1 Model and likelihood

Assume that we observed the data \(D_n=\{0,0,1,0,1,0\}\), denoted here by \(x_1,\ldots,x_n\), and that we would like to model them as independent and identically distributed Bernoulli trails with sucess probability equal to \(\theta \in (0,1)\). Therefore \[ p(x_i|\theta) = \theta^x_i(1-\theta_i)^{1-x_i}, \qquad x_i=0,1. \]

  1. Show that \(y_n=\sum_{i=1}^n x_i \sim \mbox{Binomial}(n,\theta)\), where \[ p(y_n|\theta) = \frac{n!}{y_n!(n-y_n)!}\theta^{y_n}(1-\theta)^{n-y_n}, \qquad y_n=0,1,\ldots,n. \] In the above example, \(n=5\) and \(y_n=2\). The likelihood function is, therefore, \[ L(\theta) \propto \theta^{y_n}(1-\theta)^{n-y_n}, \qquad \theta \in (0,1). \] The normalized likelihood (transforming the likelihood into a density function of \(\theta\)), exists in this example.

  2. Show that the normalized likelihood is a Beta distribution with parameters \(y_n+1\) and \(n-y_n+1\).

2 Prior distributions

We will entertain two prior specifications:

  1. \(\theta|M_1 \sim Beta(\alpha_0,\beta_0)\), and
  2. \(\theta|M_2 \sim N_{(0,1)}(\mu_0,\sigma_0^2)\).

We will use the following hyperparameters: \[ \alpha_0 = 1.667 \ \ \ \mbox{and} \ \ \ \beta_0 = 15, \] and \[ \mu_0 = 0.1 \ \ \ \mbox{and} \ \ \ \sigma_0^2 = (0.2)^2. \]

  1. Plot both prior densities of \(\theta\), \(p(\theta|M_1)\) and \(p(\theta|M_2)\), along with the normalized likelihood in the same figure. Comment their similarities and/or differences. Recall that the density of a truncated normal random variable \(x\) with location parameters \(\mu\), scale parameter \(\sigma\), and truncation interval \({\cal A}=(a,b)\), is given by \[ p_{TN}(x|\mu,\sigma,{\cal A}) = \frac{\phi\left(\frac{x-\mu}{\sigma}\right)}{\Phi(\frac{b-\mu}{\sigma})- \Phi(\frac{a-\mu}{\sigma})} \] for \(x \in {\cal A}\) and \(-\infty < a < b < \infty\).

3 Posterior distributions

One might want to compare both models by computing posterior quantities, such as \(E(\theta|M_i)\) and \(V(\theta|M_i)\), for \(i=1,2\), and the Bayes factor, i.e. \(B_{12}=Pr(y_n|M_1)/Pr(y_n|M_2)\).

3.1 Model \(M_1\)

The Binomial model and the Beta prior for \(\theta\) conjugate: \[ \theta|n,y_n,M_1 \sim Beta(\alpha_0+y_n,\beta_0+n-y_n), \] such that \(E(\theta|n,y_n,M1)\) and \(V(\theta|n,y_n,M1)\) are easily calculated.

3.2 Model \(M_2\)

The Binomial model and prior 2 for \(\theta\) do not conjugate! Therefore, there is no closed-form analytical solutions to the posterior quantities or the prior predictive.

\[ p(\theta|n,y_n,M_2) = \frac{\left[p_{TN}(\theta|\mu_0,\sigma_0^2,{\cal A}=(0,1))\right]\left[\frac{n!}{y_n!(n-y_n)!}\theta^{y_n}(1-\theta)^{n-y_n}\right]}{p(y_n|M_2)} = \frac{g(\theta)}{p(y_n|M_2)}, \] where \[ p_{TN}(\theta|\mu_0,\sigma_0^2,{\cal A}=(0,1)) = \frac{(2\pi\sigma_0^2)^{-1/2}\exp\left\{-\frac{1}{2\sigma^2_0}(\theta-\mu_0)^2\right\}}{\int_0^1 (2\pi\sigma_0^2)^{-1/2}\exp\left\{-\frac{1}{2\sigma^2_0}(\gamma-\mu_0)^2\right\}d\gamma}. \]

4 Prior predictives

4.1 Model \(M_1\)

  1. Show that the prior predictive under model \(M_1\) is \[ Pr(y_n|M_1) = \frac{n!}{y_n!(n-y_n)!}\frac{\Gamma(\alpha_0+\beta_0)}{\Gamma(\alpha_0)\Gamma(\beta_0)} \frac{\Gamma(\alpha_0+y_n)\Gamma(\beta_0+n-y_n)}{\Gamma(\alpha_0+\beta_0+n)}. \] When \(\alpha_0=\beta_0=1\) (Uniform prior for \(\theta\)), it follows that \[ Pr(y_n|M_1) = \frac{n!}{y_n!(n-y_n)!} \frac{\Gamma(1+y_n)\Gamma(1+n-y_n)}{\Gamma(2+n)}=\frac{1}{n+1}, \qquad y_n=0,1,\ldots,n. \]

