Homework 3

Instructor: Hedibert Freitas Lopes

Course: STP 598 Advanced Bayesian Statistical Learning (Class # 31199)
Semester: Spring 2022

Due date: 1:30pm, March 21st, 2022.

Posterior inference via Gibbs sampler

Here is the data (n = 50 observations)

y = ¢(-2.991,-2.845,-2.640,-1.962,-1.646,-1.627,-1.185,-0.997,-0.917,-0.726,-0.630,
-0.382,-0.335,-0.300,-0.216,-0.178,-0.136,-0.013,0.185,0.255,0.367,0.422,0.440,
0.447,0.454,0.539,0.558,0.568,0.587,0.696,0.716,0.832,0.861,0.869,0.898,1.012,
1.073,1.081,1.112,1.159,1.332,1.342,1.402,1.560,1.728,1.785,2.364,2.491,2.558,3.575)

Let us model the data as Student’s ¢ with known v degrees of freedom, but unknown location, p,
and unknown scale, 02. More precisely,

Yilu, 0% ~ t, (1, 0%),
for i =1,...,n. Also, let us assume that p and o2 are, a priori, independent,
p~ N(mg,Cy) and o ~ IG(ag,bo),
for known hyperparameters (mg, Co, ag, bp). Assume that data = {y1,...,yn}.
Scale mixture of Gaussians. The Student’s ¢ likelihood is not easy to handle, but there is an

important probability result that links the Student’s ¢, with the Gaussian and the inverse-gamma
distributions. More precisely, the Student’s ¢ is a scale mixture of Gaussian distributions:

If yi|\i, i1, 0% ~ N(p, A\jo?) and N\ ~ IG(v/2,v/2),
then y;|u, 0% ~ t, (i, 0%). This result allows us to reinterpret the model hierarchically:

yilhi ~ N(u, \io?), i=1,....n
Ai o~ IG(v/2,v/2), i=1,...,n
(1, ‘72) ~  N(myg, Co)IG(ag,by).

The (Monte Carlo) price one pays is in the additional parameters, (1, 02, \), where X = (Ay, ..., \,).

1. Let zlw ~ N(0,w) and w|v ~ IG(v/2,v/2), for v > 0.
Show that z|v ~ t,(0, 1).
Hint: p(z|v) = [5° p(z|w)p(w|v)dw.



. Derive the full conditional of y, i.e. p(u|data,o?, \)
. Derive the full conditional of 2, i.e. p(c?|data, u, \)

. Derive the full conditional of \;, i.e. p(\;|data, p, 0%, A_;), for i = 1,...,n and A_; is X without
the /\z

. For v = 5 and hyperparameters mg = 0, Cy = 1, ap = 5 and by = 1, perform posterior inference
for (u,0?), based on a Gibbs sampler that cycles through the above n + 2 full conditionals.
Report your code/implementation and your posterior summaries and findings.

. Let us incorporate v into the analysis with the following discrete prior
Pr(v) oc ve™ ™" v=1,2,...,100.

Derive its full conditional distribution Pr(v|data, u, o) (easy, since it is a discrete distribution),
and revisit question 5 above.

. Simulate yourself n = 50 from the standard Gaussian. Assuming the previous modeling struc-
ture (prior and likelihood), plot the posterior distribution of v. Does it concentrate on large
values of v, which would indiate approximate Gaussian behavior? Comment your findings.

. What would change in your Gibbs sampler if i, the location parameter, is replaced by a linear
preditor
Bo + Bizii + - 4 Tig,

for known and ¢ fixed predictors x;;, fori =1,...,nand j =1,...,q, and prior

B = (ﬂO?Bl? cee 75(]) ~ Nq(mOa%)a

for known hyperparameters by, a ¢g-dimensional vector and By, a ¢ X ¢ covariance matrix?



