,t, · · · , ym,t)′, 𝛉t = (𝜃t,1, · · · , 𝜃1,q) is a q ×m matrix, 𝝐t ∼ N[0,VtΣ] and 𝝎t ∼ MN[0,Wt,Σ].
It is worth noting that Barbosa51 created a broader framework for multivariate DLMs in which the model can include

various components. Extensions of those concepts can be found in Triantafyllopoulos.52

6.2 Dynamic hierarchical models

The dynamic hierarchical model introduced by Gamerman and Migon53 is very useful for describing multivariate struc-
tures in a simple manner. The following is an example of a two-level hierarchical structure: at the most aggregated
level, we have a dynamic regression equation (observation equation); at the second level, the regression coefficients vary
between groups (structural equation). Finally, the effects shared by the various groups change over time in an efficient
way. Therefore we have:

yt = F1,t 𝛉1,t + 𝝐1,t,

𝛉1,t = F2,t 𝛉t + 𝝐2,t,

𝛉t = Gt𝛉t−1 + 𝝎t, (13)

where the disturbance terms 𝝐1,t, 𝝎t, 𝝐2,t are independent and F1,t, F2,t are known matrices.
The inference in this class of models follows the usual evolution/update schemes (Gamerman and Migon53) as in

normal dynamic linear models, being trivial when variance components are known. It is easy to verify that the implicit
multivariate structure in this class of models corresponds to a special decomposition of variance. Marginalizing the pre-
vious model, that is, replacing the structural equation in the equation of observations, we have yt = xt 𝛉2,t + at, where
xt = F1,t F2,t and at = F1,t𝝐2,t + 𝝐1,t. Thus, Var[at] = 𝚺t = F1,tV2,tF′1,t + V1,t.

7 CONCLUDING REMARKS

In this article, we have sought to provide an overview of the Bayesian dynamic model class, which, although first pre-
sented more than five decades ago, is still relatively little explored in several application areas, including marketing. The
class, presented under the Bayesian inference paradigm, is shown to be a formulation that naturally accommodates the
dynamics of temporally observed processes.
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Some aspects such as monitoring and intervention were formally discussed, allowing the analyst to perform inter-
ventions at the level and uncertainty of the machine learning latent system, quickly accommodating pattern changes in
the time series, enabling accurate forecasting that accommodates new standards in a timely manner, allowing efficient
management of resources and real-time action planning.

We also discussed the modeling of lagged impacts of regressors, through transfer functions, exemplified by the effect
of advertising campaigns on consumers recall of a product. There can be several input variables in a system, each of
which have an effect on the response by undergoing some form of propagation in time. The treatment of the analyti-
cal form of such propagation and the quantification of these effects can be a valuable tool, for example, to plan strategic
moments for the launch of marketing campaigns, aiming to maintain sales or memory of a product above desirable
thresholds.

As seen, the Bayesian sequential inferential updating of the class of Gaussian dynamic linear models is amenable
to analytical solution, by adopting conjugated formulations allied to discount factor strategies for indirect specifi-
cation of evolutional variances. There are, however, several responses of practical interest for which the Gaussian
assumption is inadequate, such as due to asymmetric behavior or discrete nature, as in the case of low count
data or binary responses. An alternative discussed was the transformation of the original data to induce normal-
ity. However, not every temporally observed variable can be normalized and although the induction of normality
via transformations generates satisfactory results, there is a price to be paid from the point of view of interpretabil-
ity of the obtained results. The maintenance of the data in its original scale of observation is desirable, at the cost
of not having an available analytical formulation for updating the Bayesian information system. Approximate solu-
tions, for example through Monte Carlo Markov chain methods, can result in high computational cost and are
not capable of preserving the sequential aspect of the analysis, invalidating the possibility of real-time monitoring
and intervention. The article reviewed some alternatives to perform sequential inference in reduced computational
time, in the class of dynamic generalized linear models, for responses belonging to the uni or multiparametric
exponential family.

Another relevant aspect that was discussed concerns methods that seek computational efficiency in the approach to
multivariate dynamic models, via multivariate or hierarchical formulations in their genesis, or even through strategies of
decoupling/ recoupling, in which series are marginally modeled and then recoupled through copulas, common factors
or conditioning on some aggregate response.

