
Homework 4

Instructor: Hedibert Freitas Lopes
Course: STP 598 Advanced Bayesian Statistical Learning (Class # 31199)
Semester: Spring 2022
Due date: 1:30pm, April 11th, 2022.

Bayesian linear regression: We will use the wage data, which includes monthly earnings, edu-
cation, demographic variables, and IQ scores for n = 935 men1. Below is a short script for you to
get started:

data = read.table("http://hedibert.org/wp-content/uploads/2021/03/wage.txt")

# Dependent variable - standardized log wage
y = data[,1]
y = (y-mean(y))/sd(y)
n = length(y)

# Predictors
X = matrix(0,n,6)
X[,1] = data[,5] # years of education
X[,2] = data[,7] # years with current employer
X[,3] = data[,8] # age in years
X[,4] = data[,9] # =1 if married
X[,5] = data[,10] # =1 if black
X[,6] = data[,12] # =1 if live in SMSA

# Exploratory data analysis
par(mfrow=c(2,3))
plot(X[,1],y,xlab="Years of education",ylab="Standardized log wage")
plot(X[,2],y,xlab="Years with current employer",ylab="Standardized log wage")
plot(X[,3],y,xlab="Age in years",ylab="Standardized log wage")
boxplot(y~X[,4],names=c("Single","Married"),xlab="",ylab="Standardized log wage")
boxplot(y~X[,5],names=c("Not black","Black"),xlab="",ylab="Standardized log wage")
boxplot(y~X[,6],names=c("Not SMSA","SMSA"),xlab="",ylab="Standardized log wage")

1For further details, see Blackburn and Newmark (1992) Unobserved ability, efficiency wages and interindustry
wage, Quarterly Journal of Economics, 107, 1421-36 and Wooldridge (2012) Introductory Econometrics: A Modern
Approach (5th edition).



Ordinary least squares

X = cbind(x1,x2,x3,x4,x5,x6)
summary(lm(y~X)

Call:
lm(formula = y ~ x1 + x2 + x3 + x4 + x5 + x6)

Residuals:
Min 1Q Median 3Q Max

-1.9950 -0.5832 -0.1119 0.4564 5.2903

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.846950 0.372983 -10.314 < 2e-16 ***
x1 0.135740 0.013531 10.032 < 2e-16 ***
x2 0.018402 0.005972 3.081 0.002122 **
x3 0.037512 0.009747 3.849 0.000127 ***
x4 0.435239 0.094900 4.586 5.13e-06 ***
x5 -0.455911 0.088981 -5.124 3.65e-07 ***
x6 0.438294 0.064932 6.750 2.60e-11 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 0.8874 on 928 degrees of freedom
Multiple R-squared: 0.2175,Adjusted R-squared: 0.2124
F-statistic: 42.99 on 6 and 928 DF, p-value: < 2.2e-16
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a) R2 and BIC selection: There are p = 6 covariates and, therefore, 26 − 1 = 63 possible models
(excluding the model with only the intercept!). Your first task is to fit all 63 models to the
whole data and compare them in terms of adjusted R2 and BIC. List the top 5 models and
comment your findings.

b) Bayesian model selection: Let us now use a conjugate prior for (β, σ2) ∈ (<1+p,<+) for the
full model, i.e.

β|σ2 ∼ N(b0, σ
2B0) and σ2 ∼ IG(c0, d0)

where b0 = 01+p, B0 = 2I1+p, c0 = 2 and d0 = 1. Here, 01+p is a (1 + p)-dimensional vector
of zeros and I1+p is the identity matrix of order 1 + p. For any one of the 62 sub-models
(excluding the model with only the intercept), consider subsets of b0 and B0 corresponding
the the sub-model. Your job is to compute the prior predictive p(y|X,Mi) for all sub-models
i = 1, . . . , 63 and rank them all. Compare the top 5 models (with the largest prior predictive
densities) with the above top 6 models ranked according to R2 and BIC. Recall that, for the
Bayesian analysis of the linear and Gaussian regression with conjugate prior, all the derivations
are obtained in closed form, including the evaluation of the prior predictive. We should in class
that p(y|X,Mi) is multivariate Student’s t.

c) Out-of-sample study: Based on a) and b), pick the top M = 3 models based on two of the
above three criteria: BIC and prior predictive. Your job here is to verify their out-of-sample
performances based on root mean square error (RMSE) and mean absolute error (MAE) criteria.
In order to do that, let us randomly split the data into a training set with n1 = 468 observations
and a testing set with n2 = 467 observations. Repeat the split R = 100 times. More precisely,
for r = 1, . . . , R and models m = 1, . . . ,M , compute

RMSErm
ols =

√√√√ 1

n2

n2∑
i=1

(yir − ŷirm,ols)2 and MAErm
ols =

1

n2

n2∑
i=1

|yir − ŷirm,ols|,

similarly forRMSErm
bayes andMAErm

bayes. The observation yir is the actual ith response/dependent
variable in the rth testing set, while ŷirm,ols and ŷirm,bayes are the out-of-sample prediction based
on the rth training set and OLS and Bayes estimation, respectively. These out-of-sample (based
on testing sets) estimates are computed as

ŷirm,ols = x′irmβ̂rm,ols and ŷirm,bayes = x′irmβ̃rm,bayes,

where β̂rm,ols and β̂rm,bayes are, respectively, OLS estimate and posterior mean of βrm based on
the training set of split r and model m. Report and discuss you findings.
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