
Homework 3
AR(1) with a break

Posterior inference via Gibbs sampler

Instructor: Hedibert Freitas Lopes
Course: STP 598 - Time Series (Class # 12767)
Semester: Spring 2022
Due date: 12pm, March 21st, 2022.

Here is our time series data (n = 100 observations):

y = c(-25.9,-24.2,-22.0,-22.4,-23.8,-22.0,-27.5,-25.6,-26.4,-27.3,-30.0,-30.3,-24.8,-23.7,
-22.2,-24.5,-22.0,-24.7,-25.7,-22.4,-21.5,-19.2,-14.9,-17.0,-21.7,-26.6,-21.1,-22.6,-20.8,
-19.0,-19.6,-17.2,-10.7,-4.7,0.0,0.5,1.7,0.5,-4.8,0.3,0.1,3.2,-4.2,-7.6,-5.0,-2.6,1.5,-3.0,
-1.5,0.0,-3.9,-4.8,2.0,1.8,2.5,0.0,0.8,2.7,4.7,10.2,1.1,1.3,-3.0,-0.7,4.2,1.6,-4.2,-0.7,
4.2,4.9,0.0,0.2,-2.2,-4.9,3.1,6.7,8.2,9.0,4.8,5.2,7.3,7.7,9.3,6.5,12.7,13.0,16.0,14.8,11.0,
10.4,10.8,5.7,2.0,7.3,4.6,0.8,2.7,0.6,7.0,3.8)

For this data, let us consider an AR(1) structure with persistence φ1 for the first τ observations and
persistence φ2 for the following n− τ observations:

yt =

{
φ1yt−1 + εt t = 2, . . . , τ
φ2yt−1 + εt t = τ + 1, . . . , n,

where εt ∼ N(0, σ2) for t = 1, . . . , n, and parameters θ = (φ1, φ2, σ
2, τ). For simplicity, let us assume

the following prior specification:

p(θ) = p(φ1)p(φ2)p(σ
2)p(τ)

φi ∼ N(m0, C0), i = 1, 2

σ2 ∼ IG(a0, b0)

τ ∼ uniform{t0, t0 + 1, . . . , t1},

for known hyperparameters (m0, C0, a0, b0, t0, t1).

(1) Run the MLE regressions for a few values of τ , say τ = 25, . . . , 75, and plot τ versus φ̂ and τ
versus σ̂. Does this exploratory analysis help you figure out a rough guess for the “best” τ?

(2) For y1:n = (y1, . . . , yn), derive the full conditionals:

(2a) p(φ1|y1:n, φ2, σ
2, τ)

(2b) p(φ2|y1:n, φ1, σ
2, τ)



(2c) p(σ2|y1:n, φ1, φ2, τ)

(2d) p(τ |y1:n, φ1, φ2, σ
2)

Notice that “knowing” τ (conditional on τ) reduces the problem to analyzing two AR(1) proces-
ses, one based on the first τ observations and the other one based on the last n−τ observations.

(3) Let the prior hyperparameters be m0 = 0, C0 = 1, a0 = 5, b0 = 6, t0 = 25 and t1 = 75. With
99% probability, the marginal priors for φi and σ2 vary between (−3, 3) and (0, 5).

Perform posterior inference for (φ1, φ2, σ
2, τ), based on a Gibbs sampler that cycles through

the above 4 full conditionals, (2a), (2b), (2c) and (2d).

Report your code/implementation and your posterior summaries and findings. For instance,
does your MLE guess for τ in (1) is anywhere near the region of high posterior density of
p(τ |y1:n)?
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