We aimed to present an overview of the class of dynamic models and highlight their importance as a valu-
able tool for monitoring, intervention, forecasting and efficient management of temporal observed processes in real
time. We believe that from discussions, examples and references presented here, readers can explore the aspects of
their interest.
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APPENDIX . BAYESIAN CONJUGATE ANALYSIS IN THE EXPONENTIAL FAMILY: SOME
EXAMPLES

A.1 Normal model with unknown mean and given variance
This model is useful for describing continuous, symmetrically distributed data. The density function is p(y|𝜇) ∝
exp

[

− 1
2𝜎2 (y − 𝜇)2

]

, y ∈ ℜ, 𝜇 ∈ ℜ, where ∝ means proportional to, 𝜇 = E
[
y|𝜇, 𝜎2] and 𝜎2 = Var[y|𝜇, 𝜎2]. The likelihood

function is 𝓁(𝜇|y) ∝ exp
[

− 1
2𝜎2 (𝜇 − y)2

]

.
One can adopt conjugated priors, that is, priors which, when combined with the likelihood, produce a posterior

in the same parametric family. According to Bayes’ theorem, p(𝜇|y) ∝ exp
[

− 1
2𝜎2 (y − 𝜇)2

]

⋅ exp
[

− 1
2𝜏2

0
(𝜇 − 𝜇0)2

]

, where
the conjugated prior distribution is N[𝜇0, 𝜏

2
0 ], with 𝜓 = (𝜇0, 𝜏

2
0 ) specified by the analysts in order to describe their

beliefs, prior to the observation of sample information, about the value of 𝜇. After some algebraic operations, we have:
𝜇|y, 𝜓1 ∼ N[𝜇1, 𝜏

2
1 ], where 𝜇1 = 𝜔𝜇0 + (1 − 𝜔)y, 𝜔 =

𝜏

−2
0

𝜏

−2
0 +𝜎−2 and 𝜏−2

1 = 𝜏−2
0 + 𝜎−2. Note that the posterior mean will be a

linear combination of the prior mean and the sample observation, with weights given by the relative precision of each of
these components.

A.2 Poisson model
This is a model for count data. Its probability function is p(y|𝜆) = 1

y!
𝜆

y exp(−𝜆), y ∈ {0, 1, 2, · · · }, 𝜆 ∈ ℜ+ and
E [y|𝜆] = Var[y|𝜆] = 𝜆. Its likelihood function is 𝓁(𝜆|y) ∝ 𝜆y exp(−𝜆).

Since 𝜆 > 0, it is reasonable to use a family of priors that places probability mass on the positive reals. The gamma
family, whose density is: p(𝜆|a, b) = ba

Γ(a)
𝜆

a−1 exp[−b𝜆], a, b > 0, where 𝜓 = (a, b), satisfies this condition. In this family
we have E[𝜆|a, b] = a

b
and Var[𝜆|a, b] = a

b2 , where a, b should be subjectively chosen in order to portray prior
knowledge about 𝜆. From Bayes’ theorem, we have: (𝜆|y, a, b) ∼ Gamma(a1, b1), a1, b1 > 0, where a1 = a + y and
b1 = b + 1. The posterior mean is E[𝜆|y, a, b] = a1

b1
= 𝜔𝜇0 + (1 − 𝜔)y, 𝜔 = b

b+1
and Var[𝜆|y, a, b] = a1

b2
1
. It can be shown

that the predictive distribution of a future observation, in this case, will be a Negative Binomial, BNeg(af , bf ),
af = a1, bf = b1 + 1. Its mean and variance are given by E[yf |y] = E

𝜆|y
{

E[yf |𝜆]
}
= a1

b1
= a+y

b+1
and Var[yf |y] = E

𝜆|y
{

Var[yf |𝜆]
}
+ Var

𝜆|y
{

E[yf |𝜆]
}
= a1

b1
(1 + 1

b1
) ≥ Var(𝜆|y).

A.3 Likelihood, prior and posterior: Normal and Poisson models
In Figure A1 we present the prior distribution (blue), the likelihood function (black) and the posterior distribution
(red) for the examples of the normal data model (left) and the Poisson data (right). The values used in the elabo-
ration of this figure were: (i) prior distribution 𝜇 ∼ N[2, 6], observational distribution y|𝜇 ∼ N[𝜇, 3] and the observed
value y = 10; (ii) prior distribution 𝜆 ∼ Gamma(2, 0.25), observational distribution y|𝜆 ∼ Poisson[𝜆] and observed
value y = 12.
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(A) (B)

F I G U R E A1 Prior distribution (blue), likelihood function (black) and posterior distribution (red). (A) Normal model (𝜇). (B) Poisson
model (𝜆).

The above results are based on hypotheses of conditional independence and extend naturally to the case of random
samples, that is, independent and identically distributed observations.
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