
Homework 2

Instructor: Hedibert Freitas Lopes
Course: STP 598 Advanced Bayesian Statistical Learning
Semester: Spring 2023
Due at the beginning of the class, February 23th, 2023

1 Risk analysis

Recall that the risk of an estimator θ̂ is given by

R(θ, θ̂) = Eθ[L(θ, θ̂)] =

∫
L(θ, θ̂)p(x|θ)dx,

while the maximum risk is R(θ̂) = supθ R(θ, θ̂), and the Bayes risk is

r(π, θ̂) =

∫
Θ

R(θ, θ̂)π(θ)dθ,

where π is a prior for θ. Assume that the loss function is squared error, so the risk is just the mean
squared error (MSE):

R(θ, θ̂) = Eθ[(θ̂ − θ)2] = Eθ[(θ̂ − Eθ(θ̂))2 + (Eθ(θ̂)− θ)2] = Vθ(θ̂) + bias2
θ(θ̂).

Now, letX1, . . . , Xn be, conditionally on θ, independent Bernoulli(θ), for θ ∈ (0, 1). Consider squared
error loss and two estimators of θ:

θ̂1 =
X1 + · · ·+Xn

n
and θ̂2 =

X1 + · · ·+Xn + α

α + β + n
,

where α and β are positive constants.

a) Show that

R(θ, θ̂1) =
θ(1− θ)

n

b) Show that

R(θ, θ̂2) =
nθ(1− θ)

(α + β + n)2
+

(
nθ + α

α + β + n
− θ
)2

For c), d) and e), assume that α = β =
√
n/4.



c) Graphically show that neither estimator uniformly dominates the other. Try n = 1, 10, 50 to see
how the risk functions behave as n increases.

d) Show that the maximum risks are

R(θ̂1) =
1

4n
and R(θ̂2) =

n

4(n+
√
n)2

,

so, based on the maximum risk, θ̂2 is a better estimator. However, when n is large, R(θ̂1) has
smaller risk except for a small region in the parameter space near θ = 1/2, where the risk of θ̂1

is maximum.

e) Show that the Bayes risks are

r(π, θ̂1) =
1

6n
and r(π, θ̂2) =

n

4(n+
√
n)2

,

when π is the uniform prior in the interval (0, 1). For large n (larger than or equal to 20), θ̂1

is a better estimator. This corroborates with the graphical inspection obtained in c).

2 Stein’s Paradox

Suppose thatX ∼ N(θ, 1) and consider estimating θ with squared error loss. We know that θ̂(X) = X
is admissible. Now consider estimating two, unrelated quantities θ = (θ1, θ2) and supposed that
X1 ∼ N(θ1, 1) and X2 ∼ N(θ2, 1) independently, with loss

L(θ, θ̂) = (θ1 − θ̂1)
2 + (θ2 − θ̂2)

2.

Not surprisingly, θ̂(X) = X is again admissible where X = (X1, X2). Now consider the generalization
to k normal means. Let θ = (θ1, . . . , θk), X = (X1, . . . , Xk) with Xi ∼ N(θi, 1) (independent) and
loss

L(θ, θ̂) = (θ1 − θ̂1)
2 + · · ·+ (θk − θ̂k)2.

Stein astounded everyone when he proved that if k ≥ 3, then θ̂(X) = X is inadmissible. It can be
shown that the James-Stein estimator

θ̂S = (θ̂S1 , . . . , θ̂
S
k )

has smaller risk, where

θ̂Si (X) =

(
1− k − 2

X2
1 + · · ·+X2

k

)+

Xi,

where (z)+ = max{0, z}. This estimator shrinks the Xi’s towards 0. The message is that, when
estimating many parameters, there is great value in shrinking the estimates.
Computer Experiment: Compare the risk of the MLE and the James-Stein estimator by simula-
tion. Try various values of k and various vectors θ. Summarize your results.
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