
Homework 3

Instructor: Hedibert Freitas Lopes
Course: STP 598 Advanced Bayesian Statistical Learning (Class # 31199)
Semester: Spring 2022
Due date: 1:30pm, March 21st, 2022.

Posterior inference via Gibbs sampler

Here is the data (n = 50 observations)

y = c(-2.991,-2.845,-2.640,-1.962,-1.646,-1.627,-1.185,-0.997,-0.917,-0.726,-0.630,
-0.382,-0.335,-0.300,-0.216,-0.178,-0.136,-0.013,0.185,0.255,0.367,0.422,0.440,
0.447,0.454,0.539,0.558,0.568,0.587,0.696,0.716,0.832,0.861,0.869,0.898,1.012,
1.073,1.081,1.112,1.159,1.332,1.342,1.402,1.560,1.728,1.785,2.364,2.491,2.558,3.575)

Let us model the data as Student’s t with known ν degrees of freedom, but unknown location, µ,
and unknown scale, σ2. More precisely,

yi|µ, σ2 ∼ tν(µ, σ
2),

for i = 1, . . . , n. Also, let us assume that µ and σ2 are, a priori, independent,

µ ∼ N(m0, C0) and σ2 ∼ IG(a0, b0),

for known hyperparameters (m0, C0, a0, b0). Assume that data = {y1, . . . , yn}.

Scale mixture of Gaussians. The Student’s t likelihood is not easy to handle, but there is an
important probability result that links the Student’s tν with the Gaussian and the inverse-gamma
distributions. More precisely, the Student’s t is a scale mixture of Gaussian distributions:

If yi|λi, µ, σ2 ∼ N(µ, λiσ
2) and λi ∼ IG(ν/2, ν/2),

then yi|µ, σ2 ∼ tν(µ, σ
2). This result allows us to reinterpret the model hierarchically:

yi|λi ∼ N(µ, λiσ
2), i = 1, . . . , n

λi ∼ IG(ν/2, ν/2), i = 1, . . . , n

(µ, σ2) ∼ N(m0, C0)IG(a0, b0).

The (Monte Carlo) price one pays is in the additional parameters, (µ, σ2, λ), where λ = (λ1, . . . , λn).

1. Let z|ω ∼ N(0, ω) and ω|ν ∼ IG(ν/2, ν/2), for ν > 0.
Show that z|ν ∼ tν(0, 1).
Hint: p(z|ν) =

∫∞
0
p(z|ω)p(ω|ν)dω.



2. Derive the full conditional of µ, i.e. p(µ|data, σ2, λ)

3. Derive the full conditional of σ2, i.e. p(σ2|data, µ, λ)

4. Derive the full conditional of λi, i.e. p(λi|data, µ, σ2, λ−i), for i = 1, . . . , n and λ−i is λ without
the λi.

5. For ν = 5 and hyperparameters m0 = 0, C0 = 1, a0 = 5 and b0 = 1, perform posterior inference
for (µ, σ2), based on a Gibbs sampler that cycles through the above n + 2 full conditionals.
Report your code/implementation and your posterior summaries and findings.

6. Let us incorporate ν into the analysis with the following discrete prior

Pr(ν) ∝ νe−0.1ν ν = 1, 2, . . . , 100.

Derive its full conditional distribution Pr(ν|data, µ, σ2) (easy, since it is a discrete distribution),
and revisit question 5 above.

7. Simulate yourself n = 50 from the standard Gaussian. Assuming the previous modeling struc-
ture (prior and likelihood), plot the posterior distribution of ν. Does it concentrate on large
values of ν, which would indiate approximate Gaussian behavior? Comment your findings.

8. What would change in your Gibbs sampler if µ, the location parameter, is replaced by a linear
preditor

β0 + β1xi1 + · · ·+ xiq,

for known and q fixed predictors xij, for i = 1, . . . , n and j = 1, . . . , q, and prior

β = (β0, β1, . . . , βq) ∼ Nq(m0, V0),

for known hyperparameters b0, a q-dimensional vector and B0, a q × q covariance matrix?
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