4.2 Model \(M_2\)

The prior predictive under model \(M_2\) is not analytically available in closed-form: \[ p(y_n|M_2)=\int_0^1 g(\theta)d\theta, \] and needs to be computed numerically, either deterministically (Reimann, quadrature or Laplace approximations, to name a few ones) or via Monte Carlo integration. Notice that the prior is truncated normal, so it needs to be normalized by the normal distribution in the interval \((0,1)\).

  1. Use a simple Reimann approximation to obtain \(p(y_n|M_2)\). Now you have all the ingredients to compute the Bayes factor, \(B_{12}\).
LS0tCnRpdGxlOiAiSG9tZXdvcmsgMSAtIEJheWVzaWFuIGxlYXJuaW5nIgpzdWJ0aXRsZTogIkJpbm9taWFsIHRyaWFscywgdHdvIGNvbXBldGluZyBwcmlvcnMiCmF1dGhvcjogIkhlZGliZXJ0IEZyZWl0YXMgTG9wZXMiCmRhdGU6ICIxLzIzLzIwMjIiCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZGVwdGg6IDIKICAgIGNvZGVfZG93bmxvYWQ6IHllcwogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgojIE1vZGVsIGFuZCBsaWtlbGlob29kCgpBc3N1bWUgdGhhdCB3ZSBvYnNlcnZlZCB0aGUgZGF0YSAkRF9uPVx7MCwwLDEsMCwxLDBcfSQsIGRlbm90ZWQgaGVyZSBieSAkeF8xLFxsZG90cyx4X24kLCBhbmQgdGhhdCB3ZSB3b3VsZCBsaWtlIHRvIG1vZGVsIHRoZW0gYXMgaW5kZXBlbmRlbnQgYW5kIGlkZW50aWNhbGx5IGRpc3RyaWJ1dGVkIEJlcm5vdWxsaSB0cmFpbHMgd2l0aCBzdWNlc3MgcHJvYmFiaWxpdHkgZXF1YWwgdG8gJFx0aGV0YSBcaW4gKDAsMSkkLiAgVGhlcmVmb3JlCiQkCnAoeF9pfFx0aGV0YSkgPSBcdGhldGFeeF9pKDEtXHRoZXRhX2kpXnsxLXhfaX0sIFxxcXVhZCB4X2k9MCwxLgokJAoKYSkgU2hvdyB0aGF0ICR5X249XHN1bV97aT0xfV5uIHhfaSBcc2ltIFxtYm94e0Jpbm9taWFsfShuLFx0aGV0YSkkLCB3aGVyZQokJApwKHlfbnxcdGhldGEpID0gXGZyYWN7biF9e3lfbiEobi15X24pIX1cdGhldGFee3lfbn0oMS1cdGhldGEpXntuLXlfbn0sIFxxcXVhZCB5X249MCwxLFxsZG90cyxuLgokJApJbiB0aGUgYWJvdmUgZXhhbXBsZSwgJG49NSQgYW5kICR5X249MiQuICBUaGUgbGlrZWxpaG9vZCBmdW5jdGlvbiBpcywgdGhlcmVmb3JlLAokJApMKFx0aGV0YSkgXHByb3B0byBcdGhldGFee3lfbn0oMS1cdGhldGEpXntuLXlfbn0sIFxxcXVhZCBcdGhldGEgXGluICgwLDEpLgokJApUaGUgbm9ybWFsaXplZCBsaWtlbGlob29kICh0cmFuc2Zvcm1pbmcgdGhlIGxpa2VsaWhvb2QgaW50byBhIGRlbnNpdHkgZnVuY3Rpb24gb2YgJFx0aGV0YSQpLCBleGlzdHMgaW4gdGhpcyBleGFtcGxlLiAgCgpiKSBTaG93IHRoYXQgdGhlIG5vcm1hbGl6ZWQgbGlrZWxpaG9vZCBpcyBhIEJldGEgZGlzdHJpYnV0aW9uIHdpdGggcGFyYW1ldGVycyAkeV9uKzEkIGFuZCAkbi15X24rMSQuCgojIFByaW9yIGRpc3RyaWJ1dGlvbnMKV2Ugd2lsbCBlbnRlcnRhaW4gdHdvIHByaW9yIHNwZWNpZmljYXRpb25zOgoKMS4gJFx0aGV0YXxNXzEgXHNpbSBCZXRhKFxhbHBoYV8wLFxiZXRhXzApJCwgYW5kCjIuICRcdGhldGF8TV8yIFxzaW0gTl97KDAsMSl9KFxtdV8wLFxzaWdtYV8wXjIpJC4KCldlIHdpbGwgdXNlIHRoZSBmb2xsb3dpbmcgaHlwZXJwYXJhbWV0ZXJzOgokJApcYWxwaGFfMCA9IDEuNjY3IFwgXCBcIFxtYm94e2FuZH0gXCBcIFwgXGJldGFfMCA9IDE1LAokJAphbmQgCiQkIApcbXVfMCA9IDAuMSBcIFwgXCBcbWJveHthbmR9IFwgXCBcIFxzaWdtYV8wXjIgPSAoMC4yKV4yLgokJAoKYykgUGxvdCBib3RoIHByaW9yIGRlbnNpdGllcyBvZiAkXHRoZXRhJCwgJHAoXHRoZXRhfE1fMSkkIGFuZCAkcChcdGhldGF8TV8yKSQsIGFsb25nIHdpdGggdGhlIG5vcm1hbGl6ZWQgbGlrZWxpaG9vZCBpbiB0aGUgc2FtZSBmaWd1cmUuICBDb21tZW50IHRoZWlyIHNpbWlsYXJpdGllcyBhbmQvb3IgZGlmZmVyZW5jZXMuICBSZWNhbGwgdGhhdCB0aGUgZGVuc2l0eSBvZiBhIHRydW5jYXRlZCBub3JtYWwgcmFuZG9tIHZhcmlhYmxlICR4JCB3aXRoIGxvY2F0aW9uIHBhcmFtZXRlcnMgJFxtdSQsIHNjYWxlIHBhcmFtZXRlciAkXHNpZ21hJCwgYW5kIHRydW5jYXRpb24gaW50ZXJ2YWwgJHtcY2FsIEF9PShhLGIpJCwgaXMgZ2l2ZW4gYnkKJCQKcF97VE59KHh8XG11LFxzaWdtYSx7XGNhbCBBfSkgPSBcZnJhY3tccGhpXGxlZnQoXGZyYWN7eC1cbXV9e1xzaWdtYX1ccmlnaHQpfXtcUGhpKFxmcmFje2ItXG11fXtcc2lnbWF9KS0KXFBoaShcZnJhY3thLVxtdX17XHNpZ21hfSl9CiQkCmZvciAkeCBcaW4ge1xjYWwgQX0kIGFuZCAkLVxpbmZ0eSA8IGEgPCBiIDwgXGluZnR5JC4KCiMgUG9zdGVyaW9yIGRpc3RyaWJ1dGlvbnMKCk9uZSBtaWdodCB3YW50IHRvIGNvbXBhcmUgYm90aCBtb2RlbHMgYnkgY29tcHV0aW5nIHBvc3RlcmlvciBxdWFudGl0aWVzLCBzdWNoIGFzIAokRShcdGhldGF8TV9pKSQgYW5kICRWKFx0aGV0YXxNX2kpJCwgZm9yICRpPTEsMiQsIGFuZCB0aGUgQmF5ZXMgZmFjdG9yLCBpLmUuCiRCX3sxMn09UHIoeV9ufE1fMSkvUHIoeV9ufE1fMikkLgoKIyMgTW9kZWwgJE1fMSQKVGhlIEJpbm9taWFsIG1vZGVsIGFuZCB0aGUgQmV0YSBwcmlvciBmb3IgJFx0aGV0YSQgY29uanVnYXRlOgokJApcdGhldGF8bix5X24sTV8xIFxzaW0gQmV0YShcYWxwaGFfMCt5X24sXGJldGFfMCtuLXlfbiksCiQkCnN1Y2ggdGhhdCAkRShcdGhldGF8bix5X24sTTEpJCBhbmQgJFYoXHRoZXRhfG4seV9uLE0xKSQgYXJlIGVhc2lseSBjYWxjdWxhdGVkLiAgCgojIyBNb2RlbCAkTV8yJApUaGUgQmlub21pYWwgbW9kZWwgYW5kIHByaW9yIDIgZm9yICRcdGhldGEkIGRvIG5vdCBjb25qdWdhdGUhClRoZXJlZm9yZSwgdGhlcmUgaXMgbm8gY2xvc2VkLWZvcm0gYW5hbHl0aWNhbCBzb2x1dGlvbnMgdG8gdGhlIHBvc3RlcmlvciBxdWFudGl0aWVzIG9yIHRoZSBwcmlvciBwcmVkaWN0aXZlLgoKJCQKcChcdGhldGF8bix5X24sTV8yKSA9IFxmcmFje1xsZWZ0W3Bfe1ROfShcdGhldGF8XG11XzAsXHNpZ21hXzBeMix7XGNhbCBBfT0oMCwxKSlccmlnaHRdXGxlZnRbXGZyYWN7biF9e3lfbiEobi15X24pIX1cdGhldGFee3lfbn0oMS1cdGhldGEpXntuLXlfbn1ccmlnaHRdfXtwKHlfbnxNXzIpfSA9IFxmcmFje2coXHRoZXRhKX17cCh5X258TV8yKX0sCiQkCndoZXJlCiQkCnBfe1ROfShcdGhldGF8XG11XzAsXHNpZ21hXzBeMix7XGNhbCBBfT0oMCwxKSkgPSBcZnJhY3soMlxwaVxzaWdtYV8wXjIpXnstMS8yfVxleHBcbGVmdFx7LVxmcmFjezF9ezJcc2lnbWFeMl8wfShcdGhldGEtXG11XzApXjJccmlnaHRcfX17XGludF8wXjEgKDJccGlcc2lnbWFfMF4yKV57LTEvMn1cZXhwXGxlZnRcey1cZnJhY3sxfXsyXHNpZ21hXjJfMH0oXGdhbW1hLVxtdV8wKV4yXHJpZ2h0XH1kXGdhbW1hfS4KJCQKCiMgUHJpb3IgcHJlZGljdGl2ZXMKCiMjIE1vZGVsICRNXzEkCgpkKSBTaG93IHRoYXQgdGhlIHByaW9yIHByZWRpY3RpdmUgdW5kZXIgbW9kZWwgJE1fMSQgaXMKJCQKUHIoeV9ufE1fMSkgPSBcZnJhY3tuIX17eV9uIShuLXlfbikhfVxmcmFje1xHYW1tYShcYWxwaGFfMCtcYmV0YV8wKX17XEdhbW1hKFxhbHBoYV8wKVxHYW1tYShcYmV0YV8wKX0KXGZyYWN7XEdhbW1hKFxhbHBoYV8wK3lfbilcR2FtbWEoXGJldGFfMCtuLXlfbil9e1xHYW1tYShcYWxwaGFfMCtcYmV0YV8wK24pfS4KJCQKV2hlbiAkXGFscGhhXzA9XGJldGFfMD0xJCAoVW5pZm9ybSBwcmlvciBmb3IgJFx0aGV0YSQpLCBpdCBmb2xsb3dzIHRoYXQKJCQKUHIoeV9ufE1fMSkgPSBcZnJhY3tuIX17eV9uIShuLXlfbikhfQpcZnJhY3tcR2FtbWEoMSt5X24pXEdhbW1hKDErbi15X24pfXtcR2FtbWEoMituKX09XGZyYWN7MX17bisxfSwgXHFxdWFkIHlfbj0wLDEsXGxkb3RzLG4uCiQkCgoKIyMgTW9kZWwgJE1fMiQKVGhlIHByaW9yIHByZWRpY3RpdmUgdW5kZXIgbW9kZWwgJE1fMiQgaXMgbm90IGFuYWx5dGljYWxseSBhdmFpbGFibGUgaW4gY2xvc2VkLWZvcm06CiQkCnAoeV9ufE1fMik9XGludF8wXjEgZyhcdGhldGEpZFx0aGV0YSwKJCQKYW5kIG5lZWRzIHRvIGJlIGNvbXB1dGVkIG51bWVyaWNhbGx5LCBlaXRoZXIgZGV0ZXJtaW5pc3RpY2FsbHkgKFJlaW1hbm4sIHF1YWRyYXR1cmUgb3IgTGFwbGFjZSBhcHByb3hpbWF0aW9ucywgdG8gbmFtZSBhIGZldyBvbmVzKSBvciB2aWEgTW9udGUgQ2FybG8gaW50ZWdyYXRpb24uICBOb3RpY2UgdGhhdCB0aGUgcHJpb3IgaXMgdHJ1bmNhdGVkIG5vcm1hbCwgc28gaXQgbmVlZHMgdG8gYmUgbm9ybWFsaXplZCBieSB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbiBpbiB0aGUgaW50ZXJ2YWwgJCgwLDEpJC4KCmUpIFVzZSBhIHNpbXBsZSBSZWltYW5uIGFwcHJveGltYXRpb24gdG8gb2J0YWluICRwKHlfbnxNXzIpJC4gIE5vdyB5b3UgaGF2ZSBhbGwgdGhlIGluZ3JlZGllbnRzIHRvIGNvbXB1dGUgdGhlIEJheWVzIGZhY3RvciwgJEJfezEyfSQuCgo=